尖晶石LiMn_2O_4的制备及其电池制作技术与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子设备的快速发展以及能源与环境问题的日益突出,人们对化学电源提出了更高的要求。锂离子电池以其高电压、比能量大、循环寿命长,无污染等优点而得到广泛的应用。具有高插入电位的过渡金属氧化物常用作锂离子电池的正极材料,目前研究较多的是层状结构的LiCoO_2、LiNiO_2以及尖晶石结构的LiMn_2O_4。其中尖晶石LiMn_2O_4以其高电压、高安全性、低成本、易回收、对环境友好等优点而被人们公认为最具应用前景的锂离子电池正极材料之一。
     本文在综述锂离子电池及其相关材料的基础上,分析了国内外尖晶石LiMn_2O_4的研究现状,可知LiMn_2O_4正极材料的不足之处在于原料的混合均匀性不好,结构不稳定,容量衰减快和循环可逆性差。尽管许多研究工作者做了大量的研究,开发了溶胶-凝胶法、融盐浸渍法、Pechini法等来制备LiMn_2O_4正极材料,并使材料的性能在一定程度上有所提高,但由于这些方法不是工艺复杂,就是成本较高,不适于大规模化生产。因此研究开发既能应用于工业化生产,又能制备出具有优良性能的尖晶石LiMn_2O_4的工艺路线依然是当前研究工作的重中之重。
     为了既能适应工业化生产需要,又能改善材料性能,本文在传统固相合成法的基础上,引入机械活化的方法,采用机械活化—固相合成法制备尖晶石LiMn_2O_4正极材料,并采用离子掺杂和表面包覆对其进行改性研究。在此基础上对锂离子电池的制作技术和性能进行了研究,并试制了10Ah锂离子动力电池。采用TG、DSC、XRD、SEM、EDS、ICP-AES、AAS等检测手段和电化学分析方法相结合,对材料的热力学性质、物理化学性能以及电池性能进行了分析研究。
     LiMn_2O_4合成原料的热分析表明,合成尖晶石LiMn_2O_4正极材料的总反应由三个分步反应组成,即Li_2CO_3的分解、MnO_2的分解以及Li_2O与Mn_2O_3的合成反应。采用机械活化—固相合成法可以提高原料的混合均匀性,降低反应温度,稳定晶体结构,改善产物性能。
     在湿法球磨—固相合成法四因素三水平正交实验中,影响LiMn_2O_4电化学性能的主次因素依次为合成温度、Li/Mn摩尔比、球磨时间和恒温时间。合成原料以Li_2CO_3为锂源和EMD为锰源较好。烧结气氛为氧气时产物的性能较好,并对其物理和化学两方面的作用机理进行了分析。适当的制团压力可以增加颗粒的接触面积,促进反应的进行,但过大的压力会阻碍气体的溶解和扩散,从而延缓反应的进行。先加Li_2CO_3球磨的混料方式可以减小原料的粒度差,提高混料的均匀性,所以材
With the rapid development of electronic facilities as well as energy and environmental concerning, people make high demands on batteries. Lithium-ion batteries are widely used for their favorable advantages of high voltage, big specific capacity, long cycling life and non-pollution. Transitional metal oxides with high inserted potential are usually used as cathode material of Li-ion batteries. At present, layered compounds LiCoO_2, LiNiO_2 and spinel LiMn_2O_4 are extensively studied. Spinel LiMn_2O_4 is considered as one of the most promising cathode materials for Li-ion batteries because of its high voltage, high safety, low cost, easy recycling and environmental affinity among these materials.Based on summarizing Li-ion batteries, some correlative materials and analysing the status quo about spinel LiMn_2O_4 research domestic and abroad, it's known that the deficiency of the material lies in inhomogeneity, instability, fast fading as well as poor reversibility. Now, many preparation methods,such as sol-gel, welt-impreghation and Pechini method have been used to synthesize LiMn_2O_4 cathode material by reserchers. To some extent, the properties of the material are improved. Nevertheless, these methods are not used for mass production because of complicated technics or high cost. So the emphasis of our investigations is to develop a techniques that can both be fit for industrialization and synthesize LiMn_2O_4 with excellent performances.For adapting to the need of industrialization and improving the properties of materials, the method of mechanical activation has introduced on the basis of traditional solid state reaction. The spinel LiMn_2O_4 cathode material was prepared by the mechanical activation—solid state synthesis method, and was modified by ion doping and surface coating. The producing technique and performances of lithium-ion batteries were studied, the 10Ah power lithium-ion batteries were trial-produced on the basis of the material synthesized. The thermodynamic property, the physical-chemistry characteristics and the performances of batteries were analysed by means of thermogravimetry(TG), differential scanning calorimetry(DSC), X-ray diffraction (XRD), scanning electric microscopy(SEM), energy dispersive spectrometer (EDS), inductively coupled plasmas-atomic emission spectroscopy (ICP-AES), atomic
    absorption spectrum (AAS) as well as various electrochemical analysis methods.The thermal analysises of LiM^C^ synthesis materials show the overall reaction is composed of three reactions, namely the decomposition of Li2CO3, the decomposition of MnC>2 as well as the composition of LijO and Mn2C>3. The mechanical activation — solid state synthesis method can enhance rawmaterial homogeneity, reduce reaction temperature, stabilize crystalline structure and improve product performances.The main factors influencing LiM^C^ electrochemical properties are synthesis temperature, Li/Mn mole ratio, ballmilling time and retenion time in turn through four factors and three levels perpendicular experiments of the hydro-ballmilling—solid state synthesis method. Compared with different reaction reagents, the Li2CO3 is batter Li source and electrolytic MnO2 is batter Mn source. When the sintering atmosphere is O2, the performances of products are batter, and the mechanism of physical and chemic action is analysed. Appropriate briqutting pressure can increase contact area and accelerate reaction, but excessive pressure may hinder the dissolution and diffusion of gas, which will postpone reaction rate. The mixing method firstly added Li2CC>3 can reduce the particle size difference and homogeneity of raw materials, thereby attaining the best discharge specific capacity 129.12mAh/g. The materials synthesized by two steps solid state reaction have preferable performance. Comparing the two continuous calcination method with the two discontinuous calcination, the former is the better.Ultrasonic technique was firstly applied to prepare spinel LiM^C^ cathode material, and the effects of different ultrasonic conditions on the performances of spinel LiMn2O4 were investigated. Compared with hydro-ballmilling, the mechanical activating effect is stronger, which is profit for accelerating nucleation and controlling crystal growth. The samples disposed by ultrasonic have well formed crystal shape and particle distribution. With the increase of frequency, power and time, the electro-chemical performances of products are improved. Ultrasonic cavitation effect is enhanced in turn from distilled water, absolute ethanol to acetone in different medium, respectively.The lattice parameter reduced and the average valence of manganese increased when Co or Cr cation doped in LiM^Cv As the doping cotent increases, the discharge
