多尺度变换域图像反卷积理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际应用中,数字图像往往会在诸多模糊和噪声因素的影响下变成质量下降的退化图像。而在许多应用领域中,需要的是清晰、高质量的图像,因此,如何提高退化图像的质量是一项具有重要意义的研究。图像反卷积技术作为这一领域众多研究方向中(如图像复原、超分辨率重建等)的一项核心技术,具有重要的科学意义和应用价值。
     目前,图像反卷积技术研究的重点是如何在克服问题病态性的同时获得清晰的边缘和细节信息。图像在变换域中往往表现出其在空间域所无法获得的特性。在反卷积问题中利用这些特性,可以获得优于传统方法的结果。本文对多尺度变换域中的图像反卷积技术进行了深入的研究,主要工作如下:
     1.在基于小波域统计模型的图像反卷积算法方面,针对目前基于小波域隐Markov树(HMT)模型的图像反卷积算法模型训练不准确以及运算效率较低的问题,提出了一种改进算法。该算法使用Fourier-平稳小波规整化对退化图像进行预处理,并在预处理图像基础上建立统计模型,将其作为原始图像的先验知识,通过MAP方法对图像进行反卷积,无需循环地进行训练。另外,提出使用小波域背景隐Markov树(CHMT)模型代替原模型,加强了尺度内小波系数的相关性描述,以进一步提高了先验知识的精确程度,从而加强了反卷积算法对图像边缘的复原能力。
     2.对基于Hopfield神经网络的图像反卷积算法进行了研究,针对目前该类算法对图像细节复原能力不足的问题,将小波域统计模型引入到神经网络框架下,使两者的优点相结合,利用Hopfield神经网络自身的优化能力完成反卷积。并且针对网络权值矩阵求取困难的问题,提出一种高度并行的权值矩阵求取算法,仅通过快速Fourier变换和小波变换算法即可实现,具有较高的运算效率。
     3.在利用小波变换表示二维图像时,其对图像中方向性信息的表现能力有限,在小波域进行图像反卷积时同样面临着这样的问题。因此,本文在其它变换域对图像反卷积问题进行了研究,提出一种Contourlet域的图像反卷积算法。Contourlet变换是一种同时具有多尺度性多方向性的图像变换方法,与传统的二维可分离小波变换相比,Contourlet变换能够更有效地表示图像中的轮廓和纹理。该算法以边界优化算法为基础,在Contourlet域迭代进行,对图像轮廓和纹理的恢复能力要优于同类小波域算法。
In the practical applications, the digital images are always degraded by many blurred and noisy factors. But in many situations, the clear and high-quality images are required, so how to improve the quality of degraded images is an important research. The technology of image deconvolution is the key technology of this research area (such as image restoration, super-resolution reconstruction).
     At present, the focus of the research of image deconvolution technology is how to overcome the ill-posedness and obtain clear edge and detail information at the same time. Images always exhibit special properties in transform domain, which can’t be obtained in spatial domain. These properties can be utilized to get better results than the traditional methods in image deconvolution problem. In this paper, we mainly research and develop three kinds of image deconvolution algorithms in the multi-scale transform domain.
     1. Image deconvolution algorithms based on wavelet domain statistical model. Aiming at the problems that the results of image deconvolution algorithms based on the wavelet domain hidden Markov tree model is not good enough caused by the unprecise of the model training and the computational efficiency is low, an improved algorithm is proposed. The proposed algorithm employs the modified Fourier-wavelet regularized algorithm to pre-process the degraded image, and generate a sample image, which can be used to be the foundation of the model, the prior knowledge of the original image, and the deconvolution is finished under the MAP framework. In addition, the contextual hidden Markov tree model is adopted to substitute the original model, the description of relationship of the wavelet coefficients in the same scale is reinforced, so the image quality is improved further.
     2. Research image deconvolution algorithms based on Hopfield neural network, aiming at the poor ability of detail recovery of this kind of algorithms at present, the wavelet domain hidden Markov tree model is introduced into the framework of neural network, and combines the advantages of these two methods, utilize the convergence property of Hopfield network to complete the deconvolution. In this algorithm, the computation of the weight value matrix is a difficult problem.So we propose a method to solve this problem, only the fast Fourier transform and fast wavelet transform are used, and it can be run in parallel on several processor simultaneously, so the efficiency is high.
