菱叶山蚂蝗抗骨质疏松物质基础及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菱叶山蚂蝗是豆科Leguminosae长柄山蚂蝗属Podocarpium植物长柄山蚂蝗Podocarpium podocarpum (DC.) Yang et Huang的根、叶或全草,具有发表散寒、止血功能,主治风寒感冒、急性黄疸型肝炎、风湿痹痛、跌打损伤、刀伤等。药理活性筛选方面,课题组前期研究表明菱叶山蚂蝗醇提物具有镇痛、解热和抗炎作用;化学成分研究方面,有文献报道从其变种尖叶长柄山蚂蝗Podocarpiumpodocarpum (DC.) Yang et Huang var. oxyphyllum (DC.) Yang et Huang中分离得到11个化合物(包括6个黄酮、2个三萜和1个甾体),还没有关于菱叶山蚂蝗化学成分分离及成分活性筛选方面的文献报道。
     骨质疏松是以骨量减少、骨的微观结构退化为特征,致使骨的脆性增加以及易于发生骨折的一种全身性骨骼疾病。化学药治疗一般采用联合用药,其毒副作用大,疗程长,从天然药用植物中寻找副作用小治疗骨质疏松疾病的有效提取物、有效部位及单体化合物已成为研究热点。目前抗骨质疏松作用的研究多从补肾类中药和富含黄酮的豆科植物着手,天然产物中具有抗骨质疏松活性的化合物结构类型主要包括黄酮类、甾体类、苯丙素类、生物碱类等,其中黄酮类化合物抗骨质疏松报道较多。菱叶山蚂蝗是豆科蝶形花亚科植物,富含黄酮类化合物,并且菱叶山蚂蝗传统可用于治疗风湿痹痛、跌打损伤和刀伤,提示菱叶山蚂蝗可能具有抗骨质疏松的作用。课题组前期针对菱叶山蚂蝗进行了体外抗骨质疏松作用初步筛选,结果显示粗提物具有良好的体外促成骨细胞增殖作用。
     基于以上原因,本论文对菱叶山蚂蝗全草提取物进行了体内抗骨质疏松作用研究,并对全草进行了系统的的化学成分分离鉴定,对分离得到的化合物进行体外和体内抗骨质疏松作用筛选,阐明菱叶山蚂蝗抗骨质疏松的物质基础。采用分子对接技术筛选化合物抗骨质疏松的作用靶点,围绕靶点蛋白进行菱叶山蚂蝗抗骨质疏松作用机制探讨。
     一、菱叶山蚂蝗体内抗骨质疏松作用筛选
     本论文采用大鼠去卵巢致骨质疏松模型(OVX)对菱叶山蚂蝗乙醇提物(100mg/kg~300mg/kg)进行预防骨质疏松症药效学研究。取大鼠右侧股骨测定总骨密度(t-BMD),采用显微CT观察股骨的骨组织尤其是骨小梁形态并比较相关计量学参数,以确定有效性;取尿液测定钙(Ca)、磷(P)和肌酐(Cr)含量观察骨Ca、P吸收和流失情况;取血清测定骨形成相关指标ALP和骨钙素(BGP)含量、骨吸收相关指标组织蛋白酶K(Cathepsin K)、TRAP和脱氧胶原吡啶交联(DPD)含量,探索药物与骨形成和骨吸收的联系;取血清测定氧化应激相关酶(谷胱甘肽过氧化物酶GSH-Px、超氧化物歧化酶SOD、一氧化氮合酶NOS、丙二醛MDA)的活力,探讨药物可能的作用机制。结果显示,醇提物能显著提高去卵巢大鼠t-BMD,micro-CT直观反映出醇提物对去卵巢造成的大鼠股骨骨小梁厚度和数量减少及连接间隙增大有显著的改善;血清生化指标测定的结果表明醇提物对骨吸收指标有显著抑制作用,对骨形成指标无明显影响,提示醇提物很大程度上是通过抑制骨吸收起到抗骨质疏松作用的;另外,醇提物能够提高血清中GSH-Px、NOS和SOD酶活力,提示其抗骨质疏松作用可能与氧化应激机制有关。
     二、菱叶山蚂蝗化学成分研究
     本论文应用萃取、硅胶、凝胶、反相柱层析和制备HPLC等多种分离方法和分离材料对菱叶山蚂蝗全草乙醇提取物进行了系统的化学成分分离,共计分离鉴定73个化合物,其中2个新化合物(1个双黄酮和1个苯丙素苷酯类化合物)。化合物类型包括:黄酮类(DP1~25)(11个异黄酮、9个异戊烯基黄酮),苯丙素类(DP26~33),三萜皂苷和单萜(DP34~40),甾体(DP41~42),生物碱类(DP43~46),酚酸类(DP47~56),以及其它类化合物(DP57-73)。从正丁醇部位分得了约10g的山萘苷单体化合物,提示山萘苷是菱叶山蚂蝗主要的化学成分,其大量存在可能是菱叶山蚂蝗抗骨质疏松的主要药效物质。因此,建立了菱叶山蚂蝗中山萘苷HPLC含量测定方法,并对菱叶山蚂蝗全草、根、茎、叶及其变种尖叶长柄山蚂蝗全草中山萘苷的含量进行了测定。结果表明,菱叶山蚂蝗中山萘苷主要分布在叶中,其含量可达1.16±0.09%;根和茎中不含山萘苷。变种尖叶长柄山蚂蝗全草中不含山萘苷。提示菱叶山蚂蝗植物变种与原种在化学成分及其含量方面差异较大。
     三、菱叶山蚂蝗化学成分体外抗骨质疏松作用研究
     本论文对分离得到的18个黄酮类(DP1~18)化合物进行了体外成骨细胞和破骨细胞活性的筛选。采用新生大鼠颅盖骨成骨细胞筛选化合物对成骨细胞增殖、碱性磷酸酶(ALP)活性和骨结节诱导能力的影响;采用成骨细胞和骨髓单核细胞经1,25-(OH)2-VD3和地塞米松共同诱导得到的成熟破骨细胞筛选化合物对破骨细胞酒石酸酸性磷酸酶(TRAP)活性的抑制作用。结果显示,12个黄酮类化合物同时具有体外促成骨细胞增殖、提高成骨细胞ALP活性、促进骨结节诱导能力以及抑制破骨细胞TRAP酶的活性。其中2个化合物(DP3和DP16)均不具有以上活性。
     四、菱叶山蚂蝗中山萘苷体内抗骨质疏松作用筛选
     鉴于菱叶山蚂蝗全草具有抗骨质疏作用,全草中山萘苷含量高于1%,山萘苷体外又具有成骨和破骨细胞活性,因此采用大鼠去卵巢致骨质疏松模型(OVX)对山萘苷(8~32mg/kg)单体化合物进行预防骨质疏松症药效学研究。结果显示,山萘苷高、中剂量均能显著提高去卵巢大鼠t-BMD,micro-CT显示山萘苷对去卵巢造成的大鼠股骨骨小梁厚度和数量减少及连接间隙增大有显著的改善;血清生化指标测定的结果表明山萘苷对骨形成指标ALP有提高作用,对骨吸收指标均有显著抑制作用,提示山萘苷兼有促进骨形成和抑制骨吸收的作用,但后者占主导地位;另外,山萘苷高剂量组能够提高血清中NOS和SOD酶活力,提示其抗骨质疏松作用可能与氧化应激机制有关。
     五、山萘苷抗骨质疏松作用机制研究
     采用分子对接法寻找山萘苷抗骨质疏松的作用靶点。通过SYBYL软件构建山萘苷3D结构并进行结构分子力学优化,将优化后的结构文件上传至药物靶标数据库搜寻潜在的药物靶点,将与骨质疏松有关的靶点按照打分高低筛选出来后,再应用DOCK软件进行正向对接验证,最终确定药靶。分子对接结果显示,山萘苷作用靶点是与骨吸收直接相关的由破骨细胞分泌的关键酶-Cathepsin K。紧接着,采用体外破骨细胞验证山萘苷对Cathepsin K的抑制作用。结果显示,山萘苷对破骨细胞Cathepsin K有显著的抑制作用,抑制率达50%。大鼠去卵巢动物试验也显示山萘苷对去卵巢大鼠Cathepsin K的升高有明显抑制作用。以上初步证实山萘苷抗骨质疏松的作用靶点可能是Cathepsin K。检索文献,目前Cathepsin K参与骨质疏松的信号通路有NF-κB通路、MAPK通路(包括ERK1/2、P38和JNK)、PI3K/Akt和CN/NFATC通路。采用Western-blot技术对p-ERK、p-JNK、p-P38和p-IκB等关键蛋白酶进行表达,结果显示山萘苷对p-JNK和p-IκB有明显的下调作用,说明山萘苷主要通过NF-κB和MAPK/JNK这两条信号通路发挥作用,抑制破骨前体细胞的分化成熟,从而抑制骨吸收起到抗骨质疏松作用。
     综上所述,菱叶山蚂蝗具有抗骨质疏松作用,其物质基础是黄酮类化合物群,主要药效物质是山萘苷,作用靶点可能是组织蛋白酶K,其抗骨质疏松作用与NF-κB和MAPK/JNK这两条信号通路相关。
Podocarpium podocarpum (DC.) Yang et Huang belongs to genus Podocarpium(Leguminosae). The leaves and roots have been taken to acute icteric hepatitis,rheumatism, bone bruises and knife trauma in Traditional Chinese Medicine. Its ethanolextract has been proved possess significant analgesic, antipyretic and anti-inflammatoryactivities in our previous study. So far, few phytochemical investigations have beencarried out on this species, only a total of6flavonoids,2triterpenoids,1steroidoid and2other compounds have been isolated and identified from Podocarpium podocarpum(DC.) Yang et Huang var. oxyphyllum (DC.) Yang et Huang, a variety of Podocarpiumpodocarpum.
