CMOS有源混频器噪声及射频接收前端关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随无线通信市场的迅猛增长和集成电路技术的快速发展,射频前端集成电路技术得到了广泛深入的研究。设计者对于射频前端电路优越电学性能的无止境追求,也不断驱使着相关设计技术的推陈出新,与时俱进。其中,直接变频结构以结构简洁,高度集成而受到研究者的大为推崇,被视为最有希望成为未来射频集成收发前端的主导架构。不过,与性能上的优越相伴随的是技术上的挑战。直到今天,业界围绕着其直流失调、闪烁噪声、本振泄漏等关键技术问题所展开的研究与探索从没有间断过。另一方面,混频器是射频接收前端的核心模块之一,其噪声的周期时变特性使得相关分析变得十分复杂,也正是这个原因,其一直是射频集成电路学科颇具挑战性的研究课题。既有的相关噪声分析模型已经不能有效提供在亚微米、高频等当前实际应用场景下的混频器电路设计指导。基于此,如何开发出具有更广泛适用性的混频器噪声解析模型显得尤为迫切。
     本文针对CMOS混频器的噪声特性及射频接收前端的若干关键技术问题进行了研究,取得了一些有益的结论和成果,主要研究工作和创新点如下:
     1.提出亚微米CMOS有源混频器噪声模型:借助最新的基于亚微米物理机理的MOSFET器件I-V模型和器件噪声模型,通过数值迭代来求解混频器大信号I-V方程,进而结合小信号推导得到包含沟道调制效应的混频器各级噪声转换函数,最后得到包含亚域区导电效应,沟道调制等二级效应的噪声解析模型。
     2.提出包含记忆效应的CMOS有源混频器噪声分析方法:基于线性周期时变理论,推导得到包含记忆效应的混频器噪声转移方程。使用电路小信号分析方法,推导得到混频器各级的周期时变转移函数。包含尾电容记忆效应的混频器电路各级噪声源至输出的噪声变换系数得以数值求解,进而最终得到适用于高频下的混频器噪声解析模型。以上两个噪声模型均为包含热噪声和闪烁噪声的一元化解析式,可以应用于具有不同中频特点的该型混频器的噪声设计优化。虽然理论上两者可以合二为一,但是出于解析式的简洁直观目的,文中分开进行论证。
     3.提出本振失调下CMOS有源混频器的转换增益模型:通过对电路的共源共栅小信号等效,推导出亚微米工艺条件下的包含器件输出电阻效应的混频器有效驱动级跨导解析式。在此基础上,提出了本振信号存在各种幅度、相位失调情况下的混频器转换增益解析模型。
     4.提出一种低噪放和混频器融合结构的增益可调直接变频射频接收前端:采用折叠结构降低开关对的偏置电流取得良好的闪烁噪声性能,同时兼有优越的增益性能;通过共模与差模反馈来改善直流失调,稳定中频输出;利用差分电路结构以及版图优化布局获得高的二阶交调指标,两个管子堆叠的电路结构,利于获得低压低功耗。
With the rapid growth of wireless communications market and the rapiddevelopment of integrated circuits technologies, integrated circuits technologies for RFfront-end were extensively researched. Designers of RF front-end circuits for theendless pursuit of excellent electrical properties, has also been driving relatedtechnological innovation from time to time. Among them, the direct conversionarchitecture with simple structure, highly integrated level is greatly welcomed by theresearchers, and is considered the most promising to become the leading RF integratedtransceiver architecture in the future. However, the superior performance isaccompanied by technical challenges. Even today, the studies undertaken by theindustry around the DC offset, flicker noise, LO leakage and other key technicalproblems never stop. The mixer is one of the core modules of RF receiving front-end,the time-varying characteristics of whose noise complicates related analysis much. It isfor this reason that the noise analysis of mixers has been a challenging problem in RFintegrated circuits subject. Meanwhile, the existing noise analysis model can noteffectively provide design guidelines for the mixer circuits in current sub-micron andhigh-frequency application scenarios. Based on this, how to develop a noise analysismodel of mixers with broader applicability is particularly urgent.
     The noise characteristic of CMOS mixers and a number of key technical issues forRF receiving front-end have been studied in the dissertation, and some usefulconclusions and results are obtained, where primarily research and innovation are as
     follows:
     1. A sub-micron CMOS active mixer noise model is proposed: Based on the latestsub-micron physical noise model and I-V model of MOSFETs, the large-signal I-Vequation of the mixer is solved by numerical iteration. And then, the noise transferfunctions of the mixer with channel modulation are derived by small-signal analysis.Finally, a noise analytical model considering secondary effects such as subthresholdconductivity and channel length modulation is obtained.