     3. When the image is presented by the wavelet transform, the description ability of the directional information in the image is insufficient inherently, it is also a problem in the wavelet domain image deconvolution. So in this paper, based on the research of other wavelet domain deconvolution algorithms, a new algorithm in contourlet domain is proposed. Contourlet transform is a multi-scale and multi-direction image transform, compared with the traditional separatable 2D wavelet transform, contourlet can express the edge and texture of images more efficiently. The proposed algorithm is based on the bounded optimize algorithm, and proceeds in the contourlet domain iteratively. The proposed algorithm is better to recovery the contour and texture of images, compared with the similar algorithms in wavelet domain.
引文
1邹谋炎.反卷积和信号复原.北京:国防工业出版社, 2001: 93~101
    2 E. S. Meinel. Origins of Linear and Nonlinear Recursive Restoration Algorithms. Journal of the Optical Society of America A. 1986, 3(6): 787~799
    3 H. C. Andrews, B. R. Hunt. Digital Image Restoration. New Jersey: Prentice Hall, 1977: 37~57
    4 R. C. Gonzalez, R. E. Woods. Digital Image Processing. New Jersey: Prentice Hall, 2002: 215~236
    5 M. Petrou, P. Bosdogianni. Image Processing: The Fundamentals. New Yourk: Wiley, 1999
    6 M. K. Ozkan, A. T. Erdem, M. I. Sezan, A. M. Tekalp. Efficient Multiframe Wiener Restoration of Blurred and Noisy Image Sequences. IEEE Transactions on Image Processing. 1992, 1(4): 453~476
    7 L. Miller. Least Squares Methods for Ill-Posed Problems with a Prescribed Bound. SIAM Journal on Mathematical Analysis. 1970, 1(1): 52~74
    8 A. K. Katsaggelos, J. Biemond, R. M. Mersereau, R. Schafer. A General Formulation of Constrained Iterative Restoration Algorithms. IEEE International Conference on Acoustics, Speech, and Signal Processing. 1985, 10: 700~703
    9 A. K. Katsaggelos, J. Biemond, R. W. Schafer, R. M. Mersereau. A Regularized Iterative Image Restoration Algorithm. IEEE Transactions on Signal Processing. 1991, 39(4): 914~929
    10 D. Geman, G. Reynolds. Constrained Restoration and the Recovery of Discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992, 14(3): 367~383
    11 R. L. Stevenson, B. E. Schmitz, E. J. Delp. Discontinuity Preserving Regularization of Inverse Visual Problems. IEEE Transcations on Systems, Man, and Cybernetics. 1994, 24(3): 455~469
    12 D. Geman, C. Yang. Nonlinear Image Recovery with Half-Quadratic Regularization. IEEE Transactions on Image Processing. 1995, 4(7): 932~946
    13 P. Charbonnier, G. Aubert, L. Blanc-Feraud, M. Barlaud. Stochastic Relaxation, Gibbs Distribution, and the Bayesian Restoration of Images. IEEETransactions on Image Processing. 1997, 6(2): 298~311
    14吴显金,王润生.基于边缘恢复和伪像消除的正则化图像复原.电子与信息学报. 2006, 28(4): 577~581
    15 V. Agarwal, A. V. Gribok, M. A. Abidi. Image Restoration Using L1 Norm Penalty Function. Inverse Problems in Science and Engineering. 2007, 15(8): 785~808
    16唐斌兵,王正明.抑制寄生波纹的超分辨率图像复原.光电子.激光. 2007, 28(10): 1235~1238
    17 S. Geman, D. Geman. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1984, PAMI-6(6): 721~741
    18 R. Stevenson, E. Delp. Fitting Curves with Discontinuities. Proc. of the 1st Int. Workshop on Robust Comput. Vision. 1990: 127~136
    19 P. Huber. Robust Statistics. New York: Wiley, 1981: 31~59
    20 C. Bouman, K. Sauer. A Generalized Gaussian Image Model for Edge-Preserving MAP Estimation. IEEE Transactions on Image Processing. 1993, 2(3): 296~310
