基于潮解作用的KDP晶体抛光技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
KDP(Potassium Dihydrogen Phosphate,磷酸二氢钾)晶体是20世纪40年代发展起来的一种非常优良的电光非线性光学晶体材料。这种材料是“惯性约束核聚变”(ICF)固体激光驱动器、强激光武器中不可替代的光学倍频转换器和电光开关器件用材料。但是,KDP晶体具有质软、脆性高、易潮解、对温度变化敏感的特点,这些特点对其加工十分不利,同时,激光惯性约束核聚变对KDP晶体光学元件的要求很高,所有这些使得KDP晶体零件的制造非常困难,大尺寸高精度光学KDP晶体零件是目前公认的最难加工的光学零件之一。目前应用于KDP晶体超精密加工的方法都不同程度地存在着一定的问题,还有待于进一步完善。在努力完善原有KDP晶体超精密加工方法的同时,也应该积极探索新的KDP晶体超精密加工方法,以满足实际应用的需要。
     为了适应KDP晶体超精密加工技术的发展需要,本文提出一种利用潮解作用对KDP晶体进行超精密加工的新技术,即基于潮解作用的KDP晶体抛光技术。本文对该方法的关键技术进行了研究,具体的研究内容包括:
     本文首先综述了KDP晶体超精密加工技术的国内外发展现状,简要介绍了一些新型抛光技术,在此基础之上,根据KDP晶体的易潮解性质,提出了基于潮解作用的KDP晶体抛光技术。
     在对KDP晶体材料进行介绍和对潮解本质进行研究的基础上,进行了KDP晶体表面溶解实验,并借鉴晶片化学机械抛光(CMP)中材料的去除机制,提出了基于潮解作用的KDP晶体抛光的材料去除机制。对基于潮解作用的KDP晶体抛光工艺进行了规划,进行了基于潮解作用的KDP晶体抛光实验,验证了所提出材料去除机制的正确性、可行性与有效性。
     在对基于潮解作用的KDP晶体抛光过程进行简单分析的基础上,探讨了对基于潮解作用的KDP晶体抛光中溶解作用进行控制的意义,提出了通过含水的抛光液对水的溶解作用进行控制的思想,重点对抛光液进行了研究,研制出了抛光液。通过基于潮解作用的KDP晶体抛光实验,对所提出溶解作用控制方法进行了验证,并检验了所研制抛光液的性能。
     通过基于潮解作用的KDP晶体抛光工艺实验,研究了KDP晶体表面初始状况、抛光时间、抛光盘转数等输入变量对基于潮解作用的KDP晶体抛光材料去除和表面粗糙度的影响,获得了较优的工艺参数组合范围,为基于潮解作用的KDP晶体抛光技术的进一步研究与应用奠定了基础。
     对基于潮解作用的KDP晶体抛光过程进行了运动学分析,并在此基础上对基于潮解作用的KDP晶体抛光相对运动轨迹进行了研究,进行了相对速度分析和抛光行程分析。从理论上对基于潮解作用的KDP晶体抛光过程进行了分析,研究了基于潮解作用的KDP晶体抛光中主要因素对抛光过程的影响。
KDP (Potassium Dihydrogen Phosphate) crystal is a kind of good electro-optic nonlinear optical material developed in 1940s. In solid-state lasers for Inertial Confinement Fusion(ICF) and high power laser weapons, it is an irreplaceable material for the application in optical frequency converters and electro-optic switches. But the KDP crystal is soft, fragile, deliquescent and sensitive to temperature change, which is very disadvantageous to its machining. At the same time, in ICF, high demands are made on the optical elements of KDP crystal. All of these make it difficult to machine KDP crystal, optical parts with large sizes and high precision made of it is known as one kind of the optics most difficult to fabricate. Presently, the ultraprecision machining methods applied to KDP crystals have some defects, they still remain to be further improved. In order to meet the requirements of practical applications, on the one hand, the existing ultraprecision machining methods applied to KDP crystals should be improved, on the other hand, new ultraprecision machining technologies for KDP crystals should be searched after.
     To meet the requirement of the developing in ultraprecision machining technologies for KDP crystals, this dissertation proposes a new technology, i.e. polishing technology for KDP crystals based on deliquescent action, which utilizes deliquescent action for ultraprecision machining KDP crystals. The key technologies of this method are studied in the dissertation. The main aspects of the study are including:
     First the general status of the ultraprecision machining methods applied to KDP crystals in both domestic and overseas is reviewed, and some novel polishing technologies are briely introduced. On the basis of the review and the introduction, according to the characteristic that KDP crystal is deliquescent, the polishing technology for KDP crystals based on deliquescent action is proposed.
