LiCoO_2材料的结构、性能及锂离子电池制造技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池与传统的二次电池如铅酸电池、Ni/Cd电池、Ni/MH电池等相比,在比功率、能量密度及充放电性能方面有着明显的优势。而且,锂离子电池还有着循环寿命长、自放电率低、“绿色”环保等优点,目前已广泛应用于小型用电器中,并正积极向空间技术、国防工业、电动汽车、UPS等领域发展。锂离子电池技术的关键在于嵌入式电极材料的成功开发。本文详细介绍了锂离子电池正极材料,特别是LiCoO_2材料的发展现状;并对锂离子电池的技术现状和发展趋势作了总结。运用理论电化学的基本原理,分析了LiCoO_2材料对锂离子电池性能影响的机理。在此基础上对锂离子电池的制造技术和性能进行了研究,并对车用动力型锂离子电池的制造与性能进行了初步研究。
     采用XRD、BET、SEM、激光粒径分析等方法,分析了四种商品化LiCoO_2材料的晶体结构、物理化学性能以及形貌特征;并采用电化学测试方法研究了LiCoO_2电极反应的动力学特征。重点比较了不同厂家生产的LiCoO_2的晶体结构特征,以XRD图中(003)峰和(104)峰的强度比值I_(003)/I_(104)来表征LiCoO_2晶体的层状结构。采用大幅度恒电位阶跃技术测定了四种LiCoO_2样品中Li~+离子的扩散系数,有着较大的I_(003)/I_(104)比值的LC2#LiCoO_2样品,Li~+离子在其中的扩散系数最大。表明,I_(003)/I_(104)的值越大,LiCoO_2晶体的层状结构越完整。对Li~+离子在LiCoO_2电极中的扩散系数进行测量时,提出了LiCoO_2球形电极的扩散模型,运用Fick第二定律推导出了Li~+离子在LiCoO_2电极中的扩散系数D_(Li+)的表达式。
     采用极小过电位下(5mv)的线性极化,使电极反应处于电化学控制,测定了LiCoO_2电极的交换电流密度。发现:未经充放电活化的LiCoO_2电极交换电流密度很小,LiCoO_2晶体没有电化学活性,其结构呈现出半导体的性质;随着少量Li的脱嵌,LiCoO_2电极的交换电流密度迅速升高,LiCoO_2晶体呈现出了导体的性质。随着Li的进一步脱嵌,由于LiCoO_2中Li~+离子浓度的下降,电极的交换电流密度又出现下降趋势。
     应用交流阻抗技术对LiCoO_2电极反应过程中电极界面变化进行了研究,测得了不同电位下LiCoO_2电极的交流阻抗Nyquist图谱。典型的LiCoO_2电极的Nyquist图谱由三部分组成:高频部分不随电极电位变化的半径较小的半圆,是由电极表面生成稳定的Li_2CO_3覆盖膜引起的。中频部分的半圆为电化学极化阻抗;低频部分是由扩散控制引起的与实轴成45°角的直线。由Nyquist图求得的LiCoO_2电极的交换电流密度与线性极化测得的值一致。
     对四种LiCoO_2材料的充放电性能进行了比较研究,结果表明具有良好的动力学特性,尤其是扩散系数较大的LC2#LiCoO_2充放电性能和循环性能优于其它样品。对四种样品LiCoO_2制得的实验电池的电化学性能的测试也验证了上述结果。
     对锂离子电池制造过程中的关键工序:正极成型工艺、负极成型工艺以及电解液体
    
     中南大学硕士学位论文 摘要 h
     系地选择进行了研究。提出了正负极浆料配制过程中的常规方法和高温配料方法,以适
     应于不同的生产环境;对正负极浆料的涂布过程,提出了有望取代目前成本高、生产环
     境不友好、有一定毒性的N’MP+PVDF粘接剂体系的水溶性粘接剂体系。水溶性粘接剂
     制得的试验电池测试的结果证明了这一观点;经过实验筛选指出lmol·L匕iliFwC+
     **C*:1体积比)的电解液有利于改善电池的循环性能。
     研究了理离子电池的充放电性能、放电电压特性和循环性能,结果表明:理离子电
     池的大电流性能,尤其是大电流下电池的电压特性明显变差,一般使用时最好不超过ZC
     倍率对电池进行充放电。利用本研究工艺制得的理离子电池有着非常优良的循环性能,
     本文测得,063048型试验电池循环500次容量仅下降了5.05%。
     研究了理离子电池的贮存性能,指出:锣离子电池在长期贮存时,不应以高于60%
     的荷电态进行贮存,最佳贮存荷电态为40%。测量了理离子电池在贮存过程中的电压变
     化,结果表明:理离子电池自放电一般发生在贮存初期,特别是前5天电池的电压变化
     很明显。在此基础上,提出了利用电池第2-5天的电压下降值的大小快速筛选自放电异
     常的电池。
     初步研究了车用动力型理离子电池的制造工艺、充放电性能和循环性能,计算了实
     验电池的质量比能量和体积比能量。对车用动力型锤离子电池提出了设计思路和原则工
     艺,由此制得的20An动力型理离子电池的充放电性能和循环性能都较为理想,0.SC倍
     率充放电工作性能较好,接近甚至超过国外报道的C/3倍率下的数据。本研究20Ah动
     力电池的质量比能量接近国外先进水平,但体积比能量较差,还需进一步改进。