     2. A noise analysis method for CMOS active mixer with the memory effect isproposed: Based on linear periodic time-varying theory, the noise transfer equationsof the mixer including the memory effect have been rigorously derived. Bysmall-signal analysis, the periodic time-varying transfer functions of the mixer areobtained. The noise transform coefficients including tail capacitor memory effectcan be solved numerically, and then a high frequency noise analysis model of themixer is finally captured. These two noise models both are unified analytic modelsincluding thermal noise and flicker noise, and can be applied to the noise designand optimization of the mixer with different intermediate frequency characteristics.Although theoretically the two can be combined, for the simple and intuitivepurposes, they are separately demonstrated.
     3. A conversion gain model with LO signal offsets for CMOS active mixer isproposed: With the approximation of the small-signal cascode circuit, an analyticdriver stage transconductance including the channel length modulation effect isderived suitable for submicron technology. On this basis, an analytical conversiongain model for the mixer is proposed with the existence of various amplitude andphase imbalance of local oscillator signal.
     4. A gain-adjustable direct conversion RF receiving front-end with merged low-noiseamplifier and mixer is presented: Low flicker noise and high gain are achieved bydecreasing the bias current of switching pairs; DC offset is improved by bothcommon mode feedback and differential mode feedback, making the IF output levelstable. High IIP2is obtained by the differential circuits’ architecture and thesymmetrical layout. The circuit with only two stacked MOSFETs, achieves thetarget of low voltage and low power consumption.
引文
[1] http://www.3gpp.org/
    [2] http://www.etsi.org/
    [3] http://www.wlan.org/
    [4] B. Razavi. Challenges and trends in RF design. IEEE Int. ASIC Conf. and Exhibit, Sept.1996,vol.2:268-276
    [5] Sansen, Willy. Analog desngn essential, Berlin: The Springer press,2006
    [6] Ali M. Niknejad and Hossein Hashemi. Mm-Wave Silicon Technology:60GHz and Beyond.Berlin: The Springer press,2008
    [7] A. A. Abidi. RF CMOS comes of age, IEEE J. Solid-State Circuits.2004, vol.39:549-561
    [8] Aravind Loke, Fazal Ali. Direct conversion radio for digital mobile phones-design issues, statusand trends. IEEE Trans. Microwave Theory Tech.,2002, vol.50:2422-2435
    [9] A. Rofougaran, J. Y.-C. Chang, M. Rofougaran, et al. A1-GHz CMOS RF front-end IC for adirect-conversion wireless receiver. IEEE J. Solid-State Circuits, Jul.1996, vol.31:880-889
    [10] Kang-Yoon Lee, Seung-Wook Lee, Yido Koo, et al. Full-CMOS2-GHz WCDMA directconversion transmitter and receiver. IEEE J. Solid-State Circuits, Jan.2003, vol.38:43-53
    [11] Pengfei Zhang, Thai Nguyen, Christopher Lam, et al. A5-GHz direct-conversion CMOStransceiver. IEEE J. Solid-State Circuits, Dec.2003, vol.38:2232-2003
    [12] Massimo Brandolini, Marco Sosio, Francesco Svelto. A750Mv fully integrated directconversion receiver front-end for GSM in90-nm CMOS. IEEE J. Solid-State Circuits, Jun.2007, vol.42:1310-1317
    [13]张肃文,陆兆熊.高频电子线路混频器章节三版北京:高等教育出版社1992
    [14] T. H. Lee. The Design of CMOS Radio-Frequency Integrated Circuits.2nd ed., New York:Cambridge University Press,2004
    [15] C. D. Hull and R. G. Meyer. A systematic approach to the analysis of noise in mixers. IEEETrans. Circ. and Syst.-1: Fund. Theory Appl., Dec.1993, vol.40:909-919