     Based on the introduction of KDP crystal and the researching of essence of deliquescence, the dissolution experiment of KDP crystal’s surface was conducted, and referring to the material removal mechanism in chemical mechanical polishing wafer, the material removal mechanism in polishing of KDP crystals based on deliquescent action is proposed. The polishing process of KDP crystals based on deliquescent action was planned, the polishing experiment of KDP crystal based on deliquescent action was carried out, the validity, feasibility and effectiveness of the material removal mechanism was verified.
     On the basis of analyzing the polishing process of KDP crystals based on deliquescent action simply, the significance of controlling the deliquescent action in polishing of KDP crystals based on deliquescent action is discussed, the ieda of controlling the deliquescent action of water through polishing fluid with water is proposed. The polishing fluid is studied with emphasis. The polishing fluid was developed. Through polishing experiments of KDP crystals based on deliquescent action, the controlling method of deliquescent action was verified, and the performance of the developed polishing fluid was tested.
     Through polishing experiments of KDP crystals based on deliquescent action, effect of main input variables, including KDP crystal’s initial surface state, polishing time, revolution of polishing plate, etc., on material removal and surface roughness in polishing of KDP crystals based on deliquescent action is stuedied. The processing parameters combination is achieved to get better polishing results in polishing of KDP crystals based on deliquescent action. The study will be the basis for the further researching and application of the polishing technology for KDP crystals based on deliquescent action.
     To the polishing process of KDP crystal based on deliquescent action, kinematic analysis is made. On the basis of the analysis, track, velocity and polishing distance of a point on the KDP crystal’s surface in polishing of KDP crystal based on deliquescent action are studied. The polishing process of KDP crystal based on deliquescent action is analyzed theoretically, and the effect of main parameters in polishing on polishing process is studied.
引文
1王淦昌.取之不尽用之不竭的理想能源——激光惯性约束核聚变.现代物理知识. 1996, (增刊): 1~4
    2范滇元,贺贤土.惯性约束聚变能源与激光驱动器.大自然探索. 1999, 18(67): 31~35
    3周丕璋.惯性约束聚变(ICF)的驱动源技术.原子核物理评论. 1995, 12(4): 37~40
    4孙洵. KDP(DKDP)晶体中散射颗粒的研究.山东大学博士论文. 2002: 1~3
    5叶青.法国惯性约束聚变计划概述.激光与光电子学进展. 2000, (7): 4~6
    6彭翰生,张小民,范滇元,朱健强.高功率固体激光装置的发展与工程科学问题.中国工程科学. 2001, 3(3): 1~8
    7朱健强.神光-Ⅱ高功率激光实验装置研制.成果与应用. 2005, 20(1): 42~44
    8苏根博,曾金波,贺友平,李征东,黄炳荣,江日洪.大截面KDP晶体在激光核聚变研究中的应用.硅酸盐学报. 1997, 25(6): 717~719
    9王景贺,陈明君,董申,张龙江. KDP晶体单点金刚石切削脆塑转变机理的研究.光电工程. 2005, 32(7): 67~70
    10王景贺,陈明君,董申,尚元江. KDP晶体光学零件超精密加工技术研究的新进展.工具技术. 2004, 38(9): 56~59
    11张新洲. KDP晶体各向异性对超精密加工的影响理论基础与实验研究.哈尔滨工业大学硕士论文. 2005: 1~2
    12 Namba Yoshiharu, Katagiri Masanori and Nakatsuka Masahiro. Single Point Diamond Turning of KDP Inorganic Optical Crystals for Laser Fusion. Journal of the Japan Society Precision Engineering. 1998, 64(10): 1487~1491