    specific capacity of samples is reduces, but the structural stability and cycle performance are improved. Although F-doped samples have higher specific capacity, the increase of Jahn-Teller distortion and Mn dissolution lead to poor cycle performance. The materials have not only high reversible capacity but also well cycleability by F-Co or F-Cr ion co-doping. The properties of LiCo0.09Mn1.91O3.92F0.08 cathode material are best, the specific capacity is 119.16mAh/g, the capacity loss is 2.79% after 20th cycle.The well clad coated on parent material can be synthesized by a sol-gel method, the materials modified consist of exterior clad, doping transition layer and interior parent material. LiCoCVcoated LiCo0.09Mn1.91O392F0.08 powers with smooth appearance improve the resist ability of corrosion and decrease the dissolution of Mn to electrolyte. With the L1COO2 content increasing, the specific capacity and cycle performance of samples are improved. The capacity fading rate is 3.57% after 50th cycle capacity at 55 °C high temperature, so the capacity loss is suppressed distinctly.Also, the composition and production technique of Li-ion batteries were discussed, the influence of important working procedures (including slurrying, coating, assembling, forming, etc.) on battery performance was analysed.and the main materials used were optimized. The 083448 prismatic lithium-ion battery was produced, the cathode material was LiCoO2/LiMn2O4 composite material, the anode material was carbonaceous mesophase spheres(CMS), the electrolyte injected was 1 M L1PF6 in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) at the volume ratio of 1:1. The battery have well rate and temperature characteristics, excellent cycle life (the capacity loss is 5.41% after 300 cycles), lower internal resistance and reliable security, which have achieved the performance requirements of the same kind battery.The lOAh tentative battery was produced by self-making electrode winder for power lithium-ion batteries, the core prerared by the machine have well overlap, flatting and compactness. The testing results show that the power battery has higher specific energy density(the volume energy density is 181.74Wh/L, the mass energy density is 111.57Wh/kg) and preferable cycleability(the capacity loss is 1.38% after 15 cycles at 0.5C rate, the capacity loss is 7.39% after 46 cycles at 1C rate).
引文
[1] 国家新材料行业生产力促进中心.中国新材料发展报告(2004)[M].北京:化学工业出版社,2004.
    [2] 胡绍杰,徐保伯.锂离子电池工业的发展与展望[J].电池,2000,30(4)171-174.
    [3] 吕鸣祥,黄长保,宋玉谨.化学电源[M].天津:天津大学出版社,1992.
    [4] 张文保,倪生麟,化学电源导论[M].上海:上海交通大学出版社,1992.
    [5] Armand M, Materials for advanced batteries[M]. Plenum Press, New York, 1980, 145.
    [6] Nagaura T, Tazawa K. Lithium ion rechargeable battery. Prog. Battery Sol. Cells, 1990,9:209.
    [7] Gozdz A S, Schmutz J M, Tarascon, et al. Method of making an electrolyte activatable lithium-ion rechargeable battery cell. U. S. patent, 5456000,1995.
    [8] 钟俊辉,锂离子二次电池材料的开发[J].电子导报,1995,6:5-8.
    [9] Bruno Scrosati, Lithium rocking chair batteries:an old concept?. Electrochem Soc, 1992,139(10):2776-2781.
    [10] 黄振谦,张昭.锂离子电池的研究进展[J].电池,1995,25(3):143-145.
    [11] 詹晋华.锂离子二次电池研究进展[J].电池,1996,26(4):192~195.
    [12] Doron A, Yair Ein-Eli, Orit Chusid, et al. Thecorrelation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable "Roching-Chair" type batteries[J]. J Electrochem Soc, 1994,141(3):603-611.
    [13] 杨林.中、日、韩三国锂离子蓄电池发展概况[J].电源技术,2004,28(2):101-103.
    [14] Christophe Pillot. The worldwide rechargeable battery market 2003-2008[A]. The sixth China international battery fair(CIBF2004), Beijing, 2004,50-64.
    [15] http://www.china-ev.net/我国锂离子电池行业的发展现状及趋势.htm.
    [16] http://www.jrj.com.cn/能源:国产锂电挑战日货.htm.
    [17] 毕道治.21世纪电池技术展望[J].电池工业,2002,7(3-4):205-210.
    [18] 胡信国,衍智刚,章宁林等.国外电动车电池的发展近况[J].电池,2001,31(3):138-141.
    [19] 冯熙康.锂离子蓄电池用作电动车与航天电源的进展[A].CIBF99,1999,41-45.
    [20] 程少明,孙逢春.电动汽车能量存储技术研究[J].电源技术,2001,25(1):47-51
    [21] Tanaka T. Year 2000 R&D status of large-scale lithium secondary batteries in national project of Japan[A]. The 10th international meeting onlithium batteries, Como, Italy, 2000.
    [22] http://www.aist.go.jp/www_e/guide/gyoumu/nss/page.html
    [23] Sony Energy Technical Corp. Progress on lithium-ion battery for EV application. Information of First Beijing Electric Vehicle Exibition, Beijng, 1996.
    [24] 刘剑,谷中丽,戴旭文.EV用蓄电池的发展与应用[J].汽车工艺与材料,2002,37(2):37-40.