    [16] Okumura, M., Tanimoto, H., Itakura, T. Numerical noise analysis for nonlinear circuits with aperiodic large signal excitation including cyclostationary noise sources. IEEE Trans. CircuitsSyst. I,1993, Vol.40:581-590
    [17] Roychowdhury, J., Long, D., Feldmann, P. Cyclostationary noise analysis of large RF circuitswith multitone excitations Solid-State Circuits. IEEE J. Solid-State Circuits,1998,vol.33:324-335
    [18] Demir, A., Liu, E.W.Y., Sangiovanni-Vincentelli, A.L. Time-domain non-Monte Carlo noisesimulation for nonlinear dynamic circuits with arbitrary excitations. IEEE Transactions onComputer-Aided Design of Integrated Circuits and Systems,1996, vol.15:493-505
    [19] Manolis T. Terrovitis, Robert G. Meyer. Noise in current-commutating CMOS mixers. IEEE J.Solid-State Circuits, Jun.1999, vol.34:772-783
    [20] H. Darabi and A. A. Abidi. Noise in RF-CMOS mixers: A simple physical model. IEEE J.Solid-State Circuits,2000, vol.35:15-25
    [21] W. Yue and B. H. Leung. Noise analysis for sampling mixers using stochastic differentialequations. IEEE Trans. Circ. and Syst.: Analog and Digital Signal Proc.,1999, vol.46:699-704
    [22] Donhee Ham and Ala Hajimiri. Complete noise analysis for cmos switching mixers viastochastic differential equations. IEEE custom integrated circuits conference,2000,439-442
    [23] K. K. Hung, P. K. Ko, C.-H.Chen, and Y. C. Cheng. Physics-based MOSFET noise model forcircuit simulators. IEEE Trans. Electron Devices, May.1990, vol.37:1323-1333
    [24] K. Han, H. Shin, and K. Lee. Analytical drain thermal noise current model valid for deepsubmicron MOSFETs. IEEE Trans. Electron Devices, Feb.2004, vol.51:261-269
    [25] S. Asgaran, M. J. Deen, and C.-H. Chen. Analytical modeling of MOSFETs channel noise andnoise parameters. IEEE Trans. Electron Devices, Dec.2004, vol.51:2109-2114
    [26] A.J.Scholten, L.F.Tiemeijer, R.van Langevelde, et al. Noise modeling for RF CMOS circuitsimulation. IEEE Trans. Electron Devices, Mar.2003, vol.50:618-632
    [27] M. J. Deen, C.-H. Chen, S. Asgaran, et al. High-frequency noise of modern MOSFETs:Compact modeling and measurement issues. IEEE Trans. Electron Devices, Sep.2006, vol.53:2062-2080
    [28] A. S. Roy and C. C. Enz. Compact modeling of thermal noise in the MOS transistor. IEEETrans.Electron Devices, Apr.2005, vol.52:611-614
    [29] A.S.Roy, C.C.Enz and J.M.Sallese. Noise modeling methodologies in the presence of mobilitydegradation and their equivalence. IEEE Trans.Electron Devices,2006, vol.53:348-355
    [30] A. Arnaud and C. Galup-Montoro. A compact model for flicker noise in MOS transistors foranalog circuit design. IEEE Trans.Electron Devices, Aug.2003, vol.50:1815-1818
    [31] Li zhiyuan and Jianguo Ma. Compact channel noise models for deep-submicron mosfet. IEEEtrans. Electron devices, Jun.2009, vol.56:1300-1308
    [32] Sining Zhou, Mau-Chung Frank Chang. A CMOS passive mixer with low flicker noise forlow-power direct-conversion receiver. IEEE J. Solid-State Circuits,2005, vol.40:1084-1093
    [33] Redman-White, W. and Leenaerts, D.M.W.1/f noise in passive CMOS mixers for low and zeroIF integrated receivers. Proceedings of the27th European Solid-State Circuits Conference(ESSCIRC),2001,41-44
    [34] Sacchi, E., Bietti, I., Erba, S., et al. A15mW,70kHz1/f corner direct conversion CMOSreceiver. Proceedings of the IEEE Custom Integrated Circuits Conference,2003,459-462
    [35] Mirzaei, A., Darabi, H., Leete, J.C. et al. Analysis and optimization of current-driven passivemixers in narrowband direct-conversion receivers. IEEE J. Solid-State Circuits,2009, vol.44:2678-2688
    [36] Chehrazi, S., Mirzaei, A., Abidi, A.A, et al. Noise in current-commutating passive FET mixers.IEEE Trans. Circuits and Systems I: Regular Papers,2010, vol.57:332-344