    13 J. Hou, J.F. Zhang, J.L. Chen, X.L. Zhang and D.Z. Hu. Surface Quality of Large KDP Crystal Fabricated by Single Point Diamond Turning. Proc. of SPIE. 2006, 6149: 61492M-1~61492M-3
    14杨力.先进光学制造技术.科学出版社. 2001: 273~274
    15陈晓明. KDP晶体各向异性特性分析及切削过程仿真.哈尔滨工业大学硕士论文. 2006: 3~4
    16王冬梅. KDP晶体专用超精密机床控制系统开发及实验研究.哈尔滨工业大学硕士论文. 2005: 1~2
    17 M.J. Chen, J.H. Wang, Y.C. Liang, L.J. Zhang and D.Y. Yuan. Research on Influence of the Cutter Rake Angle to the Surface Quality During SPDT Machining of Crystal KDP. The 1st International Conference of Asian Society for Precision Engineering and Nanotechnology, Shenzhen, 2005: 1~4
    18 KOMANDURI R, LUCCA D A, TANI Y, et al. Technological Advances in Fine Abrasive Process. Ann. CIRP. 1997, 46(2): 545~595
    19宗文俊,李旦,孙涛,程凯. KDP晶体超精密切削专用高精度金刚石刀具的研制. 2005年哈工大机电学术论坛会议论文集.哈尔滨, 2005: 172~178
    20 Q. Xu, J. Wang, W. Li, X. Zeng and S.Y. Jing. Defects of KDP Crystal Fabricated by Single Point Diamond Turning. SPIE. 1999, 3862: 236~239
    21 M.R. Kozlowski, I. Thomas, G. Edwards, K. Stanion and B. Fuchs. Influence of Diamond Turning and Surface Cleaning Processes on the Degradation of KDP Crystal Surfaces. SPIE. 1991, 1561: 59~69
    22 Takahiro Shirakashi, Toshiyuki Obikawa. Feasibility of Gentle Mode Machining of Brittle Materials and its Condition. Journal of Materials Proceeding Technology. 2003, 138: 522~526
    23 A.G. Mamalis, A.S. Branis and D.E. Manolakos. Modeling of Precision Hard Cutting Using Implicit Finite Element Methods. Journal of Materials Proceeding Technology. 2002, 123(3): 464~475
    24陈明君,王景贺,原大勇,罗熙淳,李旦. KDP晶体塑性域超精密切削加工过程仿真.光电工程. 2005, 32(5): 69~72
    25张顺国,张景和,王海峰,王洪祥. KDP晶体超精密加工切削力的实验研究.机械工程师. 2006, (4): 88~90
    26张文生,王洪祥,孙希威.端面铣削KDP晶体切削力试验研究.现代制造工程. 2006, (10): 7~8
    27兰志俊. KDP晶体SPDT加工时冷却液对表面质量影响的研究.哈尔滨工业大学硕士论文. 2006: 1~41
    28 Namba Yoshiharu and Katagiri Masanori. Ultraprecision Grinding of PotassiumDihydrogen Phosphate Crystals for Getting Optical Surfaces. Proceedings of SPIE-the International Society for Optical Engineering. 1999, 3578: 692~698
    29 Y. Mori, H. Tsuwa and K. Sugiyama. Elastic Emission Machining(1st Report)——Concept of EEM and Its Feasibility. J. Japan Soc. Prec. Eng. 1977, 43: 542(in Japanese)
    30 J. Gormley, M. Manfra and A. Calawa. Hydroplane Polishing of Semiconductor Crystals. Rew. Sci. Instrum.. 1991, 8(52): 1256~1259
    31 Y. Tain and K. kawata. Development of High-efficiency Fine Finishing Process Using Magnetic Fluid. Annals of the CIRP. 1984, 33: 217~220
    32 Suzuki, S. Kodera, S. Hara, H. Matsunaga and T. Kurobe. Magnetic Field-assisted Polishing: Application to a Curved Surface. Prec. Eng.. 1989, 4: 197~202
    33 J.D. Kim and M.S. Choi. Study on Magnetic Polishing of Free-form Surfaces. Int. J. Mach. Tools Manufact.. 1997, 8(37): 1179~1187
    34 F. Laguarta, N. Lupon, F. Vega and J. Armengol. Laser Application for Optical Glass Polishing. Proc. of SPIE. 1996, 2775: 603~610
    35江超等.激光抛光技术的发展与展望.激光技术. 2002, 26(6): 421~424
    36谢会东,王晓青,沈光球.晶体的超精密抛光.人工晶体学报. 2004, 33(6): 1035~1040