Compared with traditional secondary batteries, e.g., Pb-PbO2 battery, Ni-Cd battery, Ni-MH battery, etc., Lithium-Ion Battery (LIB) shows greater advantages at the aspect of rate capability, energy density, and charge-discharge performance. Moreover, LIB also shows the advantages of long cycling life, low self-discharge rate, and amity to the environment. Now LIB has been broadly used in portable electrics, and actively used in space technology, national defence industry, electric vehicles (EV), UPS, etc. As we know, the key to the commercialization of LIB is the successful development of the intercalated electrode materials. This thesis introduced the cathode materials of LIB hi detail, especially in the development status of LiCoO2, and a summary of the LIB development about technology status and development tendency was also given. The effect mechanism of LiCoOi on the performance of the LIB was discussed from the viewpoint of the primary principle of electrochemistry. Furthermore, the fabrication technique and performance of LIB were studied, and LIB for EV was also studied primarily.
    The crystal structure, physicochemical properties, and morphology of four commercial LiCoO2 specimens were studied by using modem analytic techniques, e.g., XRD, BET, SEM and laser particle size analysis. Various electrochemical methods were used to study the dynamic characteristic of the LiCoO2 electrode reaction. In the process of comparing crystal structure of different LiCoO2 specimens, the ratio of the intensity of diffraction peak (003) and (104), IOOS/IIM, were used. Li+ ion diffusion coefficient was measured using step-potential method (300mV), and it can be found that LC2# LiCoO2 specimen with higher ratio of I003/I104 shows the largest Li+ ion diffusion coefficient. This means that the higher ratio of I003/I104> the better crystal structure the LiCoOi material should show. Based on the proposed LiCoCh sphere electrode diffusion model, and the expression of Li+ diffusion coefficient -DU+ was deduced by using the second law of Pick.
    Line sweep was used to measure the exchange current density (i? of the LiCoO2 electrode at lower overpotential (5mV) when the LiCoO2 electrode was electrochemically polarized. It was found that the i?was very small when the electrode was not active, and LiCoO2 material showed a feature of semiconductor; but the i?was increased sharply after small scale of Li deintercalation from electrode, at this moment the electrode exhibited the feature of conductor. With the further deintercalation of Li from the LiCoO2 electrode, i?decreased partially because of the density of Li+ in the LiCoO2 electrode falling down.