     Osteoporosis is a chronic, progressive disease of the skeleton characterized by bonefragility due to a reduction in bone mass and possibly alteration in bone architecturewhich leads to a propensity to fracture with minimum trauma. At present, the chemicaldrugs, which are clinically used as effective medications, are associated with longtreated time and numerous side effects. Therefore, the natural plant extracts, effectivefrations and compounds, with few side effects, attracted our attention. The plants blongsto the family Leguminosae or had the effect of strengthening the sexual behavior wereproved effective in anti-osteoporosis. The natural products, including flavonoids,steroidal, phenylpropanoids and alkaloids, have been proved possess anti-osteoporosisactivity, especially flavonoids. As Podocarpium podocarpum is a species of familyPapilionoideae (Leguminosae), a big sub-family rich in flavonoids, and it has been usedin treatment of rheumatism, bone bruises and knife trauma in traditional medical uses,both of the two implied that this plant probably possess anti-osteoporosis activity. Inaddition, our previous in vitro experiments also proved that the ethanol extract ofPodocarpium podocarpum showed potent stimulated effects on osteoblasticproliferation.
     This dissertation is therefore conducted to investigate the anti-osteoporosis activityof Podocarpium podocarpum in vivo, followed by the isolation of the chemicalconstituents from its extract. In order to determine the chemical responsible for theanti-osteoporosis activity of this species, both in vivo and in vitro experiments wereused to test the anti-osteoporosis activity of the isolated compounds. In addition, themolecular docking technique was applied to discover the anti-osteoporotic targets ofkaempferitrin, so as to discuss the molecular mechanism of this action.
     1In vivo antiosteoporotic evaluation of Podocarpium podocarpum extracts
     The anti-osteoporotic effect of the ethanol extract of Podocarpium podocarpum(100~300mg/kg) in ovariectomized (OVX) rats model of osteoporosis wasinvestigated. The right femur of rats was used to detect the total bone mineral density(BMD) and bone tissue morphology, especially the tissue of trabecular and relatedparameters, which were determined by micro-CT; the urine was taken to evaluate thecontent of Ca, P and Cr; the serum was employed to determined the bone formationindicators including bone gla-protein (BGP) and alkaline phosphatase (ALP), the boneresorption indicators including cathepsin K, tartrate-resistant acid phosphatase (TRAP)and deoxypyridinoline (DPD); in addition, markers of oxidative stress, glutathioneperoxidase (GSH-Px), super oxidase dimutase (SOD), nitric oxide synthase (NOS) andmalondialdehyde (MDA) were also test to explore the possible mechanism of action.The results showed that the ethanol extract of Podocarpium podocarpum cansignificantly promote the BMD in OVX rats; the bone tissue of trabecular, includingtrabecular thickness (Tb. Th), trabecular number (Tb. N), connectivity density (CD) andtrabecular separation (Tb. Sp) were also improved; the findings assessed on the basis ofbiochemical, bone formation and resorption indicators strongly suggested that theethanol extract of Podocarpium podocarpum had a definite antiosteoporotic effectthrough inhibition of bone resorption. Furthermore, the activity of GSH-Px, SOD andNOS were also stimulate, which revealed that the anti-osteoporotic activity of ethanolextract of Podocarpium podocarpum probably related with oxidative stress.
     2Chemical constituents of Podocarpium podocarpum
     A total of73chemical compounds have been isolated from the ethanol extracts ofwhole plant of Podocarpium podocarpum whole plant by using silica gel columnchromatography, Sephadex LH-20and reversed-phase HPLC. The structures of thesecompounds, including flavonoids (DP1~25), phenylpropanoids (DP26~33),triterpenoids (DP34~40), steroidals (DP41~42), alkaloids (DP43~46), phenolic acids(DP47~56), and others (DP57~73), were elucidated on the basis of chemical andspectroscopic analyses. A total of about10g kaempferitrin was isolated from then-butanol fraction, implied that this compound was the main constituents ofPodocarpium podocarpum, and probably the main chemical responsible for theanti-osteoporotic activity of the plant. Therefore, a HPLC method for the determination of kaempferitrin was established. Its content in different part of Podocarpiumpodocarpum, including leaf, root and whole plant, as well as its variety, Podocarpiumpodocarpum var. oxyphyllum, have been detected and compared. The results showedthat the content of kaempferitrin in leaves was1.16±0.09%; wheras the root and stemas well as its variety were not detected. It is implied that the plant is differs markedlyfrom its variety in chemical constituents and their content.
     3In vitro antiosteoporotic evaluation of the compounds isolated from Podocarpiumpodocarpum
     Atotal of18flavonoids (DP1~18) were evaluated for their proliferative effects onosteoblasts derived from neonatal rat calvaria and inhibitory effects on multinucleatedosteoclasts from rat marrow cells. The stimulated effects on osteoblastic proliferation,ALP activity and calcium deposition, as well as the inhibited effects on osteoclasticTRAP activity were evaluated. The osteoclast was induced by1,25-(OH)2-VD3anddexamethasone by using both osteoblast and bone marrow cells. The results showed that12flavonoids exhibited significant effects both on osteoblasts and osteoclasts, whereasthe two compounds, DP3and DP16, exhibited no activity. In addition, nocorresponding dose-dependent phenomenon was observed.
     4In vivo antiosteoporotic evaluation of kaempferitrin
     As the whole plant of Podocarpium podocarpum possessed anti-osteoporoticactivity, and the content of kaempferitrin in the leaves of this species was high then1%,as well as the kaempferitrin showed proliferative effects on osteoblasts and inhibitoryeffects on multinucleated osteoclasts in vitro, the anti-osteoporotic activity ofkaempferitrin (8~32mg/kg) in ovariectomized (OVX) rats model of osteoporosis wasinvestigated. The results showed that the high and moderate dosage of kaempferitrin cansignificantly promote the BMD in OVX rats; the bone tissue of trabecular, includingtrabecular thickness (Tb. Th), trabecular number (Tb. N), connectivity density (CD) andtrabecular separation (Tb. Sp) were also significantly improved; the findings assessedon the basis of biochemical, bone formation and resorption indicators stronglysuggested that the kaempferitrin had a definite antiosteoporotic effect both throughstimulation of bone formation and inhibition of bone resorption, but the latter was thedominant mechanism. Furthermore, the activity of SOD and NOS were also stimulate,which revealed that the anti-osteoporotic activity of and kaempferitrin probably related with oxidative stress.
     5Molecular mechanism of anti-osteoporotic activity
     A molecular docking technique was used to discover the anti-osteoporotic targetsof kaempferitrin. The3D structure of kaempferitrin was constructed with SYBYLsoftware, followed by the energy optimization; then searched for the potential targetsfrom drug target database by upload the structure to internet, recorded the high scoredrug targets which related to osteoporosis disease, using forward docking to validatethose aimed drug targets, then the anti-osteoporotic targets of kaempferitrin wasconfirmed. The cathepsin K, a key enzyme responsible for osteoclast-mediated boneresorption, was identified as the antiosteoporotic targets of this herb by moleculardocking technology. The inhibitory effect on cathepsin K of multinucleated osteoclastsin vitro was investigated. Results showed that the kaempferitrin exhibited significantinhibitory effect on cathepsin K of osteoclasts, the inhibition rate was almost50%. Theprevious in vivo experiment in ovariectomized (OVX) rats model of osteoporosis hadalso proved the inhibition effect of kaempferitrin on cathepsin K in the serum ofrats.Therefore, both in vitro and in vivo valuated the result of molecular docking. So far,the anti-osteoporosis signal pathways involved with cathepsin K were NF-κB, MAPK(ERK1/2, P38and JNK), PI3K/Akt and CN/NFAT. The western-blot was used toexpress the key proteins p-ERK, p-JNK, p-P38and p-IκB. The results showed that theexpression of p-JNK and p-IκB were obviously inhibited by kaempferitrin, whichimplied that the anti-osteoporotic activivity of kaempferitrin is related to the NF-κB andJNK signaling pathways.
     Summarily, the whole plant of Podocarpium podocarpum exhibited a definiteantiosteoporotic activity, the chemical responsible for this effect are flavonoidscompounds, and the kaempferitrin is the main constituents. The cathepsin K isidentified as the antiosteoporotic targets of this herb, and the anti-osteoporotic activivityis related to the NF-κB and JNK signaling pathways.
引文
[1]李鑫,张渝文.长柄山蚂蝗属分类学地位的研究.西南师范大学学报(自然科学版),2009,34(2):54-56.