    [37] Asgaran, S., Deen, M.J. Flicker noise cancellation technique for low-voltage direct-conversionmixers Electronics Letters,2007, vol.43:1020-1021
    [38] Xuezhen Wang, Robert Weber, Degang Chen. A novel1.5V CMFB CMOS down-conversionmixer design for IEEE802.11A WLAN systems. International Symposium on Circuits andSystems,2004,373-376
    [39] Vojkan Vidojkovic, Johan van der Tang, Arjan Leeuwenburgh. A low-voltage folded-switchingmixer in0.18-μm CMOS. IEEE J. Solid-State Circuits, Jun.2005, vol.40:1259-1264
    [40] Paul Laferriere, Dave Rahn, Calvin Plett, et al. A5GHz direct-conversion receiver with DCoffset correction. International Symposium on Circuits and Systems,2004,269-272
    [41] Hyeon-Seok Hwang, Seung-Min Oh, Hak-Sun Kim, et al. A design of current reused CMOSmixer with CMFB for direct conversion receiver. Asia-Pacific Microwave Conference,2007,1-4
    [42] B. Razavi. RF Microelectronics,1st ed., New Jersey: Prentice Hall,1998
    [43]池保勇,余志平,石秉学. CMOS射频集成电路分析与设计.北京:清华大学出版社,2006
    [44] Asad A. Abidi. Direct-conversion radio transceivers for digital communications. IEEE J.Solid-State Circuits, Dec.1995, vol.30:1399-1410
    [45] Behzad Razavi. Design considerations for direct-conversion receivers. IEEE Trans. CircuitsSyst.-Ⅱ: Analog and Digital Signal Processing, Jun.1997, vol.44:428-435
    [46] Seung-Min Oh, Kyoung-Seok Park, Hyun-Hwan Yoo, et al. A Design of DC Offset Cancellerusing Parallel Compensation,IEEE International Symposium on Circuits and Systems, ISCAS.2007,1685-1688
    [47] Svitek, R., Johnson, D., Raman, S. An active SiGe sub-harmonic direct-conversion receiverfront-end design for5-6GHz band applications, IEEE Radio Frequency Integrated Circuits(RFIC) Symposium,2002,395-398
    [48] Goldfarb, M., Balboni, E., Cavey, J. Even harmonic double-balanced active mixer for use indirect conversion receivers IEEE Journal Solid-State Circuits,2003, vol.38:1762–1766
    [49] Razavi, B. A900-MHz CMOS Direct Conversion Receiver,Digest of Technical PapersSymposium on VLSI Circuits.1997,113-114
    [50] Nimmagadda, K., Rebeiz, G.M. A1.9GHz double-balanced subharmonic mixer for directconversion receivers. IEEE Radio Frequency Integrated Circuits (RFIC) Symposium,2001,253-256
    [51] Liwei Sheng, Jensen, J.C., Larson, L.E. A wide-bandwidth Si/SiGe HBT direct conversionsub-harmonic mixer/downconverter. IEEE Journal Solid-State Circuits,2000, vol.35:1329-1337
    [52] Johnson, D.A., Raman, S. A packaged SiGe x2sub-harmonic mixer for U-NII band applications.Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting,2001,159-162
    [53] Zhang, Z., Chen, Z., Lau, J. A900MHz CMOS balanced harmonic mixer for direct conversionreceivers Radio and Wireless Conference, IEEE RAWCON.2000,219-222
    [54] Upadhyaya, P., Rajashekharaiah, M., Deukhyoun Heo, et al. A high IIP2doubly balancedsub-harmonic mixer in0.25-μm CMOS for5-GHz ISM band direct conversion receiver. IEEERadio Frequency integrated Circuits (RFIC) Symposium,2005,175-178
    [55] M. Brandolini, P. Rossi, D. Sanzogni. A+78dBm IIP2CMOS direct downconversion mixer forfully integrated UMTS receivers. IEEE J. Solid-State Circuits, Mar.2006, vol.41:552-559
    [56] Brandolini, M., Sosio, M., Svelto, F. A750mV Fully Integrated Direct Conversion ReceiverFront-End for GSM in90-nm CMOS. IEEE Journal Solid-State Circuits,2007, vol.42:1310-1317
    [57] Yuanjin Zheng, Mingzheng Cao, Teo, E.K.H. An adaptive filtering algorithm fordirect-conversion receivers: architecture and performance analysis. IEEE Transactions Circuitsand Systems I: Regular Papers,2008, vol.55:1141-1148