    21 G. K. Chantas, N. P. Galatsanos, A. C. Likas. Bayesian Restoration Using a New Nonstationary Edge-Preserving Image Prior. IEEE Transactions on Image Processing. 2006,15(19): 2987~2997
    22宋锐,吴成柯,封颖,张云峰.一种新的基于MAP的纹理自适应超分辨率图像复原算法.电子学报. 2009, 37(5): 1124~1129
    23 L. I. Rudin, S. Osher, E. Fatemi. Nonlinear Total Variation Based Noise Removal Algorithms. Physica D. 1992, 60: 259~268
    24 R. Acar, C. R. Vogel. Analysis of Total Variation Penalty Methods. Inverse Problems. 1994, 10: 1217~1229
    25 D. C. Dobson, F. Santosa. Recovery of Blocky Images from Noisy and Blurred Data. SIAM Journal on Applied Mathematics. 1996, 56(4): 1181~1198
    26 Y. Li, F. Santosa. A Computational Algorithm for MiniMizing Total Variation in Image Restoration. IEEE Transactions on Image Processing. 1996, 5(6): 987~995
    27 C. R. Vogel, M. E. Oman. Fast, Robust Total Variation-Based Reconstruction of Noisy, Blurred Images. IEEE Transactions on Image Processing. 1998, 7(6): 813~824
    28 S. Osher, R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. New York: Springer, 2003: 103~115
    29 A. Marquina, S. Osher. Explicit Algorithm for a New Time Dependent Model Based on Level Set Moton for Nonlinear Deblurring and Noise Removal. SIAM Journal on Scientific Computing. 2000, 22(2): 387~405
    30 P. V. Blomgren, T. F. Chen. Color TV: Total Variation Methods for Restoration of Vector-Valued Images. IEEE Transactions on Image Processing. 1998, 7(3): 304~309
    31 G. Aubert, A. Vese. A Variational Method in Image Recovery. SIAM Journal on Numerical Analysis. 1997, 35(5): 1948~1978
    32 Y. W. Wen, K. N. Michael, Y. M. Huang. Efficient Total Variation Minimization Methods for Color Image Restoration. IEEE Transactions on Image Processing. 2008, 17(11): 2081~2088
    33 G. Eichmann, M. Stojancic. Superresolving Signal and Image Restoration Using a Linear Associative Memory. Applied Optics. 1987, 26(10): 1911~1918
    34 Y. T. Zhou, R. Chellappa, A. Vaid, B. K. Jenkins. Image Restoration Using a Neural Network. IEEE Transactions on Acoustics, Speech and Signal Processing. 1988, 36(7): 1141~1151
    35 J. S. Ronald, A. F. Michael. Regularized Image Reconstruction Using SVD and a Neural Network Method for Matrix Inversion. IEEE Transactions on Signal Processing. 1993, 41(10): 3074~3077
    36 W. Qian, L. P. Clarke. Wavelet-Based Neural Network with Fuzzy-Logic Adaptivity Fornuclear Image Restoration. Proceeding of the IEEE. 1996, 84(10):1458~1473
    37 `H. S. Wong, L. Guan. Adaptive Regularization in Image Restortion Using a Model Based Neural Network. Optical Engineering. 1997, 36(12): 3297~3308
    38 S. W. Perry, L. Guan. Weight Assignment for Adaptive Image Restoration by Neural Network. IEEE Transactions on Neural Networks. 2000, 11(1): 156~170
    39 J. K. Paik, A. K. Katsaggelos. Image Restoration Using a Modified Hopfield Network. IEEE Transactions on Image Processing. 1992, 1(1): 49~63
    40王磊,戚飞虎,莫玉龙.精确复原退化图像的连续Hopfield网络研究.上海交通大学学报. 1997, 31(12): 43~46
    41韩玉兵,吴乐南.基于状态连续变化的Hopfield神经网络的图像复原.信号处理. 2004, 20(5): 431~435
    42 H. K. Sung, H. M. Choi. Nonlinear Restoration of Spatially Varying Blurred Image Using Self-Organizing Neural Network. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. 1998, 2: 1097~1100
    43 M. E. Celebi, C. Guzelis. Image Restoration Using Cellular Neural Network. Electronics Letters. 1997, 33(1): 43~45
    44余英林,李怀东,马丽红.两种图像恢复的新方法.通信学报. 1992, 13(4): 40~48