    [25] Saft M, Chagnon G, Faugeras T, et al. Saft lithium-ion energy and power storage technology[J]. J Power Sources, 1999,80:180-189.
    [26] Saft Advanced and Industrial Batteries Group. Recent developments on lithium ion batteries at SAFT[J]. J Power Sources, 1999,81-82: 140-143.
    [27] 张胜永,罗锡均.新型36/42V汽车系统高功率电池[A].电动车及新型电池学术交流会论文集.上海:电池工业杂志社,2003,63-68.
    [28] Schmidt C L, Skarstad P M. The future of lithium and lithium-ion batteries in implantable medical devices[J]. J Power Sources, 2001, 97-98:742-746.
    [29] Passerini S, Owens B B. Medical batteries for external medical devices [J]. J Power Sources, 2001,97-98:754.
    [30] Terada N, Yanagi T, Arai S, et al. Development of lithium batteries for energy storage and EV applications[J]. J Power Sources, 2001,100: 80-92.
    [31] http://www.xarhxcl.com.
    [32] http://www.qdlc.com.cn.
    [33] http://www.btrchina.com.
    [34] http://www.tinci.com.
    [35] http://tt.cas.cn/web/Fruits/FruitDetail.asp?mode=1&FruitNo=7.
    [36] Bruno Ssrosati. Recent advances in lithium ion battery materials[J]. Electrochimica Acata, 2000,45:2461-2466.
    [37] http://www.polystor.com/publish/paper_31ithium-ionPartl.PDF.
    [38] Miura K, Yamada A, Tanaka M, Electric atates of spinel LixMn204 as a cathode of the rechargeable battery[J], Electrochem Acta, 1996,41: 249~256.
    [39] 周恒辉,慈云祥,刘昌炎.锂离子电池正极材料的研究进展[J].化学进展,1998,10(1):85~94.
    [40] 汪艳,冯熙康,杜友良等.锂离子蓄电池材料的研究现状[J].电源技术,2001,25(3):242-245.
    [41] Jeong E. D, Won M. S, shin Y. B. Cathodic properties of a lithium-ion secondary battery using LiCoO_2 prepared by a complex formation reaction[J].J power sources, 1998, 70(1): 70~77.
    [42] Yamaki J I, Baba Y, Katayama N, et al. Thermal stability of electrolytes with LixCoO_2 cathode or lithiated carbon anode [J]. J power sources, 2003, 119-121: 789-793.
    [43] Peng Z S, Wan C R, Jiang C Y. Synthesis by sol-gel process and characterization of LiCoO_2 cathode materials[J]. J power Sources, 1998,72:215~220.
    [44] Latchet D. Electrochemically artive LiCoO_2 and LiNiO_2 made by cationic exchange under hydrothermal conditions[J]. J ElectrocheM Soc, 1997,144(2):408~417.
    [45] 章福平.酒石酸法合成的LiCoO_2的结构及其二次锂电池行为研究[J].电化学,1995,1(3):342~347.
    [46] Yoshio M, Tanaka H, Tominaya K, et al. Synthesis of LiCoO_2 from cobaltorganic acid complexes and its electrode bahavior in a lithium secondary[J]. J power Sources, 1992,40:347~353.
    [47] Gabrisch H, Yazami R, Fultz B. A transmission electron microscopy study of cycled LiCoO_2[J]. J power sources, 2003,119-121:674-579.
    [48] Yamada Shuji, Masashi Fujiwara, Motoya Kanda, Synthesis and property of LiNiO_2 as cathode materials for secondary batteries[J]. J Power Sources, 1995,54:2109~2113.
    [49] Broussely M, Perton F, Labat J. Li/Li_xNiO_2 and rechargeable systems: comoarative study and performance of practical calls [J]. J Power Sources, 1993,43-44:209~216.
    [50] 蔡振平,刘人敏,吴国良等.锂离子电池正极材料LiNi_(0.5)Co_(0.5)O_2的制备及性能[J].电池,2002(增刊),58~60.
    [51] 应皆荣,万春荣,姜长印.用溶胶凝胶法在LiNi_(0.8)Co_(0.2)O_2表面包裹SiO_2[J].电源技术,2001,25(6):401~404.
    [52] 高虹.LiNi_yM_(1-y)O_2(M=Co,Mn,Ti,O    [53] Tarascon J M, Mckinnon W R, Cowar F, et al. Synthesis conditions and oxygen stoichiometry sffects on Li insertion into spinel LiMn_2O_4 [J]. J electrochem Soc, 1994, 141:1421~1431.
    [54] 其鲁.中国锂二次电池正极材料的发展趋势和产业特点[J].新材料产业,2004,122(2):23-24.
    [55] Xia Y Y, Yoshio M. An investigation of lithium ion insertion into spinel struture Li-Mn-O compounds, J Electrochem Soc, 1996,143(3): 825~833.
    [56] 杨书延,张焰峰,吕庆章等.微波-高分子网络法制备可充锂离子电池正极材料LiM_xMn_2O_4(M=La,nD,Y)[J].功能材料,2001,32(4):399~401.
    [57] 杨文胜,刘庆国,仇卫华等.柠檬酸络合反应方法制备尖晶石LiMn_2O_4[J].电源技术,1999,23(增刊):49~52.
    [58] Kang Sun-Ho, Goodenough J B. Li[Li_yMn_(2-y),]O_4spinel cathode material prepared by a solution method[J]. Electrochemical and Solid-state Letters, 2000, 3(12):536~539.
    [59] Liu W, Farrington G C, Chaput F, et al. Synthesis and electrochemical studies of spinel phase LiMn_2O_4 cathode materials prepared by the pechini process[J]. J Electrochem Soc, 1996,143(3):879~884.
    [60] Lourdes Herman, Julian Morales, Luis Sanchez, et al. Use of Li-M-Mn-O spinels prepared by a sol-gel method as cathodes in high-voltage lithium batteries[J]. Solid State Ionics, 1999,118:179~185.