    The interface phenomena of LiCoO2 electrode was studied by AC impedance method. From the Nyquist spectrum of LiCoO2 electrode, we found that the spectrum was made up of three part: the highest frequency part was a small radius circle, which was generated by the Li2CO3 thin film on the surface of the LiCoO2 electrode and the radius did not change with
    
    
    
    the potential change; the medium frequency part was a large radius circle, which was generated by the electrochemistry polarization and the radius changed with the electrode potential change; and the low frequency was a line generated by the Li+ slow diffusion in the LiCoOi electrode, which has an angle of 45?from the real axis. From the Nyquist spectrum the i?was also calculated, and the value consisted with the above.
    The charge-discharge performance of the LiCoOa electrode was also studied. From the result we can see that the LiCoOi material, which has good kinetics behavior, especially has high Li+ diffusion coefficient, possesses good charge-discharge performance and long cycling life.
    The fabrication technique of the LIB was studied in detail. The process flow and some key procedure such as: the fabrication of cathode and anode, and the selection of the electrolyte were studied also. In order to adapt different circumstance, we introduced normal blending and high temperature blending. For improving the adhesive performa
引文
[1]R.M. Dell. Bakeries fifty years of materials development[J]. Solid State Ionics, 2000, 134:139-158
    [2]胡绍杰,徐保伯.锂离子电池工业的发展与展望[J].电池,2000,30(4):108-111
    [3]M. Broussely, P. Biensan, et al. Lithium insertion into host materials: the key to success for Li ion batteries[J]. Electrochemical Acta, 1999, 45:3-22
    [4]M. Stanley Whittingham. Insertion electrodes as SMART Materials: the first 25 years and future promises[J]. Solid State lonics, 2000, 134:169-178
    [5]赖琼钰,卢集政等.摇椅锂离子二次电池及其嵌入式电极材料[J].化学研究与应用,1998,10(1):21-26。
    [6]Vincent Colin A. Lithium batteries: a 50 years perspective, 1959-2009[J].Solid state conics, 2000, 134:159-167
    [7]Ohzuku Tsutomu. Ueda Atsushi. Solid state redox reaction of LiCoO_2(R3 m) for 4 volt secondary Lithium cells[J]. Journal of The Electrochemical Society, 1994, 141(11): 2972-2977
    [8]任学佑.美国锂电池工业[J].电池,1991,21(4):29-33
    [9]马永敬.二次锂电池的现状和发展趋势[J].电池,1993,23(6):280-283
    [10]Ohzuku Tsutomu, Ueda Atsushi, et al. Comparative study of LiCoO_2, LiNi_(1/2)Co_(1/2)O_2 and LiNiO_2 for 4 volt secondary Lithium cells[J]. Electrochemical Acta, 1993, 38(9): 1159-1167
    [11]周恒辉,慈云祥等.锂离子电池电极材料研究进展[J].化学进展,1998,10(1):85-94
    [12]K. Sekai, H. Azuma, et al. Lithium-ion rechargeable cells with LiCoO_2 and carbon electrodes[J]. Journal of Power Sources, 1993, 43-44:241-244
    [13]宋作忠,蒋玉湘等.锂离子二次电池及其电解质的研究闭.盐湖研究,1999,7(2):47-57
    [14]李玉增,钱九红.锂离子二次电池研究进展[J].电池,1995,25(16):286-289
    [15]任泽民.国内外锂二次电池进展[J].电源技术,1992,(3):10-15
    [16]吴国良,刘人敏等.LiCoO_2正极材料的制备及其应用研究[J].电池,2000,30(3):105-107
    [17]吴国良,杨新河等.锂离子电池及其电极材料的研制[J].电池,1998,28(6):258-262
    [18]郭鸣风,杨瑞敏等.LiCoO_2的合成及其在锂蓄电池中的行为[J].电化学,1995,1(1):20-27
    [19]张泽波,郭鸣风等.AA型人造石墨—氧化钻锂锂离子电池的温度特性[J].电源技术,1997,21(6):238-239
    [20]张泽波,郭鸣风等.Li-LiCoO_2蓄电池循环寿命及交流阻抗研究[J].电池技术,1995,19(3):36-39
    [21]中国科学院物理研究所.全固态锂离子电池[P].CN2062501U,1990.