    [2]中国科学院中国植物志编辑委员会.中国植物志.北京:科学出版社,1999,41卷, VII.山蚂蝗族,亚族1,山蚂蝗亚族, pp47.
    [3]黄普华.中国豆科和樟科几种植物学名的订正.植物研究,1998,18(1):4-8.
    [4]杨衔晋,黄普华.豆科一新属-长柄山蚂蝗属.东北林学院植物研究室汇刊,1980,4:1-15.
    [5]杨衔晋,黄普华.中国植物志.北京:科学出版社,1995,41卷, pp47-58.
    [6]H. OHASHI&R. R. MILL. HYLODESMUM, A NEW NAME FOR PODOCARPIUM(LEGUMINOSAE). Edinburgh Journal of Botany,2000,57(2):171-188.
    [7]傅立国,黄普华.中国高等植物.青岛:青岛人民出版社,2008, pp163-164.
    [8]国家中医药管理局《中华本草》编委员.中华本草.上海:上海科学技术出版社,1996,4卷,pp3120-3404.
    [9]Zhu, Z.Z., Ma, K.J., Ran, X., Zhang, H., Zheng, C.J., Han, T., Zhang, Q.Y., Qin, L.P. Analgesic,anti-infammatory and antipyretic activities of the petroleum ether fraction from the ethanol extractof Desmodium podocarpum. Journal of Ethnopharmacology,2010,133:1126-1131.
    [10]Mizuno, M., Baba, K., Iinuma, M., Tanaka, T. Coumaronochromones from leaves of Desmodiumoxyphyllum. Phytochemistry,1992,31,361-363.
    [11]吴颖,张前军,陈青,谭艾娟.尖叶长柄山蚂蝗化学成分研究.中成药,2010,32(3):465-466.
    [12]Kelly, P. J. Is osteoporosis agenetically determined disease? British Journal of Obstetrics andGynecology,1996,103:20-27.
    [13]Cooper C, Campion G, Melton LJ. Hip fractures in the elderly: a world-wide projection.Osteoporosis International,1992,2:285-289.
    [14]Nguyen TV, Center JR, Eisman JA. Association between breast cancer and bone mineral Density:the Dubbo osteoporosis epidemiology study. Maturitas,2000,36(1):27-34.
    [15]宋保兰,何咏祥,宋德芳.骨质疏松症的药物治疗研究进展.中国民族民间医药,2012,12:29,35.
    [16]王思成,杨雪骅,苏佳灿,曹烈虎,李卓东.抗骨质疏松药物临床应用的进展.中国组织工程研究与临床康复,2009,13(46):9163-9166.
    [17]葛宝丰.原发性骨质疏松症的药物治疗.空军医学杂志,2011,27(1):4-5.
    [18]汤静,潘慧,徐松,刘皋林.抗骨质疏松药物不良反应回顾性分析.中国医院用药评价与分析,2008,8(12):950-951.
    [19]Min Jia, Yan Nie, Da-Peng Cao, Yun-Yun Xue, Jie-Si Wang, Lu Zhao, Khalid Rahman,Qiao-Yan Zhang and Lu-Ping Qin. Potential Antiosteoporotic Agents from Plants: A ComprehensiveReview. Evidence-Based Complementary and Alternative Medicine,2012, doi:10.1155/2012/364604,28pages.
    [20]丁怀利,林燕萍.骨质疏松动物模型研究综述.中国民族民间医药,2010,8:2-3.
    [21]李素萍.骨质疏松动物模型的研究现状.中国组织工程研究与临床康复,2011,15(20):3767-3770.
    [22]郝杰,邵晋康.骨质疏松相关信号通路.中国医学工程,2011,19(10):179-180.
    [23]Nadja F, Angelika V,Paul R. Decreased bone turnover and deterioration of bone structure in twocases of pyknodysostosis. Journal of Clinical Endocrinology&Metabolism,2004,89:1538-1547.
    [24]Duque G, Troen BR. Understanding the mechanisms of senile osteoporosis: new facts for amajor geriatric syndrome. Journal of theAmerican Geriatrics Society,2008,56(5):935-941.
    [25]Yamaguchi Y, Sakai E, Sakamoto H, Fumimoto R, Fukuma Y, Nishishita K, Okamoto K,Tsukuba T. Inhibitory effects of tert-butylhydroquinone on osteoclast differentiation viaup-regulation of heme oxygenase-1and down-regulation of HMGB1release and NFATc1expression.Journal ofApplied Toxicology,2012, paper doi:10.1002/jat.2827.
    [26]X. Wu, Z. Li, Z. Yang, C. Zheng, J. Jing, Y. Chen, X. Ye, X. Lian, W. Qiu, F. Yang, J. Tang, J.Xiao, M. Liu and J. Luo. Caffeic acid3,4-dihydroxy-phenethyl ester suppresses receptor activatorof NF-kappaB ligand-induced osteoclastogenesis and prevents ovariectomy-induced bone lossthrough inhibition of mitogen-activated protein kinase/activator protein1and Ca2+-nuclear factor ofactivated T-cells cytoplasmic1signaling pathways. Journal of Bone and Mineral Research,2012,27:1298-1308.
    [27]Yamamoto, T., Kozawa, Q., Tanabe, K., Akamatsu, S., Matsuno, H.., Dohi, S., Hirose, H.,Uemastsu, T.1,25-dihydroxyvitamin D3stimulates vascular endothelial growth factor release inaortic smooth muscle cells: role of p38mitogen-activated protein kinase. Archives of biochemistryand biophysics,2002,398(1):1-6.
    [28]曾广智,谭宁华.组织蛋白酶及其抑制剂研究进展.云南植物研究,2005,27(4):334-337.
    [29]Rieman DJ, McClung HA, Dodds RA, Hwang SM, Holmes MW, James IE, Drake FH, GowenM. Biosynthesis and processing of cathepsin K in cultured human osteoclasts. Bone,2001,28(3):282-289.
    [30]Yasuda Y, Kaleta J, Bromme D. The role of cathepsins in osteoporosis and arthritis: rationale forthe design of new therapeutics. Advanced Drug Delivery Reviews,2005,57:973-993.
    [31]Karen Fuller, Kevin M. Lawrence, Jade L. Ross, Urszula B. Grabowska, Masahiro Shiroo, BertilSamuelsson, Timothy J. Chambers. Cathepsin k inhibitor prevent matrix-derived growth factordegradation by human osteoclasts. Bone,2008,42(1):200-211.
    [32]Dieter Bromme&Fabien Lecaille. Cathepsin K inhibitors for osteoporosis and potentialoff-target effects. Expert Opinion on Investigational Drugs,2009,18(5):585-600.
    [33]Ravikumar M, Pavan S, Bairy S, Pramod AB, Sumakanth M, Kishore M, Sumithra T. Virtualscreening of cathepsin k inhibitorsusing docking and pharmacophore models. Chemical Biology&Drug Design,2008,71(6):554-562.
    [34]Comeau SR, Gatchell DW, Vajda S. ClusPro: an automated docking and discrimination methodfor the prediction of protein complexes. Bioinformatics,2004,20(1):45-50.
    [35]Rodrigues LF, Dupret JM.3D Model of Human Arylamine N-Acetyltransferase2: StructuralBasis of the Slow Acetylator Phenotype of the R64Q Variant and Analysis of the Active-Site Loop.Biochemical and Biophysical Research Communications,2002,291(1):116-123.
    [36]Lee K, Czaplewski C, Kim SY. An efficientmolecular docking using conformational spaceannealing. Journal of Computational Chemistry,2005,26(5):78-87.
    [37]Romkes M, Buch SC. Genotyping technologies: application to biotransformation enzymegenetic polymorphism screening. Methods in Molecular Biology,2005,291(4):399-414.
    [38]Johnson JA, Turner ST. Hypertension pharmacogenomics: current satus and future directions.Current Opinion in Molecular Therapeutics,2005(1):218-225.
    [39]朱志远,张燕,李征,李金恒,芮建中,袁靖.受体蛋白与药物分子对接的研究进展.中国临床药理学与治疗学,2009,11:1308-1313.
    [40]李素萍.骨质疏松动物模型的研究现状.中国组织工程研究与临床康复,2011,15(20):3767-3770.
    [41]赵静,张哲鹏,王辛,陈健康,于军,曲萍,张学策,铁茹.大豆异黄酮对去势雄性大鼠腰椎和胫骨骺端骨小梁变化的影响.第四军医大学学报,2009,30(24):3030-3032.
    [42]D.W. Zhang, Y. Cheng, N. L. Wang, J. C. Zhang, M. S. Yang, and X. S. Yao. Efects of totalfavonoids and favonolglycosides from Epimediumkoreanum Nakaion the proliferation anddiferentiation of primary osteoblasts. Phytomedicine,2008,15(2):55-61.
    [43]S. M. Potter, J. A. Baum, H. Teng, R.J. Stillman, N. F. Shay, and J. W. Erdman. Soy protein andisofavones: their efects on blood lipids and bone density in postmenopausal women. AmericanJournal of Clinical Nutrition,1998,68(6):1375-1379.
    [44]A. Bitto, F. Polito, B. Burnett. Protective efect of genisteinaglycone on the development ofosteonecrosis of the femoral head and secondary osteoporosis induced by methylprednisolone in rats.Journal of Endocrinology,2009,201(3):321-328.