    [58] Ebadi, Z.S. Application of complex quantized feedback in direct conversion receivers forwireless applications[Phd Dissertation]. University of british columbia,2007
    [59] Ebadi, Z.S., Mirabbasi, S., Saleh, R. The application of complex quantized feedback inintegrated wireless receivers. IEEE Trans. Circuits and Systems I: Regular Papers,2006, vol.53:594-603
    [60] R. Muller and H.-J. Jentschel. Calibration method for direct conversion receiver front-ends. Adv.Radio Sci.2008, vol.6:119-124R. Muller and H.-J. Jentschel. Calibration method for directconversion receiver front-ends. Adv. Radio Sci.2008, vol.6:119-124
    [61] http://www.analog.com/en/index.html about AD6548/9specifications
    [62] S. M. Sze. Physics of semiconductor devices. Second ed., New York: Wiley,1981
    [63] Inamori, M., Bostamam, A., Sanada, Y. IQ imbalance compensation scheme in the presence offrequency offset and dynamic DC offset for a direct conversion receiver. IEEE Trans. WirelessCommunications,2009, vol.8:2214-2220
    [64] Wei-Zen Chen, Tsorng-Lin Lee, Tai-You Lu. A5-GHz direct-conversion receiver with I/Qphase and gain error calibration. IEEE Radio Frequency integrated Circuits (RFIC) Symposium,2005,201-204
    [65] Jian Luo, Kortke, A., Keusgen, W. Efficient self-calibration of frequency-dependentI/Q-imbalance in direct-conversion OFDM transceivers. IEEE International Symposium onCircuits and Systems,ISCAS.2009,413-416
    [66] Maas, Stephen A. Nonlinear microwave and RF circuits.2nd ed. NewYork:artechhouse,2003
    [67]吕学士.射频系统晶圆RF SOC讲义.国立台湾大学,2003
    [68] Piet Wambacq and Willy Sansen. Distortion analysis of analog integrated circuits. KluwerAcademic Publishers,1998
    [69] Reinhold Ludwig. RF circuit design: theory and application.北京:电子工业出版社,2002
    [70] Haus, H.A., Atkinson, W.R., Branch, G.M., et al. Representation of noise in linear twoports.Proceedings of the IRE,1960, vol.48:69-74
    [71] W. H. Toole, E. I. El-Masry, T. Manku. A novel highly linear1GHz switched-currentsub-sampling mixer. International Symposium on Circuits and Systems,1996,203-206
    [72] Cheng-Chih Chang, Ro-Min Weng, J. C. Huang, et al. A1.5V high gain CMOS mixer for2.4-GHz applications. International Symposium on Circuits and Systems,2001,782-785
    [73] Francesco Svelto, Stefano Deantoni, Giampiero Montagna, et al. Implementation of a CMOSLNA plus mixer for GPS applications with no external components. IEEE Trans. VLSI Syst.,Feb.2001, vol.9:100-104
    [74] Martin L Schmatz, Charlotte Biber, Werner Baumberger. Conversion gain enhancementtechniques for ultra low power gilbert cell down mixers. IEEE GaAs IC Symposium,1995,245-248
    [75] Torbjorn Sandstrom, Lars Sundstrom. A1.8-GHz double-balanced CMOS receiver front-end.International Symposium on Circuits and Systems,1999,136-137
    [76] Theodore Rappaport, Wireless Communications: Principles and Practice, Prentice Hall:2ndEdition,2001Theodore Rappaport, Wireless Communications: Principles and Practice,Prentice Hall:2nd Edition,2001
    [77] B. Razavi. Design considerations for future RF circuits. IEEE Int. Sym. Circuits and Systems,May2007,741-744B. Razavi. Design considerations for future RF circuits. IEEE Int. Sym.Circuits and Systems, May2007,741-744
    [78] Oh, N.-J. A low-noise mixer with an image-reject notch filter for2.4GHz applications.Microelectronics Journal,2008, vol.39:1860-1866
    [79] M. Pifferi, M. Borgarino, R. Codeluppi, F. Alimenti. High linearity CMOS mixer for domotic5GHz WLAN sliding-IF receivers. Microelectronics Journal,2006, vol.37:1012–1017
    [80] W. A. Gardner. Introduction to Random Processes with Applications to Signals and Systems.2nd ed., New York: McGraw-Hill,1989