    [61] Yoshio M, Xia Y, Storage and cycling performance of metal ionmodified spinel at elevated tempersatures[A]. Meeting Abstrcts of the 1999 Joint international meeting[c].193.
    [62] 杨遇春,郑有国.锂离子电池材料新进展[J].电池,1998,28(4):181-183.
    [63] 吴川,吴锋、陈实等.锂离子电池正极材料的研究进展[J].电池,2000,30(1):36-38.
    [64] Ritchie A G, Giwa C O, Lee J C, et al. Future cathode materials for lithium rechargeable batteries[J]. J Power Sources, 1999,80:98~102.
    [65] Thackeray M M, Kock A D, Rossouw M H, et al. Spinel electrodes from the Li-Mn-O system for rechargeable lithium battery applications, J Electrochem Soc, 1992,139(2):363~366.
    [66] Yongyao Xia, Masaki Yoshio. Optimization of spinel Li_(1+x)Mn_(2-y)O_4 as a 4V Li-cell cathode in terms of a Li-Mn-O phase diagram, J Electrochem Soc, 1997,144(12):4186~4194.
    [67] 吴玉平,李阳兴,万春荣,等.锂离子电池正极材料氧化锰锂的研究进展.功能材料[J],2000,31(1),18~22.
    [68] Naoaki Kumagai, Takayuki Fujiwara, Kazou Tanno, et al. Physical and electrovhemical characterization of quaternary Li-Mn-V-O spinel as positive materials for rechargeable lithium batteries[J]. J Electrochem Soc, 1996,143(3):1007-1013.
    [69] 仲维卓,华素坤.晶体生长形态学[M].北京:科学出版社,1999:102~103.
    [70] 雷永泉.新能源材料[M].天津:天津大学出版社,2000.132-133.
    [71] 周振平,赵世玺,柳震,等.正极材料LiMn_2O_4容量在循环过程中的损失机理研究[J].材料导报,2001,15(5):30-33.
    [72] Gummow R J, Kock A D, Thackeray M M, Improved capacity retention in rechargeable 4V lithium/ lithium manganese oxides (spinel)cell[J]. Solid State Ionics, 1994,69(1):59-60.
    [73] Xia Y Y, ZhouY H, Yoshio M, Capacity fading on cycling of 4v C/LiMn_2O_4 cells[J]. J Electrochem Soc, 1997,144(8):2593-2600.
    [74] Jang D H, Oh S M. Electrolyte effects on spinel dissolution and carhodic capacity losses in 4V Li/Li_xMn_2O_4 rechargeable cells[J]. J Electrochem Soc, 1997, 144(10) :3342-3348.
    [75] Thackeray M M, Mansuetto M F, Bates J B. Structural stability of LiMn_2O_4 electrodes for lithium batteries [J]. J Power Sources, 1997, 68(1): 153-158.
    [76] Jong H Lee, Jin K Hong, Dong H Jang, et al. Degradation mechanisms in doped spinels of LiM_(0.05)Mn_(1.95)O_4(M=Li, B, Al, Co, Ni)for Li secondary batteries [J]. J Power Sources, 2000, 89 (1): 7-14.
    [77] Amatucci G G, Schmutz C N., Bylr A, et al. Materials' effects on the elevated and room temperature performance of C/LiMn_2O_4 Li-ion batteries[J]. J Fower Souces, 1997, 69:11.
    [78] 吴宇平,戴晓兵,马军旗,等.锂离子电池——应用与实践[M],化学工业出版社,2004,170.
    [79] Jang D H, Oh S M. Effect of carbon additives on spinel dissolution and capacity losses in 4V Li/Li_xMn_2O_4 rechargeable cells, Electrochem Acta, 1998,43(9):1023-1029.
    [80] Pistoia G. Antonini A, Rosati R, et al. Storage characteristics of cathodes for Li-ion batteries[J]. Electrochem Acta, 1996,41 (17):2683-2689.
    [81] Pasquier A D, Bylr A, Courjal P, et al. Mechanism for limited 55℃ storage performance of Li_(1.05)Mn_(1.95)O_4 electrodes[J]. J Electrochem Soc, 1999,146(2):428-436.
    [82] Yuan G, Dahn J R, Correlation between the growth of the 3.3Vdischarge plateau and capacity fading in Li_(1+x)Mn_(2-x)O_4 materials[J]. Solid State Ionics, 1996,84:33.
    [83] Bylr A, Sigala C, Amatucci G, et al. Self-discharge of C/LiMn_2O_4 Li-ion batteries in their discharged state[J]. J Electrochem Soc, 1998, 145(1):194-209.
    [84] Inoue T, Sano M. An investigation of capacity fading of manganese spinels stored at elevated temperature[J]. J Electrochem Soc, 1998, 145:3704~3707.
    [85] Guohua Li, Ikuta H, Uchida T, et al. The spinel phases LiM_yMn_(2-y)O_4(M=Co, Cr, Ni) as the cathode materials for 4 V rechargeable Li-ion batterpes[J]. J Electrochem Soc, 1996, 143(72) :1~8.
    [86] 姚耀春,戴永年,任海伦,等.锂离子电池材料LiMn_2O_4的制备与改性研究[J].电池工业,2004,9(3):140-144.
    [87] Xia Y Y, Sakai T, Fujieda T, et al. Correlating capacity fading and structural changes in Li_(1+y)Mn_(2-y)O_(4-x) spinel cathode materials:a systematic study on the effects of Li/Mn ratio and oxygen deficiency[J]. J Electrochem Soc, 2001,148(7):723-729.
    [88] 戴忠旭,詹晖,周运鸿,等.尖晶石锂锰氧化物中氧缺陷对材料电化学性能的影响[J].武汉大学学报,2003,49(3):345-349.
    [89] Xia Y Y, Kumada N, Yoshio M. Enhancing the elevated temperature performance of Li/LiMn_2O_4 cells by reducing LiMn_2O_4 surface area [J]. J Power Souces, 2000,90:135.
    [90] 赵家昌,黄可龙,张玲.尖晶石型LiMn_2O_4高温失效机制及解决方法[J].电源技术,2002,26(5):388-392.