    37 K. Yoshida, H. Yoshida, S. Nakai, Y. Katori and T. Okamoto. Laser Damage of Optically Polished KDP Crystal. SPIE. 1991, 1624: 149~152
    38 Prokhorov I V, Kordonski W I, Gleb L K, Gorldkin G R and Levin M L. New High Precision Magnetorheological Instrument-based Method of Polishing Optics. OSA OF&T Workshop Digest. 1992, 24: 134~136
    39 Stephen D. Jacobs, Donald Golini, et al. Magnetorheological Finishing: a Deterministic Process for Optics Manufacturing. Proc. of SPIE. 1995, 2576: 372~382
    40 Stephen D. Jacobs, Fuqian Yang, et al. Magnetorheological Finishing of IR Materials. Proc. of SPIE. 1997, 3134: 258~269
    41 Irina A, Arrasmith, Steven R, Lambropoulos, John C, Jacobs and Stephen D. Exploring Anisotropy in Removal Rate for Single Crystal Sapphire Using MRF. Proc. SPIE. 2001, 4451: 277~285
    42 W.I. Kordonsky, I.V. Prokhorov, et al.“Basic Properties of MagnetorheologicalFluids for Optical Finishing”and“Glass Polishing Experiments Using Magnetorheological Fluids”. OSA OF&T Workshop Digest. 1994, 13: 104~109
    43 D. Golini, H. Pollicove, et al. Computer Control Makes Asphere Production Run of the Mill. Laser Focus World. 1995, 31(3): 83~86
    44 Wm. I. Kordonski and S.D. Jacobs. Magnetorheological Finishing. International Journal of Modern Physics B. 1996, (10): 2837~2848
    45张峰.磁流变抛光技术的研究.中国科学院博士论文. 2000: 8~11
    46 S.R. Arrasmith, I.A. Kozhinova, L.L. Gregg, A.B. Shorey, H.J. Romanofsky, S.D. Jacobs, D. Golini, W.I. Kordonski, S. Hogan and P. Dumas. Details of the Polishing Spot in Magnetorheological Finishing(MRF). SPIE. 1999, 3782: 92~100
    47 Olive W. Fahnle, Hedser van Brug and Hans J Frankena. Fluid Jet Polishing of Optical Surfaces. Applied Optics. 1998, 37(28): 6671~6673
    48 Y. Mori., K. Yamauchi and K. Endo. Elastic Emission Machining. Precision Engineering. 1987, 9(3): 123~128
    49 Shuh-Yi Wang and Yaw-Terng Su. An Investigation on Machinability of Different Materials by Hydrodynamic Polishing Process. Wear. 1997, 211: 185~191
    50 Y Mori, K Yamauchi and K Endo. Mechanism of Atomic Removal in Elastic Emission Machining. Precision Engineering. 1988, 10: 24~28
    51 Park K H, Kim K J and Chang O M. Effects of Pad Properties on Material Removal in Chemical Mechanical polishing. Journal of Materials Processing Technology. 2007, 187-188: 73~76
    52 Kim Nam-Hoon, Seo Yong-Jin and Lee Woo-Sun. Temperature Effects of Pad Conditioning Process on Oxide CMP: Polishing Pad, Slurry Characteristics, and Surface Reactions. Microelectronic Engineering. 2006, 83(2): 362~370
    53 H. Lei and P. Z. Zhang. Preparation of Alumina/Silica Core-shell Abrasives and Their CMP Behavior. Applied Surface Science. 2007, 253(21): 1~7
    54 Y. G. Wang, Y. W. Zhao and J. Gu. A New Nonlinear-micro-contact Model for Single Particle in the Chemical Mechanical Polishing with Soft Pad. Journal of Materials Processing Technology. 2007, 183(2-3): 374~379
    55 Ruslan B, Y Liu Zdyrko B, et al. AFM Measurements of Interactions between CMP Slurry Particles and Substrate. J Electrochem Soc. 2007, 154(6): H476~H485