    [45]D. Wang, F. Li, and Z. Jiang. Osteoblastic proliferation stimulating activity of Psoraleacorylifolia extracts and two of its favonoids. Planta Medica,2001,67(8):748-749.
    [46]D. Xin, H. Wang, J. Yang. Phytoestrogens from Psoraleacorylifolia reveal estrogenreceptor-subtype selectivity. Phytomedicine,2010,17(2):126-131.
    [47]C. K. Park, Y. Lee, E.J. Chang. Bavachalcone inhibits osteoclast diferentiation throughsuppression of NFATc1induction by RANKL. Biochemical Pharmacology,2008,75(11):2175-2182.
    [48]梅春霞,张吉强,雌激素受体.生命的化学,2010(4):590-594.
    [49]Li J, Zhao Z, Yang J, Liu J, Wang J, Li X, Liu Y. p38MAPK mediated in compressivestress-induced chondrogenesis of rat bone marrow MSCs in3D alginate scaffolds. Journal ofcellular physiology,2009,221(3):609-617.
    [50]Ascenzi, M. G., Liao, V. P., Lee B. M., Billi, F., Zhou, H, Lindsay, R., Cosman, F., Nieves, J.,Bilezikian, J. P., Dempster D.W. Parathyroid hormone treatment improves the cortical bonemicrostructure by improving the distribution of type I collagen in postmenopausal women withosteoporosis. Journal of Bone and Mineral Research,2012,27(3):702-712.
    [51]Pappa, H. M., Saslowsky, T. M., Dhima, R. F., Fabio, D. D., Lahsinoui, H. H., Akkad, A., Grand,R. J., Gordon, C. M. Efficacy and harms of nasal calcitonin in improving bone density in youngpatients with inflammatory bowel disease: A randomized, placebo-controlled, double-blind trial. TheAmerican journal of gastroenterology,2011,106(8):1527-1543.
    [52]祝素萍,兰观华,陈璐璐.番茄红素对去卵巢大鼠骨质及松质骨中nf-κb表达的影响.中国骨质疏松杂志,2008,14(10):724-728.
    [53]X. C. Bai. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK andNF-kappaB. Biochemical and Biophysical Research Communications,2004,314(1):197-207.
    [54]T. Ohnishi. Oxidative stress causes alveolar bone loss in metabolic syndrome model mice withtype2diabetes. Journal of Periodontal Research,2009,44(1):43-51.
    [55]A. S. Das. Protective action of aqueous black tea (Camellia sinensis) extract (BTE) againstovariectomy-induced oxidative stress of mononuclear cells and its associated progression of boneloss. Phytotherapy Research,2009,23(9):1287-1294.
    [56]G. Banfi, E.L. Iorio, M.M. Corsi, Oxidative stress, free radicals and bone remodeling.Clinical Chemistry and Laboratory Medicine,2008,46(11):1550-1555.
    [57]S. Basu, Association between oxidative stress and bone mineral density. Biochemical andBiophysical Research Communications,2001,288(1):275-279.
    [58]朱文卓,宋滇平.糖尿病性骨质疏松的研究进展.昆明医学院学报,2008,29(1):97-102.
    [59]B. Ostman. Oxidative stress and bone mineral density in elderly men: antioxidant activity ofalpha-tocopherol. Free Radical Biology&Medicine,2009,47(5):668-73.
    [60]M. Sugiura. Bone mineral density in post-menopausal female subjects is associated with serumantioxidant carotenoids. Osteoporosis International,2008,19(2):211-219.
    [61]L.G. Rao, Lycopene consumption decreases oxidative stress and bone resorption markers inpostmenopausal women. Osteoporosis International,2007,18(1):109-115.
    [62]张鲲,陈晓亮.氧化应激与骨质疏松.中国骨质疏松杂志,2006,12(5):535-537.
    [63]M. Hahn, Effects of bone disease and calcium supplementation on antioxidant enzymes inpostmenopausal women. Clinical Biochemistry,2008,41(1-2):69-74.
    [64]Hyun Ah JUNG, Da-Mi JEONG, Hae Young CHUNG, Hyun Ae LIM, Ji Young KIM, Na YoungYOON, and Jae Sue CHOI. Re-evaluation of the Antioxidant Prenylated Flavonoids from the Rootsof Sophora favescens. Biological&Pharmaceutical Bulletin,2008,31(5):908-915.
    [65]XinFeng Zhang, Tran Manh Hung, Phuong Thien Phuong, Tran Minh Ngoc, Byung-Sun Min,Kyung-Sik Song, Yeon Hee Seong, and KiHwan Bae. Anti-inflammatory Activity of Flavonoidsfrom Populus davidiana. Archives of Pharmacal Research,2006,29(12):1102-1108.
    [66]H. K.Wu, Z. Su, H. A. Aisa, A. Yili, and B. Hang. COMPONENTS OF Cichorium glandulosumSEEDS. Chemistry of Natural Compounds,2007,43(4):472.
    [67]H. S. Rho, S. M. Ahn, B. C. Lee, M. K. Kim, A. K. Ghimeray, C. W. Jin, and D. H. Cho.Changes in flavonoid content and tyrosinase inhibitory activity in kenaf leaf extract after far-infraredtreatment. Bioorganic&Medicinal Chemistry Letters,2010,20:7534.
    [68]董礼,李磊,廖志华,陈敏,孙敏.柴胡红景天化学成分的研究.西北植物学报,2007,27(12):2564-2567.
    [69]Bina Shaheen Siddiqui, Nasima Khatoon, Sabira Beguma, Ahsana Dar Farooq, KehkashanQamar, Huma Aslam Bhatti, Syed Kashif Ali. Flavonoid and cardenolide glycosides and apentacyclic triterpene from the leaves of Nerium oleander and evaluation of cytotoxicity.Phytochemistry,2012,77:238-244.
    [70]Chien-Ya Hung, Yu-Cheng Tsai and Kuo-Yu Li. Phenolic Antioxidants Isolated from the Flowersof Osmanthus fragrans. Molecules,2012,17:10724-10737.
    [71]秦波,汪汉卿,朱大元.长叶水麻化学成分的研究.天然产物研究与开发,2003,15(1):21-23.
    [72]Xing-Cong Li, Linin Cai and Christine D. Wu. Antimicrobial compounds from Ceanothusamericanus against oral pathogens. Phytochemistry,1997,46:97-102.
    [73]M. K. Tsanuo, A. Hassanali, A. M. Hooper, Z. Khan, F. Kaberia, J. A. Pickett, and L. J.Wadhams. Isoflavanones from the allelopathic aqueous root exudate of Desmodium uncinatum.Phytochemistry,2003,64:265.
    [74]de Almeida, J.G.L., Silveira, E.R., Pessoa, O.D.L. NMR spectral assignments of a new [C-O-C]isoflavone dimer fromAndira surinamensis. Magnetic Resonance in Chemistry,2008,46,103-106.
    [75]M. D. Awouafack, P. Spiteller, M. Lamshoft, S. Kusari, B. Ivanova, P. Tane, and M. Spiteller.Antimicrobial isopropenyl-dihydrofurano isoflavones from Crotalaria lachnophora. Journal ofNatural Products,2011,74:272.
    [76]Alain K. Wa, Guy A. Azebaze, Augustin E. Nkengfack, Zacharias T. Fomum, Michele Meyer,Bernard Bodo, Fanie R. van Heerden. Indicanines B and C, two iso-avonoid derivatives from theroot bark of Erythrina indica. Phytochemistry,2000,53:981-985.
    [77]李林珍,杨小生,朱海燕,石京山.假地蓝化学成分研究.中草药,2008,39(2):173-175.
    [78]G. A. Lane, and R. H. Newman, Isoflavones from Lupinus angustifolius root. Phytochemistry.,1986,26:295.
    [79]MITSUHARU TANAKA and SATOSHI TAHARA. FAD-DEPENDENT EPOXIDASE AS AKEY ENZYME IN FUNGALMETABOLISM OF PRENYLATED FLAVONOIDS. Phytochemistry,1997,46(3):433-439.
    [80]Mei-Ing Chung, Chai-Ming Lu, Pao-Lin Huang, Chun-Nan Lin. Prenylflavonoids of Artocarpusheterophyllus. Phytochemistry,1995,40(4):1279-1282.
    [81]Hyun Ah JUNG, Da-Mi JEONG, Hae Young CHUNG, Hyun Ae LIM, Ji Young KIM, Na YoungYOON, and Jae Sue CHOI. Re-evaluation of the Antioxidant Prenylated Flavonoids from the Rootsof Sophora favescens. Biological&Pharmaceutical Bulletin,2008,31(5):908-915.
    [82]陶小宇,张德武,陈日道,尹云泽,邹建华,谢丹,杨林,王春梅,戴均贵.桑树细胞培养物的化学成分研究.中国中药杂志,2012,37(24):3738-3742.
    [83]Zhang Wei dong, HA, Thi Bang Tam, Chen Wansheng, Kong Deyun, Li Huiting, WangYonghong and Isabella Fouraste (2000). Two New Glycosides from Erigeron Breviscapus. Journalof Chinese Pharmaceutical Sciences,2000,9(3):122-124.