    [22]齐力,林云青等.草酸沉淀法合成LiCoO_2正极材料[J].功能材料,1998,29(6):623-625
    [23]李阳兴,姜长印等.喷雾干燥法制备LiCoO_2超细粉[J].无机材料学报,1999,14(4):657-660
    [24]清华大学.一种锂离子电池石墨阳极膜制品及其制备方法和应用[P],CN1190804A,1998
    [25]清华大学.高容量锂离子电池负极材料的制备方法[P].CN1234618A,1998
    [26]中国科学院化学研究所.一种锂离子电池及其制造方法[P].CN1186355A,1998
    
    
    [27]中国科学院化学研究所.锂二次电池碳负极材料及其制备方法[P].CN1186353A,1998
    [28]江志裕.锂离子电池的某些研究进展[J].电池,1997,27(26):255-258
    [29]尤金跨,杨勇等.锂离子电池纳米电极材料研究[J].电化学,1998,4(1):94-100
    [30]王新波,刘人敏.锂离子二次电池用阴极材料[J].电池,1995,25(6):269-271
    [31]杨晓西,王铁军等.锂离子电池及其材料的发展状况[J].华南理工大学学报,1999,27(5):
    [32]周震涛,汪国杰等.含氟聚合物胶粘剂及其电化学特性的研究[J].电源技术,1998,22(2):47-50
    [33]周震涛,黄静等.粘接剂和集流体对石墨负极电化学性能的影响[J].电池,1998,28(2):54-56
    [34]郭炳焜,李新海,杨松青.化学电源—电池原理及制造技术[M].长沙:中南工业大学出版社,2000:314-355,444-445
    [35]夏熙.纳米微粒作为电池活性材料的前景[J].电池,1998,28(6):251-254
    [36]储炜,吴昇晖等.纳米科学技术在化学电源领域的新进展[J].电源技术,1998,22(6):256-260
    [37]陈立泉.锂离子电池最新动态和进展[J].电池,1998,28(6):255-257
    [38]杨遇春,郑有国.锂离子电池材料新进展[J].电池,1998,28(4):181-183
    [39]M. Wakihara, O. Yamamoto (Eds). Lithium Ion Batteries-Fundamentals and Performance[M]. Wiley-VCH/Kodansha, Weinheim, 1998:10
    [40]李诚芳.二次锂电池的最新技术进展[J].电池,1993,23(2):71-74
    [41]李玉增.新型锂离子电池的研究进展[J].电池,1997,27(2):83-84
    [42]吴飞,王德全.常温液态锂二次电池的进展[J].电源技术,1992,(5):36-42
    [43]K.M. Abraham. Directions in secondary lithium battery research and development[J]. Electrochimica Acta, 1993, 38(9): 1233-1248
    [44]Ohzuku Tsutomu, Ueda Atsushi, et al. Electrochemistry and structure chemistry of LiNiO_2(R 3 m) of 4 volt Secondary Lithium cells[J]. Journal of the Electrochemical Society, 1993 140(7): 1862-1870
    [45]Ph. Botkovitz, Ph. Deniard, et at. Structural and electrochemical characteristics of a hollandite-type "Li_xMnO_2"[J]. Journal of Power Sources, 1993, 43-44:657-665
    [46]J. N. Reimers, J. R. Dahn. Effects of impurities on the electrochemical properties of LiCoO_2[J]. Journal of the Electrochemical Society, 1993, 140(10): 2752-2754
    [47]杨遇春.二次锂电池进展[J].电池,1993,23(5):230-233
    [48]李泓,李晶泽等.锂离子电池纳米材料研究[J].电化学,2000,6(2):131-145
    [49]W. D. Johnston, R. C. MiUer, et al. A study of several systems of the type Li_x[Co_yNi_((1-y))]_((1-x))O[J]. J.Phys. Chem. 1959, 63:198-202
    [50]E. Plichta, M. Salomon, et al. A rechargeable Li/Li_xCoO_2 cell[J]. Journal of Power Sources, 1987, 21:25-31
    [51]M. Broussely, F. Perton, et al. Li/Li_xNiO_2 and Li/Li_xCoO_2 rechargeable systems: comparative study and performance of practical cells[J]. Journal of Power Sources, 1993, 43-44:209-216
    [52]郭鸣风,杨瑞敏等.Li_xCoO_2的合成及其锂蓄电池的研究[J].电源技术,1993,15(12):9-12
    [53]高虹,翟玉春等.锂离子电池阴极材料LiCoO_2的合成[J].中国有色金属学报,1998,8(suppl.1):185-187