    [91] 刘韩星.Li-Mn-O体系锂离子电池正极材料的结构及性能研究.武汉:武汉理工大学,2002.
    [92] Kazuo Tagwa, Akiya Kozawa, Ralph Brodd, et al. Production processes for lithium ion batteries[J]. ITE Letters, 2001,2(5):16~19.
    [93] 赵藻藩,周性尧,张悟铭等.仪器分析[M].北京:高等教育出版社,1990.
    [94] 吴刚.材料结构表征及应用[M].北京:化学工业出版社,2002.
    [95] GB1506-79,锰矿石中全锰量的测定[S].
    [96] 杨雁泽,王荔,何涌.电极材料中锰的分析方法[J].电源技术,2002,26:255-257.
    [97] 林树昌,迟兴婉.定量分析化学[M].北京:北京师范大学出版社,1999.
    [98] 夏熙,刘玲.二氧化锰在锂离子电池中的应用[J].电源技术,1997,21(3):120-126.
    [99] Dziembaj R, Molenda M. Stabilization of the spinel structure in Li_(1+δ)Mn_(2-δ)O_4 obtained by sol-gel method[J]. J Power Sources, 2003,119-121: 121-124.
    [100] 彭文杰.锂离子电池正极材料的合成与性能及电池制作技术研究[D].长沙:中南大学,2001.
    [101] Yamada A, Miura K, Hinokuma K, er al. Synthesis and structural aspects of LiMn_2O_(4±δ) as a cathode for rechargeable lithium batteries [J].J Electrochem Soc, 1995: 142: (7):2149-2156.
    [102] Demchak R, Matijevic E. Preparation and particle size analysis of chromium hydroxide hydrosols of narrow size distributions[J].J Colloid Interface Sci, 1969, 31 (2):257-262
    [103] 卢寿慈.粉体技术手册[M].北京:化学工业出版社,2004.
    [104] Juhasz A, Zoltan. Aspects of mechanochemical activation in terms of comminution theory Colloids and Surfaces A, 1998, 141 (3):449-462.
    [105] Brankovi A R, Vidojkovi V M, Miloevi S D. Mechanochemical activation of (SeO_2+Na_2CO_3) mixture and sodium selenite synthesis in vibrational mill[J].Journal of Solid State Chemistry, 1998, 135(2)256-259.
    [106] Sorescu M, Tarabasanu M D, Diamandescu L. Role of particle morphology in the mechanochemical activation of hematite [J]. Journal of Materials Synthesis and Processing, 1999, 7(3) 167-174.
    [107] 高永慧.超声波与化学[J].现代物理知识,1998,(6):4-6.
    [108] 冯若,李化茂.声化学及其应用[M].合肥:安徽科技出放社,1992.
    [109] 袁易全,陈思忠,冯若.近代超声原理及应用[M].南京:南京大学出版社,1996.
    [110] 王清池,廖启斌,陈清花,等.超声波对三角褐指藻脂肪酸组成的效应研究[J].厦门大学学报(自然科学版).2000,39[1]:32-35.
    [111] 陈彩风,陈志刚,郝臣,等.化学沉淀法制备纳米级Al_2O_3粉体中的反团聚研究[J].机械工程材料,2000,24(5):26-28.
    [112] 高大彬,袁云程.声化学原理与应用[J].大学化学,1992,7(1):41-42.
    [113] 冯若.声化学基础研究中的声学问题[J].物理学进展,1996,16(3-4):403-407.
    [114] 丁东.超声在化学中的应用[J].化工科技动态,1993,7(3):3-5.
    [115] Mason T J, Cordemans E D. Ultrasonic intensification of chemical processing and related operations:A review[J].Trans IchemE, 1996, 74A:511.
    [116] 王铁艳,王彪,张春刚,等.锂离子电池电极材料LiMn_2O_4的研究进展[J].化学工程师,2002,3:39-40.
    [117] Huang H, Bruce P G. 3V and 4V lithium manganese oxide cathodes for rechargeable lithium batteries[J].J Power Sources, 1995,52-54.
    [118] 李运娇,常建卫,杨敏.锂离子电池正极材料锂锰氧化物的固相合成研究进展[J].功能材料,2002,33(6):578-580.
    [119] Sung L Y, Sun Y K, Nahm K S. Synthesis of spinel LiMn_2O_4 cathode material prepared by an adipic acid-assisted sol-gel method for lithium secondary batteries[J].Solid State Ionic, 1998,109(3-4):285-294.
    [120] 王敬欣.锂离子电池正极材料LiMn_2O_4的研究进展[J].稀有金属,2002,26(6):493-496.
    [121] Ring T A. Fundamentals of ceramic powder processing and synthesis[M]. London:Academic Press Inc, 1995.
    [122] 李运姣.锂离子电池正极材料锂锰氧化物的湿化学合成与表征[D].长沙:中南大学,2002.
    [123] 赵铭姝,锂离子电池正极材料LiMn_2O_4及其相关材料的制备与理论研究[D].沈阳:东北大学,2002.
    [124] 刘海涛,杨郦,张树军,等.无机材料合成[M].北京:化学工业出版社,2003.
    [125] 陆厚根.粉体工程导论[M].上海:同济大学出版社,1993.
    [126] 陈振兴.特种粉体[M].北京:化学工业出版社,2004.
    [127] Hoflman M R, Application of ultrasonic irradiation for the degradation of chemical contaminants in water[J].Ultrasonics Sonochemistry, 1996,3:163-172.
    [128] Langhrey Z, Bear E, Jones R, et al. Aqueous sonolytric decomposition of polycylic aromatic hydrocarbons in the presence of additional dissolved species[J].Ultrasonics Sonochemistry, 2001,8:353-357.
    [129] 王菊香,潘进,赵恂,等.超声电解法制备超细金属粉的研究[J].金属功能材料,1997,3:115—118.
    [130] Yoo Y E, Characters of volatile fatty acids degration in aqueous solution by the action of ultrasound[J].Wat Res, 1997,31(6):532-536.