    [84]TOMOYUKI FUJITA and MITSURU NAKAYAMA. PERILLOSIDE A, A MONOTERPENEGLUCOSIDE FROM PERILLA FRUTESCENS. Phytochemistry,1992,31(9):3265-3267.
    [85]Lkeya, Y., Taguchi, H., Yosioka, I., Kobayashi, H.,. The constituents of Schizandra chinensisBaill. The structures of two new lignans, gomisin N and tigloylgomisin P. Chemical&Pharmaceutical Bulletin,1978,26:3257-3260.
    [86]Hong, S.S., Hwang, J.S., Lee, M.K., Hwang, B.Y. Lignans from the Stem Barks of Kalopanaxseptemlobus. Natural Product Sciences,2006,12:201-204.
    [87]Hanawa, F., Shiro, M., Hayashi, Y. Heartwood constituents of Betula maximowicziana.Phytochemistry,1997,45:589-595.
    [88]Jing-Ling Du, Yong-Sheng Jin, Li-Ming Qiao, Li Jin, Hai-Sheng Chen. Chemical investigationof Ervatamia yunnanensis. Chemistry of Natural Compounds,2010,46(3):459-461.
    [89]MANABU UDAYAMA, JUNEI KINJO and TOSHIHIRO NOHARA. TRITERPENOIDALSAPONINS FROM BAPTISIA AUSTRALIS. phytochemistry,1998,48(7):1233-1235.
    [90]Hideo MIYAO, Yusuke SAKAI, Takashi TAKESHITA, Junei KINJO, and Toshihiro NOHARA.Triterpene Saponins from Abrus cantoniensis (Leguminosae).Ⅰ. Isolation and Characterization ofFour New Saponins and a New Sapogenol. Chemical&Pharmaceutical Bulletin,1996,44(6):1222-1227.
    [91]Tomonori ARAO, Junei KINJO, Toshihiro NOHARA, and Ryuichi ISOBE. Oleanene-TypeTriterpene Glycosides from Puerariae Radix. Ⅳ. Six New Saponins from Pueraria lobata. Chemical&Pharmaceutical Bulletin,1997,45(2):362-366.
    [92]孔杰.猫儿屎植物的化学成分及其药效学研究.西北师范大学学报(自然科学版),1996,32(3):108-111.
    [93]Zhizhou He, Anjiang Zhang, Lisheng Ding, Xinxiang Lei, Jianzhang Sun, Lixue Zhang.Chemical composition of the green alga Codium Divaricatum Holmes. Fitoterapia,2010,81(8):1125-1128.
    [94]I.U. Asuzu, A.I. Gray, P.G. Waterman. The anthelmintic activity of D-3-O-methylchiroinositolisolated from Piliostigma thonningii stem bark. Fitoterapia,1999,70:77-79.
    [95]Qin Yang and Guan Ye. A NEW C-GLUCOSIDE FROM Commelina communis. Chemistry ofNatural Compounds,2009,45(1):59-60.
    [96]Huey-Hwa Cheng, Hui-Kang Wang, Junko Ito, Kenneth F.Bastow, Yoko Tachibana, YukaNakanishi, Zhihong Xu, Tsui-Yun Luo, and Kuo-Hsiung Lee. Cytotoxic Pheophorbide-RelatedCompounds from Clerodendrum calamitosum and C. cyrtophyllum. Journal of Natural Products,2001,64:915-919.
    [97]Prapai Wongsinkongman, Arnold Brossi, Hui-Kang Wang, Kenneth F.Bastow and Kuo-HsiungLee. Antitumor Agents Part209: Pheophorbide-a Derivativesas Photo-Independent CytotoxicAgentsy. Bioorganic&Medicinal Chemistry,2002,10:583-591.
    [98]Masashi Ushiyama, Tsutomu Furuya. Glycosylation of phenolic compounds by root culture ofPanax ginseng. Phytochemistry,1989,28(11):3009-3013.
    [99]罗艺萍,赵兴堂,王丽,羊晓东,赵静峰,李良.红叶木姜子皮的化学成分研究.中草药,2010,41(8):1258-1260.
    [100]S. Angioni, P. P. Righetti, E. Quartarone, E. Dilena, P. Mustarelli, A. Magistris. Novelaryloxy-polybenzimidazoles as proton conducting membranes for high temperature PEMFCs.International Journal of Hydrogen Enerfy,2011,36:7174-7182.
    [101]赵志勇,高文远,黄贤校,赵万顺,张强.长药隔重楼化学成分研究.中草药,2011,42(10):1917-1920.
    [102]袁珂,吕洁丽,殷明文.含羞草水溶性成分研究.中国中药杂志,2006,31(9):1643-1645.
    [103]Masayuki YOSHIKAWA, Toshiyuki MURAKAMI, Hiromi SHIMADA, Satoshi YOSHIZUMI,Masami SAKA, Johji YAMAHARA, and Hisashi MATSUDA. Medicinal Food stuffs on theBioactive Constituents of Moroheiya.(2): New Fatty Acids, Corchorifatty Acids A, B, C, D, E, and F,from the Leaves of Corchorus olitorius L.(Tiliaceae): Structures and Inhibitory Effect on NOProduction in Mouse Peritoneal Macrophages. Chemical&Pharmaceutical Bulletin,1998,46(6):1008-1014.
    [104]Ren-Wang Jiang, Mark E. Hay, Craig R. Fairchild, Jacques Prudhomme, Karine Le Roch,William Aalbersberg, Julia Kubanek. Antineoplastic unsaturated fatty acids from Fijian macroalgae.Phytochemistry,2008,69:2495-2500.
    [105]秦波,汪汉卿,朱大元,邵志宇,屠琳,周东豪.茶条木化学成分的研究.天然产物研究与开发,2001,13(02):16-18.
    [106]Zhang Guolin, Li Bogang, Zhou Zhengzhi. NON-ALKALOIDAL CONSTITUENTS FROMMECONOPSIS PUNICEA MAXIM. Natural Product Research and Development,1997,9(2):4-6.
    [107]宋卫武,李波,刘吉开.披针叶胡颓子中的一个新木脂素.云南植物研究,2010,32(5):455-462
    [108]刘可越,刘海军,张铁军,高文远.款冬花中萜类及甾体化合物的分享与鉴定.复旦学报(自然科学版),2010,49(3):389-393.
    [109]蒙爱东.药用植物广金钱草的研究进展.广西科学院学报,2008,24(2):148-151.
    [110]Kubo, T., Hamada, S., Nohara, T., Wang, Z.R., Hirayama, H., Ikegami, K., Yasukawa, K.,Takido, M., Study on the constituents of Desmodium styracifolium. Chemical&pharmaceuticalbulletin (Tokyo),1989,37:2229-2231.
    [111]McManus, O. B., Harris, G. H., Giangiacomo, K. M., Feigenbaum, P., Reuben, J. P., Addy, M.E., Burka, J. F., Kaczorowski, G. J., Garcia, M. L. An activator of calcium-dependent potassiumchannels isolated from a medicinal herb. Biochemistry,1993,32:6128-6133.
    [112]郑汉臣,张浩,潘胜利.药用植物学.全国高等学校教材.北京:人民卫生出版社,2008,第5版, pp188.
    [113]Ghosal, S., Mehta, R. β-phenethylamine and tetrahydroisoquinoline alkaloids of Desmodiumcephalotes. Phytochemistry,1974,13:1628-1629.
    [114]Ghosal, S., Srivastava, R.S. β-Phenethylamine, tetrahydroisoquinoline and indole Alkaloids ofDesmodium tiliaefolium. Phytochemistry,1973,12:193-197.
    [115]Ghosal, S., Srivastava, R.S., Bhattacharya, S.K., Debnath, P.K. Desmodium alkaloids. IV.Chemical and pharmacological evaluation of D. triflorum. Planta medica,1973,23:321-329.
    [116]Ghosal, S., Srivastava, R.S., Banerjee, P.K., Dutta, S.K.. Alkaloids of Desmodium triflorum.Phytochemistry,1971,10:3312-3313.
    [117]Ghosal, S., Mazumder, U.K., Mehta, R., Indole bases of Desmodium gyrans. Phytochemistry,1972,11:1863-1864.
    [118]Ghosal, S., Banerjee, S.K., Bhattacharya, S.K., Sanyal, A.K. Chemical and pharmacologicalevaluation of Desmodium pulchellum. Planta medica,1972,21:398-409.
    [119]Fang, S.H., Rao, Y.K., Tzeng, Y.M.,2005. Inhibitory effects of favonol glycosides fromCinnamomum osmophloeum on infammatory mediators in LPS/IFN-gamma activated murinemacrophages. Bioorganic&Medicinal Chemistry,2005,13:2381-2388.
    [120]Abdel-Ghani, N.T., Shoukry, A.F., el Nashar, R.M., Flow injection potentiometricdetermination of pipazethate hydrochloride. Analyst,2001,126:79-85.
    [121]Yew-Min Tzeng, Keru Chen, Yerra Koteswara Rao, Meng-Jen Lee. Kaempferitrin activates theinsulin signaling pathway and stimulates secretion of adiponectin in3T3-L1adipocytes.European Journal of Pharmacology,2009,607(1-3):27-34.