    45 Y. D. Wu, Q. X. Zhu, S. X. Sun, H. Y. Zhang. Image Restoration Using Variational PDE-Based Neural Network. Neurocomputing. 2006, 69(16-18): 2364~2368
    46 Y. D. Wu, H. Y. Zhang. A Novel Image Restoration Algorithm Using Neural Network Based on Variational PDE Model. International Conference on Communications, Circuits and Systems. 2006, 1: 433~436
    47 Y. D. Wu, Y. H. Chen, H. Y. Zhang. An Improved Algorithm for Image Restoration Based on Modified Hopfield Neural Network. Proceednings of 2005 International Conference on Machine Learning and Cybernetics. 2005, 8: 4720~4723
    48吴亚东,孙世新.基于调和模型的快速神经网络图像复原算法.计算机应用研究. 2007, 24(6): 158~160
    49冯强,于盛林,张维.基于细胞神经网络的图像复原新方法.中国图象图形学报. 2009, 14(3): 430~434
    50 G. F. Wang, J. Zhang, G. W. Pan. Solution of Inverse Problems in Image Processing by Wavelet Expansion. IEEE Transactions on Image Processing. 1995, 4(5): 579~593
    51曹学光,易沫,汪雪林,彭思龙.小波域边缘保持规整化图像复原.中国图象图形学报. 2006, 11(2): 224~229
    52张玉叶,周晓东,王春歆.小波估计图像棱边分布的边缘保持规整化复原.计算机辅助设计与图形学学报. 2009, 21(1): 125~135
    53 M. Belge, M. E. Kilmer, E. L. Miller. Wavelet Domain Image Restoration with Adaptive Edge-Preserving Regularization. IEEE Transactions on Image Processing. 2000, 9(4): 597~608
    54 J. Liu, P. Moulin. Complexity-Regularized Image Restoration. Proceedings of 1998 International Conference on Image Processing. 1998, 1: 555~559
    55汪雪林,韩华,彭思龙.基于小波域局部高斯模型的图像复原.软件学报. 2004, 15(3): 443~450
    56 J. L. Starck, F. D. Murtagh, A. Bijaoui. Image Processing and Data Analysis. Cambridge, U. K.: Cambridge University Press, 1998
    57 D. Donoho. Nonlinear Solution of Linear Inverse Problems by Wavelet-Vaguelette Decompositions. Journal of Applied and Computational Harmonic Analysis. 1995, 2: 101~126
    58 J. Kalifa, S. Mallat, B. Rouge. Deconvolution by Thresholding in Mirror Wavelet Bases. IEEE Transactions on Image Processing. 2003, 12(4): 446~457
    59 A. Jalobeanu, N. Kingsbury, J. Zerubia. Image Deconvolution Using Hidden Markov Tree Modeling of Complex Wavelet Packets. Proceedings of 2001 International Conference on Image Processing. 2001, 1: 201~204
    60 P. de Rivaz, N. Kingsbury. Bayesian Image Deconvolution and Denoising Using Complex Wavelets. Proceedings of 2001 International Conference on Image Processing. 2001, 1: 273~276
    61 Y. Wan, R. Nowak. A Bayesian Multiscale Approach to Joint Image Restoration and Edge Detection. Proceedings SPIE Wavelet Applications in Signal and Image Processing. 1999, 3813: 73~84
    62 Y. Wan, R. Nowak. A Wavelet-Based Statistical Model for Image Restoration. Proceedings of 2001 International Conference on Image Processing. 2001, 1: 598~601
    63 R. Neelamani, H. Choi, R. Baraniuk. ForWaRD: Fourier-Wavelet Regularized Deconvolution for Ill-Conditioned Systems. IEEE Transacations on Signal Processing. 2004, 52(2): 418~433
    64 J. A. Guerrero-Colon, J. Portilla. Deblurring-by-Denoising Using Spatially Adaptive Gaussian Scale Mixtures in Overcomplete Pyramids. IEEE International Conference on Image Processing. 2006: 625~628
    65 R. D. Nowak, M. A. T. Figueiredo. Fast Wavelet-Based Image Deconvolution Using the EM Algorithm. Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers. 2001, 1: 371~375
    66 M. A. T. Figueiredo, R. D. Nowak. An EM Algorithm for Wavelet-Based Image Restoration. IEEE Transactions on Image Processing. 2003, 12(8): 906~916
    67 M. A. T. Figueiredo, R. D. Nowak. A Bound Optimization Approach to Wavelet-Based Image Deconvolution. IEEE International Conference on Image Processing. 2005, 2: II-782-5