    56 Kwon D., Kim H. and Jeong H. Heat and Its Effects to Chemical Mechanical Polishing. Journal of Materials Processing Technology. 2006, 178(1-3): 82~87
    57 J. Q. Liu, C. H. Zhang and W. Ye. Simulation on Temperature Distribution in Chemical Mechanical Polishing. Key Engineering Materials. 2007, 353-359: 1671~1674
    58 Masato Y, Hiroshi O, Masaya Y, et al. Effect of Pad Surface Roughness on SiO2 Removal Rate in Chemical Mechanical Polishing with Ceria Slurry. Japn J Appl Phys. 2006, 45(2): 733~735
    59 R. G. Bingham, D. D. Walker, etc. A Novel Automated Process for Aspheric Surfaces. Proc. SPIE. 2000, 4093: 445~450
    60 D Walker, D Brooks, A King, et al. The“Precessions”Tooling for Polishing and Figuring Flat, Spherical and Aspheric Surfaces. Optics Express. 2003, (11): 958~964
    61 Walker D D, Brooks D, Freeman R, et al. First Aspheric Form and Texture Results from a Production Machine Embodying the Precession Process. Proc SPIE. 2001, 4451: 267~277
    62 Walker D D, Beaucamp A T H, Brooks D, et al. Novel CNC Polishing Process for Control of Form and Texture on Aspheric Surfaces. Proc SPIE. 2002, 4767: 99~106
    63 Y. X. Yao, B. Gao, D. G Xie and Z. J. Yuan. Kinematics Design of Machine Tool with Bonnet for Aspheric Surface Polishing. Progress of Machining Technology-Proceedings of the 7th International Conference on Progress of Machining Technology, Suzhou, 2004: 520~525
    64 D. G. Xie, B. Gao, Y. X. Yao and Z. J. Yuan. Study of Local Material Removal Model of Bonnet Tool Polishing. Key Engineering Materials. 2006, 304-305: 335~339
    65陈智利,杭凌侠,张峰.一种新的气囊式抛光方法的研究.光电工程. 2006, 33(10): 121~131
    66张伟,李洪玉,金海.气囊抛光去除函数的数值仿真与试验研究.机械工程学报. 2009, 45(2): 308~312
    67宋剑锋,姚英学,谢大纲,高波.超精密气囊工具抛光方法的研究.华中科技大学学报(自然科学版). 2007, 35(增刊Ⅰ): 104~107
    68高波,姚英学,谢大纲,袁哲俊.气囊抛光进动机构的运动建模与仿真.机械工程学报. 2006, 42(2): 101~104
    69 B. R. Rogers and T. S. Cale. Plasma Processes in Micro-electronic Device Manufacturing. Vacuum. 2002, 65: 267~279
    70 L. D. Pollinger, C. B. Zarowin. Rapid Nonmechanical Damage-free Figuring of Optical Surfaces Using Plasma-assisted Chemical etching(PACE). SPIE. 1988, 988: 82~97
    71张华,王文,庞媛媛.光学表面超精密加工技术.光学仪器. 2003, 25(3): 48~51
    72 BOLLINGER L D, STEINBERG G and ZAROWING C B. Rapid Optical Figuring of Asperical Surface with Plasma Assisted Chemical Etching(PACE). Proc. SPIE. 1992, 1618: 14~17
    73刘薇娜.冰盘纳米抛光金属材料的研究.吉林大学博士论文. 2004: 10~12
    74 X. Y. Liu, L. J. Wang and H. Y. Luo. A New Method of Getting Super-smooth Surface with Angstrom Dimension on Optical Material. Proceedings of SPIE. 2000, 4231(11): 504~508
    75 X. S. Wu, W. Y. Chen, L. J. Wang, et al. Non-abrasive Polishing of Glass. International Journal of Machine Tools and Manufacture. 2002, 42(4): 449~456
    76高论,连相明,刘向阳,王立江.无磨料低温抛光件表面分形特性.吉林大学学报(工学版). 2004, 34(1): 7~11
    77刘向阳,郁鼎文,王立江,孙国梓.无磨料低温抛光的工艺方法研究.机械设计与制造. 2005, (1): 71~73
    78李宝贵,熊昌友,李成贵,张庆荣.超光滑表面加工方法.制造技术与机床. 2006, (6): 60~66
    79 LI X, GOODHUE W D, SANTEUFEIMIO C, et al. Gas Cluster Ion Beam Processing of Gallium Antimonide Wafers for Surface and Sub-surface Damage Reduction. Applied Surface Science. 2003, 218(1-4): 251~258
    80程灏波.大口径离轴非球面制造技术——研磨、抛光技术.光机电信息. 2003, (2): 19~23