    [145]L. Verotta, F. Orsini, F. Pelizzoni, G. Torri, C.B. Rogers. Polyphenolic glycosides from AfricanProteaceae. Journal of Natural Products,1999,62(11):1526-1531.
    [146]Gabriele Marcolongo, Francesca De Appolonia, Alfonso Venzo, Christopher P. Berrie,Tommaso Carofiglio, Cristina Ceschi Berrini. Diacylglyceroipids isolated from a thermophilecyanobacerium from the Euganean hot springs. Natural Product Research,2006,20(8):766-774.
    [122]郭梁.成骨细胞、破骨细胞及OPG/RANKL/RANK轴与骨质疏松症.中医正骨,2010,22(7):41-45.
    [123]王勇平,欧阳元明,蒋垚.成骨细胞分化及增殖调控的研究进展.上海交通大学学报(医学版),2011,31(10):1465-1469.
    [124]Chang EJ, Lee WJ, Cho SH, Choi SW. Proliferative effects of flavan-3-ols andpropelargonidins from rhizomes of Drynaria fortunei on MCF-7and osteoblastic cells. Archives ofPharmacal Research,2003,26(8):620-30.
    [125]Wang X, Zhen L, Zhang G, Wong MS, Qin L, Yao X. Osteogenic effects of flavonoidaglycones from an osteoprotective fraction of Drynaria fortunei-an in vitro efficacy study.Phytomedicine,2011,18(10):868-72.
    [126]Horcajada-Molteni MN, Crespy V, Coxam V, Davicco MJ, Remesy C, Barlet JP. Rutin inhibitsovaryectomy-induced osteopenia in rats. Journal of Bone and Mineral Metabolism,2000,15(11):2251-2258.
    [127]Lei Jiao, Da-Peng Cao, Lu-Ping Qin, Ting Han, Qiao-Yan Zhang, Zheng Zhu, Fei Yan.Antiosteoporotic activity of phenolic compounds from Curculigo orchioides. Phytomedicine,2009,16:874-881.
    [128]Lu ping Qin, Ting Han, Qiao yan Zhang, Da peng Cao, Hua Nian, Khalid Rahman, Han chenZheng. Antiosteoporotic chemical constituents from Er-Xian Decoction, a traditional Chinese herbalformula. Journal of Ethnopharmacology,2008,118:271-279.
    [129]司马镇强,吴军正.细胞培养.西安:世界图书出版社西安公司,1996, pp111.
    [130]狄升蒙,田宗成,高翔,骞爱.破骨细胞研究进展.细胞生物学杂志,2009,31(6):792-798.
    [131]张鲲,陈晓亮,王德春,胡有谷.两种方法培养大鼠破骨细胞的比较研究.中国骨质疏松学杂志,2006,12(6):561-565.
    [132]朱亦堃,乔振华,赵嘉慧,朱镭,孙彦,李兴,赵宝珍.不同培养方法骨髓破骨细胞样细胞分化及活性的实验观察.中华风湿病学杂志,2006,10(5):284-288.
    [133]Kim TH, Jung JW, Ha BG, Hong JM, Park EK, Kim HJ, Kim SY. The effects of luteolin onosteoclast differentiation, function in vitro and ovariectomy-induced bone loss. Journal of NutritionalBiochemistry,2011,22(1):8-15.
    [134]Min Cheng, Qingwei Wang, Yinke Fan, Xueying Liu, Lu Wang, Renmin Xie, Charlene C.Ho, Wenji Sun. A traditional Chinese herbal preparation, Er-Zhi-Wan, prevent ovariectomy-inducedosteoporosis in rats. Journal of Ethnopharmacology,2011,138(2):279-285.
    [135]何伟涛,刘康,孙金谞,史晓林.组织蛋白酶k与骨质疏松症治疗的研究进展.中国骨质疏松杂志,2008,14(9):670-673.
    [136]Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, Miyata T, Anderson D M, Suda T.Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fmsand receptor activator of nuclear factor kappaB (RANK) receptors. Journal ofExperimental Medicine,1999190(12):1741-1754.
    [137]Leibbrandt A, Penninger JM RANK/RANKL: regulators of immune responses and bonephysiology. Annals of the New YorkAcademy of Sciences,2008,1143:123-150.
    [138]Wu X, Li Z, Yang Z, Zheng C, Jing J, Chen Y, Ye X, Lian X, Qiu W, Yang F, Tang J, XiaoJ, Liu M, Luo J. Caffeic acid3,4-dihydroxy-phenethyl ester suppresses receptor activator of NF-κBligand–induced osteoclastogenesis and prevents ovariectomy-induced bone loss through inhibition ofmitogen-activated protein kinase/activator protein1and Ca2+–nuclear factor of activated T-cellscytoplasmic1signaling pathways. Journal of Bone and Mineral Research,2012,27(6):1298-1308.
    [139]Zhao Q, Wang X, Liu Y, He Y, Jia R. NFATc1: functions in osteoclasts. International Journalof Biochemistry&Cell Biology,2010,42:546-579.
    [140]Delaisse JM, Engsig MT, Everts V, del Carmen OM, Ferreras M, Lund L. Proteinases in boneresoprtion: obvious and less obvious roles. Clinica Chimica Acta,2000,291:223-234.
    [141]Li C, Yang Z, Li Z, Ma Y, Zhang L, Zheng C, Qiu W, Wu X, Wang X, Li H, Tang J, Qian M, LiD, Wang P, Luo J, Liu M. Maslinic acid suppresses osteoclastogenesis and preventsovariectomy-induced bone loss by regulating RANKL-mediated NF-κB and MAPK signalingpathways. Journal of Bone and Mineral Research,2011,26(3):644-56.
    [142]Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune andbone systems. Nature Reviews Immunology,2007,7(4):292-304.
    [143]Takatsuna H, Asagiri M, Kubota T, Oka K, Osada T, Sugiyama C, Saito H, Aoki K, Ohya K,Takayanagi H, Umezawa K. Inhibition of RANKL-induced osteoclastogenesis by (-)-DHMEQ, anovel NF-kappaB inhibitor, through downregulation of NFATc1. Journal of Bone and MineralResearch,2005,20(4):653-662.
    [144]Lee JH, Jin H, Shim HE, Kim HN, Ha H, Lee ZH. Epigallocatechin-3-gallate inhibitsosteoclastogenesis by down-regulating c-Fos expression and suppressing the nuclear factor-kappaBsignal. Molecular Pharmacology,2005,77(1):17-25.
    [1]国家中医药管理局《中华本草》编委会,1996.中华本草.上海:上海科学技术出版社,4卷, pp3341-3343.
    [2]国家药典委员会,2010年版.中华人民共和国药典.北京:中国医药科技出版社,一部, pp42.
    [3]李荀,公元907年.海药本草.页码不详.
    [4]Rastogi, S., Pandey, M.M., Rawat, A.K.S.,2011. An Ethnomedicinal, Phytochemical andPharmacological Profile of Desmodium gangeticum (L.) DC.&D. adscendens (Sw.) DC. Journal ofEthnopharmacology136:283-296.
    [5]Sivarajan,VV., Balachandran, I.,1996. Ayurvedic drugs and their plant sources. New Delhi:Oxford and IBH publishing company, pp382-386.
    [6]Bakshi, DNG., Snensarma, P., Pal. DC.,2001. A Lexicon of Medicinal Plants in India. Calcutta:noya prokash, pp48-50.
    [7]Kirtikar, K.R., Basu, B.D.,2001. Indian medicinal plants with illustrations. DehraDun: OrientalEnterprises, pp1061-1063.
    [8]Kirtikar, K.R., Basu, B.D.,1987. Indian Medicinal Plants (2nd ed., vol.I). India: InternationalBook Distributors, pp756-760.
    [9]干宁,杨欣,李天华,何平,2008.毛排钱草的化学成分及其对肿瘤细胞的细胞毒活性研究.中国中药杂志,33:2077-2080.
    [10]Khan, Z.R., Pickett, J.A., Wadhams, L.J., Hassanali, A., Midega, C.A.O.,2006. Combinedcontrol of Striga hermonthica and stemborers by maize-Desmodium spp. intercrops. Crop Protection25,989-995.
    [11]Delle Monache, G., Botta, B., Vinciguerra, V., de Mello, J., de Andrade Chiappeta, A.,1996.Antimicrobial isoflavanones from Desmodium canum. Phytochemistry41,537-544.
    [12]Ghosh, D., Anandakumar, A.,1983. Anti-inflammation and analgesic activity of gangetin--apterocarpenoid from Desmodium gangeticum DC. Indian Journal of Pharmacology15,391-402.
    [13]Zhu, Z.Z., Ma, K.J., Ran, X., Zhang, H., Zheng, C.J., Han, T., Zhang, Q.Y., Qin, L.P.,2010.Analgesic, anti-inflammatory and antipyretic activities of the petroleum ether fraction from theethanol extract of Desmodium podocarpum. Journal of ethnopharmacology133,1126-1131.