    [54]钟俊辉.锂离子电池的正极材料[J].电源技术,1992,21(4):174-177
    
    
    [55] Z. S. Peng, C. R. Wan, et al. synthesis by sol-gel process and characterization of LiCoO_2 cathode materials[J]. Journal of Power Sources, 1998, 72:215-220
    [56] P. Barboux, J. M. Tarascon, et al. The use of acetates as precursors for the Low-temperature synthesis of LiMn2_O_4 and LiCoO_2 intercalation compounds[J]. J. Solid state chem., 1991, 94:185-196
    [57] S. T Myung, N. Kumagal, et al. Preparation and electrochemical characterization of LiCoO_2 by the emulsion drying method[J]. Journal of Applied Electrochemistry, 2000, 30:1081-1085
    [58] Yoshio Masalxi, Tanaka Hirofumi, et al. Synthesis of LiCoO_2 from cobalt-organic acid complexes and its electrode behavior in a lithium secondary battery[J]. Journal of Power Sources, 1992, 40:347-353
    [59] G. G. Amatucci, J. M. Tarascon, et al. Synthesis of electrochemically active LiCoO_2 and LiNiO_2 at 100℃[J]. Solid State Ionics, 1996, 84:169-180
    [60] D. Larcher, M. R. Palacin, et al. Electrochemically active LiCoO_2 and LiNiO_2 made by cationic exchange under hydro thermal conditions[J]. Journal of The Electrochemical Society, 1997, 144(2): 408-417
    [61] Gerbrand Ceder, Anton Van der Ven. Phase diagrams of lithium transition metal oxides: investigations from first principles[J]. Electrochimica Acta, 1999, 45:131-150
    [62] Theo. Hahn(Eds). International tables for crystallography (M). Vol. A, Nertherlands, 1987:504-537
    [63] G. G.Amatucci, J. M. Tarascon et al. Cobalt dissolution in LiCoO_2-based non-aqueous rechargeable batteries[j]. Solid State Ionics, 1996, 83:167-173
    [64] Jong-Sung Hong, J. R. Selman. Relationship Between Calorimetric and Structural Characteristic of Lithium-Ion Cells: I. Thermal Analysis and Phase Diagram[J]. Journal of The Electrochemical Society, 2000, 147(9): 3183-3189
    [65] 章福平.酒石酸法合成的LiCoO_2的结构及其二次锂电池行为研究[J].电化学,1995,1(3):342-347
    [66] J. B. Bates, N. J. Dudney, et al. Preferred Orientation of poly crystal line LiCoO_2 films[J]. Journal of The Electrochemical Society, 2000, 147(1): 59-70
    [67] 彭文杰,李新海等.LiCoO_2形貌对电化学性能的影响[C].湘、桂、鄂、豫四省物理化学学术论文报告会论文集,湖南,郴州,2001:91-93
    [68] 黄振谦,张昭.锂离子电池(RCB)的研究现状[J].电池,1995,25(3):143-145
    [69] Scrosati Bruno. Lithium rocking chair batteries: an old concept? [J]. Journal of The Electrochemical Society, 1992, 139(10): 2776-2281
    [70] R. Moshtev, B. Johnson. State of the art of commercial Li ion batteries[J]. Journal of Power Sources, 2000, 91:86-91
    [71] 吴宇平,方世壁等.锂离子电池正极材料氧化钴锂的进展[J].电源技术,1997,21(5):208-209
    [72] 毕道治.CIBF2001技术交流会[J].电源技术,2001,35(4):315-317