    68 I. Daubechies, M. Defrise, C. D. Mol. An Iterative Thresholding Algorithm for Linear Inverse Problems with a Sparsity Constraint. Communications in Pure and Applied Mathematics. 2004, 57(11): 1413~1457
    69 J. M. Bioucas-Dias. Fast GEM Wavelet-Based Image Deconvolution Algorithm. Proceedings of 2003 International Conference on Image Processing. 2003, 2: II-961-4
    70 J. M. Bioucas-Dias. Bayesian Wavelet-Based Image Deconvolution: A GEM Algorithm Exploiting a Class of Heavy-Tailed Priors. IEEE Transactions on Image Processing. 2006, 15(4): 937~951
    71 M. A. T. Figueiredo, J. M. Bioucas-Dias, R. D. Nowak. Majorization-Minimization Algorithms for Wavelet-Based Image Restoration. IEEE Transactions on Image Processing. 2007, 16(12): 2980~2991
    72 J. M. Bioucas-Dias, M. A. T. Figueiredo. A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration. IEEE Transactions on Image Processing. 2007, 16(12): 2992~3004
    73 Y. W. Chen, Z. Nakao, K. Arakaki, et al. Restoration of Gray Images Based on a Genetic Algorithm with Laplacian Constraint. Fuzzy Sets and Systems. 1999, 103(2): 285~293
    74张煜东,吴乐南.改进免疫算法用于图像复原.光学精密工程. 2009, 17(2):
    417~425
    75 S. Mallat. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1998
    76 A. Grossmann, J. Morlet. Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape. SIAM Journal on Mathematical Analysis. 1984, 15(4): 723~736
    77 I. Daubechines. Orthonormal Bases of Compactly Supported Wavelets. Communications on Pure and Applied Mathematics. 1988, 41(7): 909~996
    78 S. Mallat. Multiresolution Approximation and Wavelet Orthonormal Bases of L2(R). Transactions of the American Mathematical Socity. 1989, 315(1): 69~87
    79 I. Daubechies. Ten Lectures on Wavelet. Philadelphia, PA: SIAM, 1992
    80 R. R. Coifman, M. V. Wickerhauser. Entropy-Based Algorithms for Best Basis Selection. IEEE Transactions on Information Theory. 1992, 38(2): 713~718
    81 R. R. Coifman, M. V. Wickerhauser. Adapted Waveform Analysis as a Tool for Modeling, Feature Extraction, and Denoising, Optical Engineering. 1994, 33(7): 2170~2174
    82 W. Sweldens. The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets. Applied and Computational Harmonic Analysis. 1996, 3(2): 186~200
    83 W. Sweldens. The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets. SIAM Journal on Mathematical Analysis. 1998, 29: 511~546
    84 W. Sweldens. P. Schroder. Building Your Own Wavelets at Home. Wavelets in Computer Graphics, ACM Siggraph Course Notes. 1996: 15~87
    85 N. G. Kingsbury. The Dual-Tree Complex Wavelet Transform: A New Efficient Tool for Image Restoration and Enhancement. Proc. of EUSIPCO. 1998, 1: 319~322
    86 N. G. Kingsbury. Shift Invariant Properties of the Dual-Tree Complex Wavelet Transform. Proc. IEEE Int. Conf. on Acoust., Speech, Signal Processing. 1999, 1221~1224
    87 E. J. Candes. Ridgelets: Theory and Applications. USA: Staticstics of Stanford Univ., 1998
    88 E. J. Candes. Harmonic Analysis of Neural Networks. Applied and Computational Harmonic Analysis. 1999, 6(2): 197~218
    89 D. L. Donoho. Orthonormal Ridgelets and Linear Singularities. SIAM Journal on Mathematical Analysis. 2000, 31(5): 1062~1099
    90 E. Candes, D. L. Donoho. Curvelets. Tech. Rep., Stanford Univ., Stanford, CA, 1999
    91江玲玲,冯象初,殷海青.基于Curvelet域的图像复原和分解模型.电子学报. 2008, 36(9): 1790~1794
    92 E. L. Pennec, S. Mallat. Image Compression with Geometrical Wavelets. International Conference on Image Processing. 2000, 1: 661~664