    81杨力,郑耀,曾志革,姜文汉,袁家虎,伍凡.大型非球面反射镜的柔性光学制造技术.光学技术. 2001, 27(6): 490~492
    82张巨帆,王波,董申.超光滑表面加工方法的新进展.光学技术. 2007, 33(增刊): 051, 151, 251, 351, 451
    83柳文杰.电流变抛光光学玻璃的研究.吉林大学硕士论文. 2007: 6~7
    84 T. Kuriyagawa, M. Saeki and K. Syoji. Electrorheological Fluid-assisted Ultre-precision Polishing for Small Three-dimensional Parts. Journal of the International Societies for Precision Engineering and Nanotechnology. 2002, (26): 370~380
    85 W.B. Kim, S.J. Lee, Y.J. Kim, et al. The Electromechanical Principle of Electrorheological Fluid-assisted Polishing. International Journal of Machine Tools & Manufacture. 2003, (43): 81~88
    86 W.B. Kim, B.K. Min and S.J. Lee. Development of a Padless Ultra-precision Polishing Method Using Electrorheological Fluid. Journal of Materials Processing Technology. 2004, (155-156):1293~1299
    87 L. Zhang, Tsunemoto Kuriyagmwa, Tsuyoshi Kaku, et al. Investigation into Electrorheological Fluid-assisted Polishing. International Journal of Machine Tools & Manufacture. 2005, (45): 1461~1467
    88路家斌,阎秋生,田虹,高伟强. Fe3O4基电流变液的抛光特性研究.润滑与密封. 2008, 33(5): 22~25
    89赵云伟,张雷,张从领,贺新升.电流变抛光工艺研究.新技术新工艺. 2007, (3): 28~30
    90 H.J. Wang, F.H. Zhang and D.R. Luan. Research on Material Removal of Ultrasonic-magnetorheological Compound Finishing. International Journal of Machining and Machinability of Materials. 2007, 2(1): 50~58
    91王慧军,张飞虎,赵航,栾殿荣,陈亚春.超声波磁流变复合抛光中几种工艺参数对材料去除率的影响.光学精密工程. 2007, 15(10): 1583~1588
    92 F.H. Zhang, H.J. Wang, D.R. Luan, X.K. Shi and Y.S. Yang. Research on Magnetic Field in Ultrasonic-magnetorheological Compound Finishing. Proceedings of the 9th International Symposium on Advances in Abrasive Technology. Dalian, 2006: 140~145
    93 H.J. Wang, F.H. Zhang, et al. Study on Optical Polishing of Optical Glass by means of Ultrasonic-magnetorheological Compound Finishing. Proc. of SPIE. 2007, 6722: 67221P1~67221P5
    94张飞虎,王慧军,康桂文,栾殿荣.超声波磁流变复合抛光方法及装置.专利号: ZL200410044076.0
    95施春燕,伍凡,袁家虎,万勇建.基于MHD的磁射流抛光中流场的分析与模拟.光学技术. 2009, 35(5): 736~741
    96戴一帆,张学成,李圣怡,彭小强.确定性磁射流抛光技术.机械工程学报. 2009, 45(5): 171~176
    97张学成,戴一帆,李圣怡,彭小强.磁射流抛光的射流稳定性分析.中国机械工程. 2008, 19(8): 964~968
    98张学成,戴一帆,李圣怡,彭小强.磁射流抛光时几种工艺参数对材料去除的影响.光学精密工程. 2006, 14(6): 1004~1008
    99张学成,戴一帆,李圣怡.磁射流抛光中磁场的分析与设计.航空精密制造技术. 2006, 42(1): 12~15
    100张学成,戴一帆,李圣怡,彭小强.基于CFD的磁射流抛光去除机理分析.国防科技大学学报. 2007, 29(4): 110~115
    101Reid C. N. Deformation Geometry for Materials Scientists. Pergamon Press Ltd. 1972: 145~166
    102杜宏伟.光电子材料钽酸锂晶片化学机械抛光过程研究.广东工业大学硕士论文. 2004: 6~7
    103雷红,雒建斌,张朝辉.化学机械抛光技术的研究进展.上海大学学报(自然科学版). 2003, 9(6): 494~502
    104郭权锋.二氧化硅介质层CMP抛光液配方研究.大连理工大学硕士论文. 2005: 36~38
    105高鹏.甚大规模集成电路中铝布线及铝插塞化学机械抛光的研究.河北工业大学硕士论文. 2005: 27~28
    106李葵英.界面与胶体的物理化学.哈尔滨工业大学出版社. 1998: 116~119
    107连军.超大规模集成电路二氧化硅介质层的化学机械抛光技术的研究.河北工业大学硕士论文. 2002: 48~50
    108狄卫国.甚大规模集成电路制备中硅衬底精密抛光的研究.河北工业大学硕士论文. 2002: 27~30
    109赵国玺.表面活性剂物理化学.第2版.北京大学出版社. 1991: 43~45
    110F.H. Zhang, X.Z. Song, Y. Zhang and D.R. Luan. Polishing of Ultra Smooth Surface with Nanoparticle Colloid Jet. Key Engineering Materials. 2009, 404: 143~148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700