    [73] Tanaka Toshikatsu, Ohta Kazuhiro, et al. Year 2000 R&D status of Japan[J]. Journal of Power Sources, 2001, 97-98:2-6
    [74] T. Hazama, Miyabayashi. Lithium secondary batteries in Japan[J]. Journal of Power Sources, 1995, 54:306-309
    
    
    [75]Katz H(?)l(?)ne, B(?)gel Wolfgang, et al. Industrial awareness of Lithium batteries in the world, during the past two years[J]. Journal of Power Sources, 1998, 72:43-50
    [76]A. G. Kichie. Recent developments and future prospects for lithium rechargeable batteries[J]. Journal of Power Sources, 2001, 96:1-4
    [77]杨毅夫.从EVS-17看国际电动车及动力电池发展趋势[J].电池,2001,31(4):192-194
    [78]任学佑.锂离子电池的新进展[J].电池,1997,27(4):188-191
    [79]B. Kennedy, D. Patterson, et al. Use of Lithium-ion batteries in electric vehicles[J]. Journal of Power Sources, 2000, 90:156-162
    [80]查全性.电极过程动力学导论[M].北京:科学出版社,1987:150
    [81]龚竹青.理论电化学导论[M].长沙:中南工业大学出版社,1988:272-290,295-302
    [82]舒余德,陈白珍.冶金电化学研究方法[M],长沙:中南工业大学出版社,1990:73-94
    [83]Young-Min Choi, Su-Il Pyun, et al. Lithium transport through porous Li_(1-δ)CoO_2 electrode: analysis of current transient[J]. Electrochimica Acta, 1998, 44:623-632
    [84]M. D. Levi, G. Salitra, et al. Solid-State Electrochemical Kinetics of Li-Ion Intercalation into Li_(1-x)CoO_2: Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EIS[J],Journal of The Electrochemical Society, 1999, 146(4): 1279-1289
    [85]田昭武.电化学研究方法[M].北京:科学出版社,1986:4-27
    [86]谷林英,吕鸣详等.电化学方法原理及应用[M].北京:化学工业出版社,1986:168-170
    [87]王先友,朱启安等.锂离子扩散系数的测定方法[J].电源技术,1999,23(6):335-338
    [88]蔡称心,赵东江等.氢在贮氢合金中扩散行为的研究[J].电源技术,1993,17(5):9-13
    [89]Jong-Sung Hong, J. R. Selman. Relationship Between Calorimetric and Structural Characteristics of Lithium-Ion Cells: Ⅱ. Determination of Li Transport Properties[J]. Journal of The Electrochemical Society, 2000, 147(9): 3190-3194
    [90]Tsutomu Ohzuku, Atsushi Ueda. Phenomenological Expression of Solid-State Redox Potentials of LiCoO_2, LiCo_(1/2)Ni_(1/2)O_2, and LiNiO_2 Insertion Electrodes[J]. Journal of the Electrochemical Society, 1997, 144(8): 2780-2785
    [91]詹晋华,冼巧妍等.水溶性粘合剂在锂离子电池电极中的应用[J].电池,2001,31(3):123-125
    [92]索尼公司.非水电解液二次电池[P].CN1128583A,1996
    [93]李新海,郭永兴等.LiCoO_2结构、性能与锂离子电池电压特性关系的研究[J].中国有色金属学报,2002,已录待刊
    [94]Young-Min choi, Su-IL Pyun, et al. Effect of lithium content on the electrochemical lithium intercalation reaction into LiNiO_2 and LiCoO_2 electrodes[J]. Journal of Power Sources, 1995,56:25-30
    [95]杨模桦.电动车用电池的特性需求及其发展现况[J].工业材料,1999,146:140-145
    [96]冯熙康,朱进朝等.电动车与航天用锂离子蓄电池的进展[J].电源技术,1999,23(3):186-190

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700