    [81] M. T. Terrovitis and R. G. Meyer. Intermodulation distortion in current-commutating CMOSmixers. IEEE J. Solid-State Circuits, Jun.2000, vol.35:1461-1473
    [82] Y. Tsividis. Operation and modeling of the MOS transistor, McGraw-Hill,1999
    [83] Y. Tsividis, K. Suyama, K. Vavelidi. Simple ‘reconciliation’ MOSFET model valid in allregions. IEEE Electronics Letters,1995, vol.31:506-508
    [84] Khee Yong Lim, Xing Zhou. MOSFET subthreshold compact modeling with effective gateoverdrive. IEEE Trans. Electron Devices,2002, vol.49:196-199
    [85] BSIM3v3manual. vol.CA94720: Department of Electrical Engineering and Computer Science,University of California,1995
    [86] B. Razavi. Design of Analog CMOS Integrated Circuits,1st ed., New York: McGraw-Hill,2001
    [87] P. R. Gray, P. J. Hurst, S. H. Lewis et al. Analysis and Design of Analog Integra-ted Circuits,4th ed., New York: John Wiley&Sons,2001
    [88] M. T. Terrovitis, K. S. Kundert, and R. G. Meyer. Cyclostationary noise in radio-frequencycommunication systems. IEEE Trans. Circuits Syst. I, Nov.2002, vol.49:1666-1671
    [89] Alan V. Oppenheim. Signals and Systems,2nd ed., Prentice-Hall, New Jersey,1997
    [90]张维承.CMOS低噪声放大器与混频器中的噪声和非线性分析:[硕士学位论文].杭州:浙江大学,2003
    [91] Derek K. Shaeffer and Thomas H. Lee. A1.5-V,1.5-GHz CMOS Low Noise Amplifier. IEEEJournal of Solid-State Circuits, May1997, vol.32:745-759
    [92] P. Heydari. High-frequency noise in RF active CMOS mixers. Proc. IEEE ASP-DAC,2004,57-61
    [93] A. van der Ziel. Noise in solid state devices and circuits, New York: wiley,1986
    [94] Arnaud, A., Galup-Montoro, C. Consistent noise models for analysis and design of CMOScircuits. IEEE Trans. Circuits and Systems I: Regular Papers, Oct.2004, vol.51:1909–1915
    [95] Y. Tsividis, K. Suyama and K. Vavelidi. Simple ‘reconciliation’ MOSFET model valid in allregions. Electronics Letters16th March,1995, vol.31:151-155
    [96] Sullivan P J, Xavier B A, Ku W H. Low Voltage Performance of a Microwave CMOS GilbertCell Mixer. IEEE J. Solid-State Circuits,1997, vol.32:1151-1155
    [97] Patnaik, S., Lanka, N., Harjani, R. A dual-mode architecture for a phased-array receiver basedon injection locking in0.13μm CMOS. IEEE International Solid-State Circuits Conference(ISSCC).2009,490–491
    [98] Liu, J.J., Do, M.A., Ma, J.G., Yeo, K.S. Analysis of LO leakage due to LO mismatch in CMOSGilbert mixer for direct conversion application. IEEE Asia-Pacific Conference on Circuits andSystems,2004, vol.1:297-300
    [99] M. Valla et al. A72-mW CMOS802.11a direct conversion front-end with3.5-dB NF and200-kHz1/f noise corner. IEEE J. Solid State Circuits,2005, vol.40:970-977
    [100] Voltti, M., Koivi, T., Tiiliharju, E. Comparison of active and passive mixers.18th EuropeanConference on Circuit Theory and Design, ECCTD.2007,890-893
    [101] Darabi and J. Chiu. A noise cancellation technique in active RF-CMOS mixers. IEEE J.Solid-State Circuits, Dec.2005, vol.40:2628–2632
    [102] S.-G. Lee et al. Current-reuse bleeding mixer. Electron. Lett., Apr.2000, vol.36:696-697
    [103] Jinsung Park, Chang-Ho Lee, Byung-Sung Kim, and Laskar, J. Design and Analysis of LowFlicker-Noise CMOS Mixers for Direct-Conversion Receivers. IEEE Trans. Microwave Theoryand Techniques,2006, vol.54:4372-4380
    [104] Jehyung Yoon, Huijung Kim, Changjoon Park, et al. A new RF CMOS Gilbert mixer withimproved noise figure and linearity. IEEE Trans. Microwave Theory and Techniques,2008,vol.56:626-631
    [105] Sjoland, H., Karimi-Sanjaani, A., and Abidi, A.A. A merged CMOS LNA and mixer for aWCDMA receiver. IEEE J. Solid-State Circuits,2003, vol.38:1045-1050