    [131] 项昭保,霍丹群,任绍光.超声波在中草药化学成分提取中的应用[J].自然杂志,2001,23(5):289-291.
    [132] 邱树毅,姚汝华,宗敏华,等.超声对固定化脂肪酶生物转化有机硅化合物的促进作用[J].贵州工业大学学报,1998,27(5):82-87.
    [133] Herbreteau F, Coiffard L J M, Derrien A. The fatty acid composition of five species of microalgae[J]. Botanica Marina, 1997, 40(1):25-27.
    [134] 于风文,刘化章,计建炳.活性炭载体的超声处理对氨合成催化剂催化性能的影晌[J].化工时刊,2003,17(12):45-47.
    [135] 刘树兴,胡小军,张薇,等.超声强化提取姜黄色素的研究[J].食品添加剂,2004,2:53-55.
    [136] Ratoarinoro, Conatamine-F, Wilhelm A M, et al. Activation of a solidliquid chemical reaction by ultrasound[J].Chem Eng Sci, 1995,50 (3):554.
    [137] 李懋强.湿化学法合成陶瓷粉科的原理和方法[J].硅酸盐学报,1994,22(1):85-91.
    [138] 陈志刚,陈彩凤,刘苏.超声场中湿法制备Al_2O_3纳米粉工艺研究[J].硅酸盐学报,1994,22(1):213-217.
    [139] Kojima Y, Koda S, Nomura H. Effect of ultrasonic freduency on polymerization of styrene under ultrasonic[J].Ultrasonics Sonochemistry, 2001,8:75-79.
    [140] Marazban S, Judith 8, Chen X X, et al. Enhanced drug dissolution using evaporative precipitation into aqueous solution[J].International Journal of Pharmaceutics, 2002,243:17-31.
    [141] Muller R H, Jacob C, Kayser O. Nanosuspensions as particulate drug formulations in therapy:rationale for development and what we can expect for the future[J].Adv Drug Deli Rev, 2001,47(1):3-19.
    [142] Dewulf J, Van Langenhove H, De Visscher A, et al Ultrasonic degradation of trichloroethylene and chlorobenzene at micromolar concentrations: Kinetics and modeling[J].Ultrasonics Sonochemistry, 2001,8:143-150.
    [143] Wu J M, Huang H S, Livegood C D. Ultrasonic destruction of chlorinated compounds in aqueous solution[J].Environmental Progress, 1992,11 (3):195-199.
    [144] 严碧歌.超声波对血栓消溶率的影晌研究[J].中国生物医学工程学报,2003,22(6):524-526.
    [145] 叶建忠,陈长对,方应翠,等.有机废水超声降解动力学的分析及应用[J].合肥工业大学学报,2003,26(1):71-76.
    [146] Song G M, Li W J, Zhou Y. Synthesis pf Mg-doped LiMn_2O_4 powers for lithium-ion batteries by rotary heating[J].Materials Chemistry and Physics, 2004,87:162-167.
    [147] Komaba S, Oikawa K, Myung S T, et al. Neutron powder diffraction studies of LiMn_(2-y)Al_yO_4 synthesized by the emulsion drying method [J].Solid State Ionics, 2002,149(1-2):47-52.
    [148] Song D, Ikuta H, Uchida T, et al. Spinel phases LiAI,Mn _(2-y)O_4 and Li(Al, M) MnO4(M=Cr, Co) as the cathode for rechargeable lithium batteries [J]. Solid State Ionics, 1999,117(1-2):151-156.
    [149] Kumar G, Schlorb H, Rahner D. Synthesis and electrochemical characterization of 4V LiR_xMn_(2-x)O_4 spinels for rechargeable lithium batteries [J].Materials Chemistry and Physics, 2001,70(2):117-123.
    [150] Bang H J, Donepudi V S, Prakash J. Preparation and characterization of partially substituted LiM,Mn_(2-y)O_4 (M=Ni, Co, Fe) spinel cathodes for Li-ion batteries[J].Electrochimica acta, 2002,48(4):443-451.
    [151] Tsuji T, Nagao M, Yamamura Y, et al. Structural and thermal properties of LiMn_2O_4 substituted for manganese by iron [J].Solid State Ionics, 2002,154-155:381-386.
    [152] Ito Y, Idemoto Y, Tsunoda Y, Koura N. Relation between crystal structures, electronic structures, and electrode performances of LiMn_(2-x)M_xO_4 (M=Ni, Zn) as a cathode active material for 4V secondary Li batteries[J].J Power Sources, 2003,119-121:733-737.
    [153] Wu Y P, Rahm E, Holze R. Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries [J].Electrochimic Acta, 2002,47(21):3491-3507.
    [154] Su Y C, Zou Q F, Wang Y W, et al. Structure and electrochemical behavior of LiCr,Mn_(2-y)O_4 compositions[J]. Materials Chemistry and Physics, 2004, 87:162-167.
    [155] Lee J H, Hong J K, Jang D H, et al. Degradation mechanisms in doped spinels of LiM_(0.05)Mn_(1.95)O_4 (M=Li, B, Al, Co, and Ni) for li secondary batteries[J]. J Power Sources, 2000,89:7-14.
    [156] Takada T, Hayakawa H, Enoki H, et al. Structure and electrochemical characterization of Li_(1+x)Mn_(2-x)O_4 for Li-ion battery applications[J].J Electrochem Soc, 1996,143(1):100-114.
    [157] Robertson A D, Lu S H, Averill W F, et al. M~3+-modified LiMn_2O_4 spinel intercalation cathodes I. Admetal effects on morphology and electrochemical performance [J].J Electrochem Soc, 1997,144(10): 3500-3505.
    [158] 佟毽,胡国荣.掺钴复合材料LiMn_(2-x)Co_xO_4的制备和性能[J].电源技术,2003,27(1):20-24.
    [159] 刘兴泉,李淑华,何泽珍.LiMn_(1.09)Ti_(0.05)Al_(0.02)Cr_(0.03)O_4的合成及电化学性能[J].电源技术,2002,26(1):14-16.