    93 M. N. Do, M. Vetterli. Contourlets: A Directional Multiresolution Image Representation. International Conference on Image Processing. 2002, 1: 357~360
    94 M. N. Do, M. Vetterli. The Contourlet Transform: An Efficient Directional Multiresolution Image Representation. IEEE Transactions on Image Processing.2005, 14(12): 2091~2106
    95 D. D. Y. Po, M. N. Do. Directional Multiscale Modeling of Images Using the Contourlet Transform. IEEE Transactions on Image Processing. 2006, 15(6): 1610~1620
    96 J. Daugman. Two-Dimensional Spectral Analysis of Cortical Receptive Field Profile. Vision Research. 1980, 20(10): 847~856
    97 E. P. Simoncelli, W. T. Freeman, E. H. Adelson, D. J. Heeger. Shiftable Multiscale Transforms. IEEE Transactions on Information Theory. 1992, 38(2): 587~607
    98 J. P. Antoine, P. Carrette, R. Murenzi, B. Piette. Image Analysis with Two-Dimensional Continuous Wavelet Transform. Signal Processing. 1993, 31(3): 241~272
    99 F. G. Meyer, P. R. Coifman. Brushlets: A Tool for Directional Image Analysis and Image Compression. Journal of Applied and Computational Harmonic Analysis. 1997, 6(4): 147~187
    100 D. L. Donoho. Wedgelets: Nearly Minimax Estimation of Edges. Annals of Statistics. 1999, 27(3): 859~897
    101焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望.计算机学报. 2006, 29(2): 177~193
    102 M. Basseville, A. Benveniste, K. C. Chou, et. al. Modeling and Estimation of Multiresolution Stochastic Processes. IEEE Transactions on Information Theory. 1992, 38(2): 766~784
    103 M. R. Luettqen, W. C. Karl, A. S. Willsky, R. R. Tenney. Multiscale Representations of Markov Random Fields. IEEE Transactions on Signal Processing. 1992, 41(12): 3377~3396
    104 J. C. Pesquet, H. Krim, D. Leporini, E. Hamman. Bayesian Approach to Best Basis Selection. Proceedings of the IEEE International Conference on Acoustic, Speech, Signal Processing. 1996, 5: 2634~2637
    105 H. Chipman, E. Kolaczyk, R. McCulloch. Adaptive Bayesian Wavelet Shrinkage. Journal of the American Statistical Association. 1997, 92(440): 1413~1421
    106 F. Abramovich, T. Sapatinas, B. W. Silverman. Wavelet Thresholding Via a Bayesian Approach. Journal of the Royal Statistical Society. 1998, 60: 725~749
    107 E. P. Simoncelli, E. H. Adelson. Proceedings of International Conference onImage Processing. 1996, 1: 379~382
    108 M. S. Crouse, R. G. Baraniuk, R. D. Nowak. Hidden Markov Models for Wavelet-Based Signal Processing. Conference Record of the Thirtieth Asilomar Conference on Signals, Systems and Computers. 1996, 2: 1029~1035
    109 M. S. Crouse, R. D. Nowak, R. G. Baraniuk. Wavelet-Based Statistical Signal Processing Using Hidden Markov Model. IEEE Transactions on Signal Processing. 1998, 46(4): 886~902
    110 L. Rabiner. A tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE. 1989, 77(2): 257~286
    111谢锦辉.隐Markov模型(HMM)及其在语音处理中的应用.武汉:华中理工大学出版社, 1995: 33~50
    112 M. S. Crouse, R. G. Baraniuk. Contextual Hidden Markov Models for Wavelet-Domain Signal Processing. Conference Record of the Thirty-First Asilomar Conference on Signals, Systems & Computers. 1997, 1: 95~100
    113 G. L. Fan, X. G. Xia. Image Denoising Using Local Contextual Hidden Markov Model in the Wavelet Domain. IEEE Signal Processing Letters. 2001, 8(5): 125~128
    114 G. L. Fan, X. G. Xia. Improved Hidden Markov Models in the Wavelet-Domain. IEEE Transactions on Signal Processing. 2001, 49(1):115~120