    [106] Taeksang Song, Hyoung-Seok Oh, Yoon, E., et al. A low-power2.4-GHz current-reusedreceiver front-end and frequency source for wireless sensor network. IEEE Journal ofSolid-State Circuits,2007, vol.42:1012-1022
    [107] Taeksang Song, Hyoung-Seok Oh, Songcheol Hong. A2.4-GHz sub-mW CMOS receiverfront-end for wireless sensors network. IEEE Microwave and Wireless Components Letters,2006, vol.16:206-208
    [108] A. N. Karanicolas. A2.7-V900-MHz CMOS LNA and Mixer. IEEE J. Solid-State Circuits,1996, vol.31:1939-1944
    [109] E. Abou-Allam, J. J. Nisbet, and M. C. Maliepaard. Low-voltage1.9-GHZ front-end receiverin0.5-μm CMOS technology. IEEE J. Solid-State Circuits, Oct.2001, vol.36:1434-1443
    [110] F. Gatta, E. Sacchi, F. Svelto, P. Vilmercati. A2-dB noise figure900-MHz differential CMOSLNA. IEEE J. Solid-State Circuits, Oct.2001, vol.36:1444-1452F. Gatta, E. Sacchi, F. Svelto, P.Vilmercati. A2-dB noise figure900-MHz differential CMOS LNA. IEEE J. Solid-State Circuits,Oct.2001, vol.36:1444-1452
    [111] Vojkan Vidojkovic, Johan van der Tang, Arjan Leewwenburgh, et al. A low-voltagefolded-switching mixer in0.18-μm CMOS. IEEE J. Solid-State Circuits,2005,vol.40:1259-1264
    [112] Klumperink, E.A.M., Louwsma, S.M., Wienk, G.J.M. A CMOS switched transconductor mixer.IEEE Journal of Solid-State Circuits, vol.39:1231-1240
    [113] Shahani, A.R., Shaeffer, D.K., Lee, T.H. A12-mW wide dynamic range CMOS front-end for aportable GPS receiver. IEEE Journal of Solid-State Circuits,1999, vol.32:1231-1240
    [114] Do, A.V., Boon, C.C., Manh Anh Do, et al. A weak-inversion low-power active mixer for2.4GHz ISM band applications. IEEE Microwave and Wireless Components Letters,2009, vol.19:719-721
    [115] Jeong-Bae Seo, Jong-Ha Kim, Hyuk Sun, et al. A low-power and high-gain mixer for UWBsystems. IEEE Microwave and Wireless Components Letters,2008, vol.18:803–805
    [116] Perumana, B.G., Chakraborty, S., Chang-Ho Lee, et al. A fully monolithic260-μW,1-GHzsubthreshold low noise amplifier. IEEE Microwave and Wireless Components Letters,2005,vol.15:428-430
    [117] Zhuo, W., Li, X., Shekhar, S., et al. A capacitor cross-coupled common-gate low-noiseamplifier. IEEE Transactions on Circuits and Systems II: Express Briefs,2005, vol.52:875-879
    [118] Pavaluta, C.M., Neacsu, C., Derevlean, M., et al. CMOS RF mixer design-a noisecancellation approach. International Symposium on Signals, Circuits and Systems, SCS2003,245-248Pavaluta, C.M., Neacsu, C., Derevlean, M., et al. CMOS RF mixer design-a noisecancellation approach. International Symposium on Signals, Circuits and Systems, SCS2003,245-248
    [119] Wei-Hung Chen, Gang Liu, Zdravko, B. A highly linear broadband CMOS LNA employingnoise and distortion cancellation. IEEE J. Solid-State Circuits,2008, vol.43:1164-1176
    [120] Liao, C.-F., Liu, S.-I. A broadband noise-canceling CMOS LNA for3.1–10.6-GHz UWBreceivers. IEEE Journal of Solid-State Circuits,2007, vol.42:329-339Liao, C.-F., Liu, S.-I. Abroadband noise-canceling CMOS LNA for3.1–10.6-GHz UWB receivers. IEEE Journal ofSolid-State Circuits,2007, vol.42:329-339
    [121] Amer, A., Hegazi, E., Ragaie, H. F. A90-nm wideband merged CMOS LNA and mixerexploiting noise cancellation. IEEE Journal of Solid-State Circuits,2007, vol.42:323-328Amer,A., Hegazi, E., Ragaie, H. F. A90-nm wideband merged CMOS LNA and mixer exploitingnoise cancellation. IEEE Journal of Solid-State Circuits,2007, vol.42:323-328
    [122] Donggu Im, Ilku Nam, Hong-Teuk Kim. A wideband CMOS low noise amplifier employingnoise and IM2distortion cancellation for a digital TV tuner. IEEE Journal of Solid-StateCircuits,2009, vol.44:686-698