    [160] Amatucci G G, Pereira N, Zheng T, et al. Enhancement of the electrochemical properties of LiMn_2O_4 through chemical substitution [J].J Power Sources, 1999, 81-82:39.
    [161] 夏君磊,赵世玺,刘韩星,等.F掺杂影响LiMn_2O_4性能的机理研究[J].功能材料,2004,35(1):74-76.
    [162] Han C H, Hong Y S. Electrochemical properties of iodine-containing lithium manganese oxide spinel[J].J Power Sources, 2002,111(1): 176-180.
    [163] Amatucci G G, Pereira N, Zheng T, et al. Failure mechanism and improvement of the elevated temperature cycling of LiMn_2O_4 compunds through the use of the LiAl_xMn_(2-x)O_(4-y)F_y, solid solution[J].J Electrochem Soc, 2001,148 (2):A171-182.
    [164] Sun Y k. Structural degradation mechanism of oxysulfide spinel hiAl_(0.24)Mn_(1.76)O_(3.98)S_(0.02)cathode materials on high temperature cycling [J]. Electrochemistry communications, 2001,3(4):199-202.
    [165] 刘烈炜,田炜,赵新强,等.尖晶石LiMn_2O_4的掺杂研究进展[J].材料导报,2003,17(6):44-46.
    [166] 唐致远,李建刚.锂电池正极材料LiMn_2O_4的改性与循环寿命[J].化学通报,2000,63(8):10-14.
    [167] Liu R S, Shen C H. Structural and electrochemical study of cobalt doped LiMn_2O_4 spinels[J].Solid State Ionics, 2003,157:95-100.
    [168] Ikuta Hiromasa, Takanaka K, Wakihara M. The effect of chromium substitution on the phase oxides[J].Thermochimica Acta, 2004414:227-232.
    [169] Okada M, Lee Y S, Yoshio M. Cycle characterization of LiM_xMn_(2-x)O_4 (M=Co, Ni) materials for lithium secondary battery at wide voltage region[J].J Power Jources, 2000,90:196-200.
    [170] Yang S H, Middaugh R L. Redox reactions of cobalt, aluminum and titanium substituted lithium manganese spinel cpmpounds in lithium cells [J].Solid State Ionics, 2001,139:13-25.
    [171] Jong H L, Jin K H, Dong H J, et al. Degradation mechanisms in doped spinels of LiM_(0.05)n_(1.95)O_4(M=Li, B, Al, Co, Ni)for Li secondary batteries[J].J Power Sources, 2000,89:7-14
    [172] Li G H, Lkuta H, Uchids T, et al. Spinel phases LiM,Mn_(2-y)O_4 (M=Co, Cr, Ni) as the cathode for rechargeable lithium batteries [J].J Electrochem Soc, 1996, 143(1):178-182.
    [173] Aydinol M K, Kohan A F, Ceder G, et al. Ab initial study of lithium intercalation on metal oxides and metal dichalcogenides[J].Phy Rev, 1997,56:1354.
    [174] Liu Y, Fjujiwara T, Chemical bonding in lithium intercalation compound Li_xMn_2O_4 (X=0, 1,2)[J].Electrochimica acta, 2001,46(8):1151-1159.
    [175] 赵世玺.Li-Mn-O体系锂离子电池正极材料的结构与性能研究[D].武汉:武汉理工大学,2002.
    [176] Palacin M R, Amatucci G G. Electrochemical and structural study of the 3.3V reduction step in defective Li_xMn_2O_4 and LixMn_2O_(4-t)F_y compounds[J].J Power Sources, 1999,81-82:627.
    [177] Strobel P, Anne M, Chabre Y, et al. Characteristies of the 4V plateau in LiMn[O_(4-x)F_x] studied by bin situ synchrotron X-ray diffraction[J].J Power Sources, 1999,81-82:458-462.
    [178] 陈召勇.锰系锂离子电池正极材料的合成、结构和性能研究[D].成都:中科院成都有机化学研究所.2002.
    [179] Stux A M, Barker T. Additives for inhibiting decomposition of lithium salts and electrolytes containing said additives[p].US:5707760,1998-06-13.
    [180] Choi Y K, Chung K I. Suppressive effect of Li_2CO_3 on initial irreversibility at carbon anode in Li-ion batteries[J].J Power Sources, 2002,104(1):132-139.
    [181] Yamane H, Inoue T, Fujita M, et al.A causal study of the capacity fading of Li_(1.01)Mn_(1.99)O_4 cathode at 80℃ and the suppressing substances of its fading [J].J Power Sources, 2001,99(1-2):60-65.
    [182] Xia Y, Fujieda T, Tatsumi K. Thermal and electrochemical stability of cathode materials in solid polymer electrolyte [J].J Power Sources, 2001,92(1-2):234—243.
    [183] Wrodning G H, Besenhard J O, Winter M. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes[J].J Electrochem Soc, 1999,146:470-472.
    [184] Hayashi Y, Nemoto S, Tobishima, et al. Mixed solvent electrolyte for high voltage lithium metal secondary cells[J].Electrochem Acta, 1999,44: 2337-2344.
    [185] Amatucci G, Pasquier A D. The elevated temperature performance of the C/LiMn_2O_4 system:failture and solutions [J].ElectrochemActa, 1999,45 (1-2):255-271.
    [186] Amatucci G G, Bylr A, Sigala C, et al. Surface treatment of Li_(1+x)Mn_(2-x)O_4 spinels for improved elevated temperature performance[J].Solid State Ionics, 1997, 104(1-2): 13-25.
    [187] Sun Y K, Hong K J, Pracash J. The effect of ZnO coating on electrochemical sycling behavior of spinel LiMn_2O_2 cathode materials at elevated temperature[J].J Electrochem Soc, 2003,150(7):A970-972.
    [188] 周启凡,苏玉长,禹萍,等.Al_2O_3包覆LiMn_2O_4正极材料的合成和电化学性能研究[J].矿冶工程,2004,24(1):95-99.