    [14]Muanda, F.N., Bouayed, J., Djilani, A., Yao, C., Soulimani, R., Dicko, A.,2011. ChemicalComposition and Cellular Evaluation of the Antioxidant Activity of Desmodium adscendens Leaves.Evidence-based Complementary andAlternative Medicine2011,9pages.
    [15]Kurian, G.A., Paddikkala, J.,2010. Oral delivery of insulin with Desmodium gangeticum rootaqueous extract protects rat hearts against ischemia reperfusion injury in streptozotocin induceddiabetic rats. Asian Pacific Journal of Tropical Medicine3,94-100.
    [16]N'Gouemo, P., Baldy-Moulinier, M., Nguemby-Bina, C.,1996. Effects of an ethanolic extract ofDesmodium adscendens on central nervous system in rodents. Journal of Ethnopharmacology52,77-83.
    [17]干宁,李天华,杨欣,何平,2009.毛排钱草的化学成分分析及其抗肿瘤活性研究.中草药,40:852-856.
    [18]李传宽,张前军,黄钟碧,陈青,姚蓉君.2010.饿蚂蝗化学成分研究.中国中药杂志,35:2420-2423.
    [19]de Andrade Lima, C.S., Zappia, G., Delle Monache, G., Botta, B.,2006. Uncommon5-Methoxyisoflavans from Desmodium canum. European Journal of Organic Chemistry24,5445-5448.
    [20]Zappia, G., Menendez, M.P., Lima, C.S., Botta, B.,2009. A p-quinol isoflavan and two newisoflavanones from Desmodium canum. Natural product research23,665-671.
    [21]Botta, B., Gacs-Baitz, E., Vinciguerra, V., Delle Monache, G.,2003. Three isoflavanones withcannabinoid-like moieties from Desmodium canum. Phytochemistry64,599-602.
    [22]Hamilton, M.L., Caulfield, J.C., Pickett, J.A., Hooper, A.M.,2009. C-Glucosylflavonoidbiosynthesis from2-hydroxynaringenin by Desmodium uncinatum (Jacq.)(Fabaceae). TetrahedronLetters50,5656-5659.
    [23]Hooper, A.M., Hassanali, A., Chamberlain, K., Khan, Z., Pickett, J.A.,2009b. New geneticopportunities from legume intercrops for controlling Striga spp. parasitic weeds. Pest ManagementScience65,546-552.
    [24]Guchu, S.M., Yenesew, A., Tsanuo, M.K., Gikonyo, N.K., Pickett, J.A., Hooper, A.M., Hassanali,A.,2007. C-methylated and C-prenylated isoflavonoids from root extract of Desmodium uncinatum.Phytochemistry68,646-651.
    [25]Tsanuo, M.K., Hassanali, A., Hooper, A.M., Khan, Z., Kaberia, F., Pickett, J.A., Wadhams, L.J.,2003. Isoflavanones from the allelopathic aqueous root exudate of Desmodium uncinatum.Phytochemistry64,265-273.
    [26]Baloyi, J.J., Ngongoni, N.T., Topps, J.H., Acamovic, T., Hamudikuwanda, H.,2001. Condensedtannin and saponin content of Vigna unguiculata (L.) Walp, Desmodium uncinatum, Stylosanthesguianensis and Stylosanthes scabra grown in Zimbabwe. Tropical animal health and production33,57-66.
    [27]Zhao, M., Duan, J.-A., Che, C.-T.,2007. Isoflavanones and their O-glycosides from Desmodiumstyracifolium. Phytochemistry68,1471-1479.
    [28]李晓亮,汪豪,刘戈,张晓琦,叶文才,赵守训,2007.广金钱草的化学成分研究.中药材,30:802-805.
    [29]杨峻山,苏亚伦,王玉兰,1993.广金钱草化学成分研究.药学学报,28:197-201.
    [30]蒙爱东,2008.药用植物广金钱草的研究进展.广西科学院学报,24:148-151.
    [31]Kubo, T., Hamada, S., Nohara, T., Wang, Z.R., Hirayama, H., Ikegami, K., Yasukawa, K., Takido,M.,1989a. Study on the constituents of Desmodium styracifolium. Chemical&pharmaceuticalbulletin (Tokyo)37,2229-2231.
    [32]陈丰连,王术玲,徐鸿华,2005.广金钱草挥发油的气相色谱-质谱分析.广州中医药大学学报,22:302-303.
    [33]Mishra, P.K., Singh, N., Ahmad, G., Dube, A., Maurya, R.,2005. Glycolipids and otherconstituents from Desmodium gangeticum with antileishmanial and immunomodulatory activities.Bioorganic&Medicinal Chemistry Letters15,4543-4546.
    [34]Purushothaman, K.K., Chandrasekharan, S., Balakrishna, K., Connolly, J.D.,1975. Gangetininand desmodin, two minor pterocarpanoids of Desmodium gangeticum. Phytochemistry14,1129-1130.
    [35]Ghosal, S., Bhattacharya, S.K.,1972. Desmodium alkaloids II: Chemical and pharmacologicalevaluation of D. gangeticum. Planta medica22,434-440.
    [36]Rastogi, S.C., Tiwari, G.D., Srivastva, K.C., Tiwari, R.D.,1971. Phospholipids from the seeds ofDesmodium gangeticum. Planta medica20,131-132.
    [37]Ghosal, S., Mukherjee, B.,1965. Occurrence of5-methoxy-N,N-dimethyltryptamine oxide andother tryptamines in Desmodium pulchellum Benth ex Baker. Chemistry&industry19,793-794.
    [38]Avasthi, B.K., Tewari, J.D.,1955. Chemical investigation of Desmodium gangeticum. II.Chemical constitution of the lactone. Journal of the American Pharmaceutical Association. AmericanPharmaceutical Association (Baltim)44,628-629.
    [39]Avasthi, B.K., Tewari, J.D.,1955. A preliminary phytochemical investigation of Desmodiumgangeticum DC. I. Journal of the American Pharmaceutical Association. American PharmaceuticalAssociation (Baltim)44,625-627.
    [40]Yadava, R., Tripathi, P.,1998. A novel flavone glycoside from the stem of Desmodiumgangeticum. Fitoterapia69,443-444.
    [41]Mizuno, M., Baba, K., Iinuma, M., Tanaka, T.,1992. Coumaronochromones from leaves ofDesmodium oxyphyllum. Phytochemistry31,361-363.
    [42]Ghosal, S., Mehta, R.,1974. β-phenethylamine and tetrahydroisoquinoline alkaloids ofDesmodium cephalotes. Phytochemistry13,1628-1629.
    [43]Ghosal, S., Srivastava, R.S.,1973. β-Phenethylamine, tetrahydroisoquinoline and indoleAlkaloids of Desmodium tiliaefolium. Phytochemistry12,193-197.
    [44]Ghosal, S., Srivastava, R.S., Bhattacharya, S.K., Debnath, P.K.,1973. Desmodium alkaloids. IV.Chemical and pharmacological evaluation of D. triflorum. Planta medica23,321-329.
    [45]Ghosal, S., Srivastava, R.S., Banerjee, P.K., Dutta, S.K.,1971. Alkaloids of Desmodiumtriflorum. Phytochemistry10,3312-3313.
    [46]Adinarayana, D., Syamasundar, K.,1982. Occurrence of a rare diholosylflavone2-O-glucosylvitexin in Desmodium triflorum. Current Science51,936-937.
    [47]Ghosal, S., Mazumder, U.K., Mehta, R.,1972. Indole bases of Desmodium gyrans.Phytochemistry11,1863-1864.
    [48]Ghosal, S., Banerjee, S.K., Bhattacharya, S.K., Sanyal, A.K.,1972. Chemical andpharmacological evaluation of Desmodium pulchellum. Planta medica21,398-409.
    [49]Tiwari, R.D., Bansal, R.K.,1971. Physcion1-glycosyl rhamnoside from seeds of Desmodiumpulchellum. Phytochemistry10,1921-1922.
    [50]Sinha, M.P., Tiwari, R.D.,1970. The structure of a galactomannan from the seeds of Desmodiumpulchellum. Phytochemistry9,1881-1883.
    [51]刘小辉,华燕,2009.小叶三点金的苯丙素类成分分析.西南林学院学报,29:92-93.
    [52]毛绍春,李竹英,李聪,2007.小叶三点金化学成分研究.中草药,38:1157-1159.
    [53]Rathi, A., Rao, C.V., Ravishankar, B., De, S., Mehrotra, S.,2004. Anti-inflammatory andanti-nociceptive activity of the water decoction Desmodium gangeticum. Journal ofEthnopharmacology95,259-263.
    [54]Lai, S.C., Peng, W.H., Huang, S.C., Ho, Y.L., Huang, T.H., Lai, Z.R., Chang, Y.S.,2009.Analgesic and anti-inflammatory activities of methanol extract from Desmodium triflorum DC inmice. TheAmerican journal of Chinese medicine37,573-588.
    [55]顾丽贞,张百舜,南继红,汪嵘卿,1988.四川大金钱草与广金钱草抗炎作用的研究.中药通报,13:40-42,63.
    [56]Lai, S.C., Ho, Y.L., Huang, S.C., Huang, T.H., Lai, Z.R., Wu, C.R., Lian, K.Y., Chang, Y.S.,2010. Antioxidant and antiproliferative activities of Desmodium triflorum (L.) DC. The Americanjournal of Chinese medicine38,329-342.