    [123] V. Aparin and L. E. Larson. Modified derivative superposition method for linearizing FETlow-noise amplifiers. IEEE Trans.Microw. Theory Tech.,2005, vol.53:571-581
    [124] N.Kim, V.Aparin, K.Barnett. A cellular-band CDMA CMOS LNA linearized using activepost-distortion. IEEE J. Solid-State Circuits,2006, vol.41:1530-1534
    [125] T.-S. Kim and B.-S. Kim. Post-linearization of cascode CMOS LNA using folded PMOS IMDsinker. IEEE Microw. Wireless Comp. Lett.,2006, vol.16:182-184
    [126] V. Aparin and L. E. Larson. Linearization of monolithic LNAs using low-frequencylow-impedance input termination. in Proc. Eur. Solid-State Circuits Conf., Sep.2003,137-140
    [127] K. L. Fong. High-frequency analysis of linearity improvement technique of common-emittertrans-conductance stage using a low-frequency trap network. IEEE J. Solid-State Circuits,2000,vol.35:1249-1252
    [128] Keng Leong Fong, Meyer, R.G.. High-frequency nonlinearity analysis of common-emitter anddifferential-pair transconductance stages. IEEE J. Solid-State Circuits,1998, vol.33:548-555
    [129] Manstretta, D., Brandolini, M., Svelto, F. Second-order intermodulation mechanisms in CMOSdownconverters, IEEE Journal of Solid-State Circuits,2003, vol.38:394-406
    [130] Y. Ding and R. Harjani. A18dBm IIP3LNA in0.35um CMOS. in IEEE Int. Solid-StateCircuits Conf.(ISSCC) Dig. Tech. Papers, Feb.2001,162-163
    [131] E. Keehr and A. Hajimiri. Equalization of IM3products in wideband direct-conversionreceivers. IEEE Int. Solid-State Circuits Conf.(ISSCC) Dig. Tech. Papers, Feb.2008,204-205
    [132] Heng Zhang, Sánchez-Sinencio, E. Linearization Techniques for CMOS Low Noise Amplifiers:A Tutorial. IEEE Trans. Circuits and Systems I,2011, vol.58:22-36
    [133] Hsien-Ku Chen, Da-Chiang Chang, Ying-Zong Juang. A compact wideband CMOS low-noiseamplifier using shunt resistive-feedback and series inductive-peaking techniques. IEEEMicrowave and Wireless Components Letters,2007, vol.17:616-618
    [134] Hsien-Ku Chen, Yo-Sheng Lin, Shey-Shi Lu. Analysis and design of a1.6–28-GHz compactwideband LNA in90-nm CMOS using a π-Match input network. IEEE Transactions onMicrowave Theory and Techniques,2010, vol.58:2092-2104
    [135] A. Bevilacqua and A. M. Niknejad. An ultrawideband CMOS low noise amplifier for3.1–10.6GHz wireless receivers. IEEE J. Solid-State Circuits, Dec.2004, vol.39:2259-2268
    [136] A. Ismail and A. A. Abidi. A3–10GHz low noise amplifier with wideband LC-ladder matchingnetwork. IEEE J. Solid-State Circuits, Dec.2004, vol.39:2269-2277
    [137] Heng Zhang, Xiaohua Fan, Sinencio, E.S. A low-power, linearized, ultra-wideband LNAdesign technique. IEEE Journal of Solid-State Circuits,2009, vol.44:320-330
    [138] Jarvinen, J. A. M., KauKovuori, J., Ryynanen, J., et al.2.4GHz receiver for sensorapplications. IEEE J. Solid-State Circuits,2005, vol.40:1426-1433
    [139] Wei Cheng, Annema, A.J., Croon, J.A. Noise and nonlinearity modeling of active mixers forfast and accurate estimation. IEEE Transactions on Circuits and Systems I: Regular Papers,2011, vol.58:276-289
    [140] Fathi, D., Masoumi, N. Accurate analysis of RF noise characteristics in active MOSFETmixers in90nm technology,3rd International Conference on Design and Technology ofIntegrated Systems in Nanoscale Era,2008:1-5
    [141] Rui Wu and Jianguo Ma. A systematic analysis of the voltage-dependent noise characteristicsof active CMOS mixers. International Conference on Communications, Circuits and Systems,2009,762-766

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700