    [189] Sun Y C, Wang Z X, Chen L Q, et al. Improved electrochemical performances of surface-modified spinel LiMn_2O_4 for long cycle life lithium-ion batteries [J]. J Electrochem Soc, 2003, 150 (10):A1294-1298.
    [190] 吴宇平,万春荣,姜长印,等.锂离子二次电池[J].北京:化学工业出版社,2002.
    [191] 日本电池株式会社.锂离子电池[P].中国:97125716.7,1997.
    [192] 郭炳煜,徐微,王先友,等.锂离子电池[J].长沙:中南工业大学出版社,2002.
    [193] Kita F, Sakata H, Kawakami A, et al. Electronic structures and electrochemical properties of LiPF_(6-n)(CF_3)_n[J]. J Power Sources, 2001, 97-98:581-583.
    [194] Katayam N, Kawamura T. Thermal stability of propylene carbonate and ethylene carbonate-propylene carbonate-based electrolytes for use in Li cells[J]. J Power Sources, 2002, 109(2):321-326.
    [195] Yamaki J I. Liquid electrolytes. Advances in lithium-ion batteries[M]. New York:Kluwer Academic/Plenum Publishers, 2002, 155-184.
    [196] Shin J S, Han C H, Jung U, et al. Effect of Li_2CO_3 additive on gas generation in lithium-ion batteries[J]. J Power Sources, 2002, 109: 47-52.
    [197] 李景虹.先进电池材料[M].北京:化学工业出版社,2004.
    [198] Brodd R J, Tagawa K. Lithium-ion cell production processess. Advances in lithium-ion batteries[M].New York: Plenum Publishers, 2002, 267-288.
    [199] 金明钢,孟冬,尤金跨,等.发展中的聚合物锂离子电池一电池生产工艺进展[J].电池,2002,32(4):235-237.
    [200] 赵伯元.锂离子电池极片涂布技术和设备研究[J].电池,2000,30(2):56-58.
    [201] 解晶莹,张泉生.锂离子蓄电池及其相关材料[J].信息产业部电源专业情报网,2000:157-167。
    [202] 张翠芬,高鹏,曾石华,等.不同干燥条件下聚偏氟乙烯的结晶与电池性能[J].电池,2002,32(4):211-213.
    [203] 周震涛,汪国杰,李瑞珍.含氟聚合物胶粘剂及其电化学特性的研究[J].电源技术,1998,22(2):47-49.
    [204] 张翠芬.聚偏氟乙烯对锂离子蓄电池性能的影响[J].电源技术,2002,26(增):201-202.
    [205] 解晶莹.方型锂离子电池的设计[D].北京:北京科技大学,1999.
    [206] Amazutsuml T. Wider Usage of alternative cathode materials for cobalt[A].The sixth China international battery fair, 2004,31-49.
    [207] 姚耀春,戴永年,任海伦,等.锂离子电池中正极添加剂配比的优化研究[J].材料导报.2004,18(2):9-91.
    [208] Takamura T, Saito M, Shimokawa A, et al. Charge/discharge efficiency improvement by the incorporation of conductive carbons in the carbon anode of Li-ion batteries[J]. J Power Sources, 2000, 90(1):45-51.
    [209] GB/T 18287-2000.蜂窝电话用锂离子电池总规范[S].
    [210] 郭永兴.LiCoO_2材料的结构、性能及锂离子电池制造技术的研究[D].长沙:中南大学,2002.
    [211] Aurbach D. The role of surface films on electrodes in li-ion batteries [M].New York:Plenum Publishers, 2002,7-78.
    [212] Kohs W, Santner H, Hofer F, et al. A study on electrolyte interactions wish graphite anodes exhibiting structures with various amounts of rhombohedral phase[J].J Power Sources, 2003,119-121:528.
    [213] 吴宇平,万春荣,姜长印,等.锂离子二次电池负极材料的研究[J].化学世界,2000,41(1):3-8.
    [214] Xue J S, Wise R D, Zhang X, et al. Performance characteristics of ultralife' s solid polymer rechargeable batteries [J].J Power Sources, 1999,80 (1):119-127.
    [215] Kennedy M, Patterson D, Camilleri S. Use of lithium-ion batteries in electric vehicles[J].J Power Sources, 2000,90(2):156-162.
    [216] Tobishima S I, Takei K, Sakurai Y, et al. Lithium ion cell safety[J].J Power Sources, 2000,90(2):188-195.
    [217] Tobishima S I, Hayashi K. Cycling performance and safety of rechargeable lithium cells with binary and ternary mixed solvent electrolytes[J]. Journal of Applied Electrochemistry, 1999,29(7):789-796
    [218] 胡广侠.锂离子电池充放电过程的研究[D].上海:中科院微系统与信息技术研究所,2002.
    [219] Yokokawa H, Sakai N, Yamaji K, et al. Thermodynamic determining factors of the positive electrode potential of lithium batteries[J].Solid State Ionics, 1998,113-115:1-9
    [220] Tobishima S, Yamaki J C.A consideration of lithium ion safety[J].J Power Sources, 1999,81-82:882-886.
    [221] Yoshiyasu S, Katsuhiko K, Kiyonami T. Thermal studies of a lithium-ion battery[J].J Power Sources, 1997,68(2):451-454.
    [222] 张泽波,王伯良,刘秀生,等.MCMB颗粒度分布对锂离子电池性能的影晌[J]. 新型炭材料,1999,14(4):68-71.
    [223] Ceder G. The electrochemical stability of lithium-metal oxides against metal reduction[J].Solid State Ionics, 1998,109:151-157.
    [224] George E. Electrolytes for advanced batteries[J].J Power Sources, 1999, 81-82:112-118.
    [225] Tobishima S I, Hayashi K. Influence of Nonaqueous Electrolytes on Lithium Cell Performance and Safety[J].Kry Engineering Materials, 2000,139-142.
    [226] Pankaj A, Marc D. Mathematical Modeling of Lithium Deposition Overcharge Reaction in Lithium-Ion Batteries Using Carbon-Based Negative Electrodes[J].J Electrochem Soc, 1999,146(10)3543-3553.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700