    [57]毛绍春,李竹英,李聪.2007.山蚂蝗属3种植物的抗氧化性能研究.云南大学学报(自然科学版),29:393-397.
    [58]Kurian, G.A., Suryanarayanan, S., Raman, A., Padikkala, J.,2010. Antioxidant effects of ethylacetate extract of Desmodium gangeticum root on myocardial ischemia reperfusion injury in rathearts. Chinese medicine5,3.
    [59]Jimenez Misas, C.A., Rojas Hernandez, N.M., Lopez Abraham, A.M.,1979. Biologicalevaluation of Cuban plants. I. Revista cubana de medicina tropical31,5-12.
    [60]Rojas, A., Mendoza, S., Moreno, J., Arellano, R.O.,2003. Extracts from plants used in mexicantraditional medicine activate Ca2+-dependent chloride channels in Xenopus laevis oocytes.Phytomedicine10,416-421.
    [61]De Groote, H., Rutto, E., Odhiambo, G., Kanampiu, F., Khan, Z., Coe, R., Vanlauwe, B.,2010.Participatory evaluation of integrated pest and soil fertility management options using orderedcategorical data analysis. Agricultural Systems103,233-244.
    [62]Hooper, A.M., Hassanali, A., Chamberlain, K., Khan, Z., Pickett, J.A.,2009. New geneticopportunities from legume intercrops for controlling Striga spp. parasitic weeds. Pest managementscience65,546-552.
    [63]Hooper, A.M., Tsanuo, M.K., Chamberlain, K., Tittcomb, K., Scholes, J., Hassanali, A., Khan,Z.R., Pickett, J.A.,2010. Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum rootexudate, is an allelochemical against the development of Striga. Phytochemistry71,904-908.
    [64]Khan, Z.R., Midega, C.A., Bruce, T.J., Hooper, A.M., Pickett, J.A.,2010. Exploitingphytochemicals for developing a 'push-pull' crop protection strategy for cereal farmers in Africa.Journal of experimental botany61,4185-4196.
    [65]Khan, Z.R., Amudavi, D.M., Midega, C.A.O., Wanyama, J.M., Pickett, J.A.,2008. Farmers'perceptions of a 'push-pull' technology for control of cereal stemborers and Striga weed in westernKenya. Crop Protection27,976-987.
    [66]Khan, Z.R., Midega, C.A.O., Njuguna, E.M., Amudavi, D.M., Wanyama, J.M., Pickett, J.A.,2008. Economic performance of the 'push-pull' technology for stemborer and Striga control insmallholder farming systems in western Kenya. Crop Protection27,1084-1097.
    [67]Khan, Z.R., Hassanali, A., Overholt, W., Khamis, T.M., Hooper, A.M., Pickett, J.A., Wadhams,L.J., Woodcock, C.M.,2002. Control of witchweed Striga hermonthica by intercropping withDesmodium spp., and the mechanism defined as allelopathic. Journal of Chemical Ecology28,1871-1885.
    [68]Odonne, G., Bourdy, G., Castillo, D., Estevez, Y., Lancha-Tangoa, A., Alban-Castillo, J., Deharo,E., Rojas, R., Stien, D., Sauvain, M.,2009. Perception of leishmaniasis and evaluation of medicinalplants used by the Chayahuita in Peru. Part II. Journal of Ethnopharmacology126,149-158.
    [69]Iwu, M.M., Jackson, J.E., Tally, J.D., Klayman, D.L.,1992. Evaluation of plant extracts forantileishmanial activity using a mechanism-based radiorespirometric microtechnique (RAM). Plantamedica58,436-441.
    [70]Singh, N., Mishra, P.K., Kapil, A., Arya, K.R., Maurya, R., Dube, A.,2005. Efficacy ofDesmodium gangeticum extract and its fractions against experimental visceral leishmaniasis. Journalof Ethnopharmacology98,83-88.
    [71]Jabbar, S., Khan, M.T., Choudhuri, M.S., Sil, B.K.,2004. Bioactivity studies of the individualingredients of the Dashamularishta. Pakistan journal of pharmaceutical sciences17,9-17.
    [72]Raj, R.K.,1975. Screening of indigenous plants for anthelmintic action against human Ascarislumbricoides: Part II. Indian journal of physiology and pharmacology19, unknown.
    [73]Govindarajan, R., Asare-Anane, H., Persaud, S., Jones, P., Houghton, P.J.,2007. Effect ofDesmodium gangeticum extract on blood glucose in rats and on insulin secretion in vitro. Plantamedica73,427-432.
    [74]Hirayama, H., Wang, Z., Nishi, K., Ogawa, A., Ishimatu, T., Ueda, S., Kubo, T., Nohara, T.,1993. Effect of Desmodium styracifolium-triterpenoid on calcium oxalate renal stones. Britishjournal of urology71,143-147.
    [75]Kubo, T., Kajimoto, T., Nohara, T., Hirayama, H., Ikegami, K., Irino, N.J.,1989. Extraction offlavonoids from Desmodium styracifolium for prevention of kidney stones. Jpn. Kokai Tokkyo Koho,6pp. CODEN: JKXXAFJP01305080A219891208.Heisei. CAN113:29240AN1990:429240.
    [76]Ho, C.S., Wong, Y.H., Chiu, K.W.,1989. The hypotensive action of Desmodium styracifoliumand Clematis chinensis. The American journal of Chinese medicine17,189-202.
    [77]Addy, M.E., Awumey, E.M.K.,1984. Effects of the extracts of Desmodium adscendens onanaphylaxis. Journal of Ethnopharmacology11,283-292.
    [78]Addy, M.E., Dzandu, W.K.,1986. Dose-response effects of Desmodium adscendens aqueousextract on histamine response, content and anaphylactic reactions in the guinea pig. Journal ofEthnopharmacology18,13-20.
    [79]Addy, M.,1989. Several chromatographically distinct fractions of Desmodium adscendensinhibit smooth muscle contractions. Pharmaceutical Biology27,81-91.
    [80]Addy, M.E., Burka, J.F.,1990. Effect of Desmodium adscendens fraction3on contractions ofrespiratory smooth muscle. Journal of Ethnopharmacology29,325-335.
    [81]Addy, M., Schwartzman, M.,1992. An extract of Desmodium adscendens inhibitsNADPH-dependent oxygenation of arachidonic acid by kidney cortical microsomes. PhytotherapyResearch6,245-250.
    [82]McManus, O. B., Harris, G. H., Giangiacomo, K. M., Feigenbaum, P., Reuben, J. P., Addy, M. E.,Burka, J. F., Kaczorowski, G. J., Garcia, M. L.,1993. An activator of calcium-dependent potassiumchannels isolated from a medicinal herb. Biochemistry32,6128–6133.
    [83]Rojas, A., Bah, M., Rojas, J.I., Serrano, V., Pacheco, S.,1999. Spasmolytic activity of someplants used by the Otomi Indians of Queretaro (Mexico) for the treatment of gastrointestinaldisorders. Phytomedicine6,367-371.
    [84]Dharmani, P., Mishra, P.K., Maurya, R., Chauhan, V.S., Palit, G.,2005. Desmodium gangeticum:a potent anti-ulcer agent. Indian journal of experimental biology43,517-521.
    [85]Shirwaikar, A., Jahagirdar, S., Udupa, A.,2003. Wound healing activity of Desmodiumtriquetrum leaves. Indian journal of pharmaceutical sciences65,461-464.
    [86]王峰,杨连春,刘敏,吕敏,程言亮,贾恒明,1997.抗蛇毒中草药拮抗ET-1和S6b作用的初步研究.中国中药杂志,22:620-622.
    [87]Kondrotas, A., Janulis, V., Simoniene, G., Jurkstiene, V.,1997. The neutrophil activation in vivoand in vitro by preparations obtained from Desmodium Canadense D.C. and Echinacea Purpura.Immunology Letters56,431.
    [88]Wushu, Z.,1989. Immunopotentiating Effects of Lipid Polysaccharide from AstragalusMembranaceus Bge, Polysaccharide Olysaccharide from Desmodium Styracifolium and Sugar fromCornus Officinalis Journal of China-Japan Friendship Hospital4, unknown.
    [89]钟鸣,余胜民,黄琳芸,杨增艳.2001,排钱草总生物碱对实验性肝纤维化动物相关指标的作用.肝脏,6:168-170.
    [90]钟鸣,黄琳芸,余胜民,朱红梅,张青青,杨增艳.1999.中西医结合肝病杂志,9:22-24.
    [91]Yoo, H.H., Kim, T., Ahn, S., Kim, Y.J., Kim, H.Y., Piao, X.L., Park, J.H.,2005. Evaluation ofthe estrogenic activity of Leguminosae plants. Biological&pharmaceutical bulletin28,538-540.
    [92]Joshi, H., Parle, M.,2006. Antiamnesic effects of Desmodium gangeticum in mice. YakugakuZasshi126,795-804.
    [93]Ghosal, S., Mukherjee, B.,1966. Indole-3-alkylamine Bases of Desmodium pulchellum. TheJournal of Organic Chemistry31,2284-2288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700