    115 G. L. Fan, X. G. Xia. Wavelet-Based Texture Analysis and Synthesis Using Hidden Markov Models. IEEE Transactions on Circuits and Systems. 2003, 50(1): 106~120
    116 M. N. Do, M. Vetterli. Rotation Invariant Texture Characterization and Retrieval Using Steerable Wavelet-Domain Hidden Markov Models. IEEE Transactions on Multimedia. 2002, 4(4): 517~527
    117 J. K. Romberg, H. Choi, R. G. Baraniuk. Bayesian Tree-Structured Image Modeling Using Wavelet-Domain Hidden Markov Models. IEEE Transactions on Image Processing. 2001, 10(7): 1056~1068
    118 H. Choi, J. Romberg, R. Baraniuk, N. Kingsbury. Hidden Markov Tree Modeling of Complex Wavelet Transforms. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. 2000, 1: 133~136
    119 Z. Ye, C. C. Lu. A Complex Wavelet Domain Markov Model for Image Denoising. Proceedings of International Conference on Image Processing. 2003, 3: 365~268
    120刘芳,刘文学,焦李成.基于复小波邻域隐马尔可夫模型的图像去噪.电子学报. 2005, 33(7): 1284~1287
    121赵书斌,彭思龙.基于小波域HMT模型的图像超分辨率重构.计算机辅助设计与图形学学报. 2003, 15(11): 1347~1352
    122汪雪林,赵书斌,彭思龙.基于小波域隐马尔可夫树模型的图像复原.计算机学报. 2005, 28(6): 1006~1012
    123 J. Sun, D. Gu, S. Zhang, Y. Chen. Hidden Markov Bayesian Texture Segmentation Using Complex Wavelet Transform. IEE Proceedings of Vision, Image and Signal Processing. 2004, 151(3): 215~223
    124郭松涛,孙强,焦李成.基于改进小波域隐马尔可夫模型的遥感图像分割.电子与信息学报. 2005, 27(3): 286~289
    125孙俊喜,陈亚珠,谷东兵.基于隐马尔可夫模型边缘表示的多尺度边缘检测.计算机学报. 2003, 26(4): 497~501
    126 J. X. Sun, D. B. Gu, Y. Z. Chen, S. Zhang. A Multiscale Edge Detection Algorithm Based on Wavelet Domain Vector Hidden Markov Tree Model. Pattern Recognition. 2004, 37(7): 1315~1324
    127 D. C. Stanford, J. Pitton. Multiresolution Hidden Markov Trees for Analysis of Automatic Target Recognition Algorithms. Proceedings of International Conference on Image Processing. 2000, 2: 942~945
    128张荣跃,倪江群,黄继武.基于小波域HMM模型的稳健多比特图像水印算法.软件学报. 2005, 16(7): 1323~1332
    129 J. Marroquin, S. Mitter, T. Poggio. Probabilistic Solution of Ill-Posed Problems in Computational Vision. Journal of the American Statistical Association. 1987, 82(397): 76~89
    130高清维,李斌,解光军,庄镇泉.基于平稳小波变换的图像去噪方法.计算机研究与发展. 2002, 39(12): 1689~1694
    131 J. M. Bioucas-Dias, M. A. T. Figueiredo, J. P. Oliveria. Total Variation-Based Image Deconvolution: a Majorization-Minimization Approach. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. 2006, 2: 861~864
    132 M. N. Do, M. Vetterli. Framing Pyramids. IEEE Transactions on Signal Processing. 2003, 51(9): 2329~2342
    133 R. H. Bamberger, M. J. T. Smith. A Filter Bank for the DirectionalDecomposition of Images: Theory and Design. IEEE Transactions on Signal Processing. 1992, 40(4): 882~893
    134 M. Elad. Why Simple Shrinkage is Still Relevant for Redundant Representations. IEEE Transactions on Information Theory. 2006, 52(12): 5559~5569
    135 M. Figueiredo, R. Nowak. Bayesian Wavelet-Based Signal Estimation Using Noninformative Priors. Proc. 32nd Asilomar Conf. on Signals, Systems, and Computers. 1998: 1368~1373
    136 M. Figueiredo, R. Nowak. Wavelet-Based Image Estimation: An Empirical Bayes Approach Using Jeffreys’Noninformative Prior. IEEE Transactions on Image Processing. 2001, 10: 1322~1331
    137柏森,张邦礼,曹长修.神经网络图象复原方法的研究进展.中国图象图形学报. 2002, 7(11): 1105~1112
    138 D. C. Tseng, M. Y. Shih. Wavelet-Based Image Denoising Using Contextual Hidden Markov Tree Model. Journal of Electronic Imaging. 2005, 14(3): 033005-1~12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700