科尔沁平原丘陵草甸草原蝗虫群落结构及亚洲小车蝗、黄胫小车蝗种群遗传分化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
(一)群落结构
     科尔沁平原丘陵草甸草原具有牧草生长茂盛、产草量高、质量好等特点,是其所在区域内重要的天然割草场和放牧场。但近年来,此草原上大面积、高密度发生蝗虫灾害,严重威胁着牧业生产的正常发展。明确该区蝗虫的群落组成、种间关系及发生动态,对于草原蝗虫的有效管理和综合治理具有重要的意义。本文于2011-2012年,对科尔沁平原丘陵草甸草原的蝗虫群落结构进行了系统的研究,研究内容包括蝗虫群落的种类组成及区系地理成分、群落的时间结构及空间结构、群落多样性、群落集团结构、蝗虫群落与植物群落之间的关系,获得的主要研究结果如下:
     1.通对在科尔沁平原丘陵草甸草原的8个典型样地的蝗虫群落的调查,以及在样地及其周围的全面捕捉调查,共鉴定出此草原分布的蝗总科6科17属22种蝗虫,其中,斑翅蝗科(Oedipodidae)与网翅蝗科(Arcypteridae)蝗虫种类共计16种,占蝗虫种类总数的72.73%。蝗虫的区系地理成分以古北种为主,占蝗虫种类总数量的72.73%,在数量上占绝对的优势。8个典型样地因地形、植被组成等环境因子的差异,在蝗虫的种类组成及区系地理成分上均有着一定差异。
     2.受温度、植物群落等环境因子的影响,此草原上蝗虫的发生种类数、优势种的组成存在着明显的时间动态。7月20日调查得到的种类最多,共计6科13属17种蝗虫。各种蝗虫由于生物学习性等差异,对于水平空间资源的利用、分隔有着明显的区别;聚类分析结果显示,当欧式距离为9.5时,蝗虫群落可分化成4个不同的取食组合,表现出蝗虫适应于植物高度的垂直分层现象。
     3.蝗虫群落多样性指数7月>8月>6月>9月;群落均匀性指数6月>8月>7月>9月;群落丰富度指数7月>8月>9月>6月。各样地中,因植被组成、地形的不同,在蝗虫群落特征参数上有所差异。由于此草原上蝗虫早期种、中期种、晚期种组成种类上的不同,不同月份蝗虫群落的相似性数值上有着明显的区别。从各样地蝗虫群落的组成及相似性研究结果来看,地形的不同对于蝗虫种类的分布存在着明显的影响。
     4.蝗虫群落集团结构的研究结果表明,通过聚类分析蝗虫群落可以划分成6个集团,各集团之间在栖息环境及适应性上存在明显差异,说明多样的生境为蝗虫提供了多样的生存空间,在光照、地形等环境因子及蝗虫自身生物学特性的影响下,蝗虫为使生存适合度达到最大,在对适宜生境的选择中,形成了不同的资源利用集团;蝗虫的生态指标梯度按主成分分析可简化为3个主成分因子,累积贡献率达82.91%,代表的生物学信息为蝗虫对地面基层、取食高度、地形以及阴影的选择;不同的蝗虫种类因对生境资源的利用程度不同,表现出不同的生态位宽度,对生境资源利用的相似程度决定了蝗虫种间生态位重叠值的高低。
     5.2012年6月~8月间通过设置3植被组成相异且分布广泛的草原样地(Ⅰ:兴安胡枝子Stipa baicalensis+中华糙隐子草Cleistogenes chinensis植物群落样地;Ⅱ:贝加尔针茂Stipa baicalensis+糙隐子草C. squarrosa植物群落样地;Ⅲ:狗尾草Setaira viridis+蓖齿蒿Artemisia Pectinatal+兴安胡枝子植物群落样地),研究了植物群落结构、蝗虫群落结构以及蝗虫群落与植物群落之间的关系。结果显示,3个样地的植物重要值、高度、盖度、密度均有着明显差异,使得植物群落的组成复杂多样,为蝗虫提供多样化的生境选择。3个样地蝗虫种类组成相似,一年均只能完成一个世代交替。生物量较大的几种蝗虫明显分化为不同时期的优势种,轮纹异痂蝗Bryodemella tuberculatum dilutum、宽翅曲背蝗Pararcyptera microptera meridionalis是早期优势种蝗虫,短星翅蝗Calliptamus abbreviatus、亚洲小车蝗Oedaleus decorus asiaticus是中期优势种蝗虫,黄胫小车蝗是晚期优势种蝗虫O. infernalis。由于植物群落的差异,蝗虫对其的选择适应,使各样地蝗虫的发生密度及生物量存在着明显区别且具有时间动态。3样地植物群落系数与蝗虫群落系数的相关性有着明显的区别,样地Ⅰ、Ⅱ中植物群落多样性与蝗虫群落多样性之间呈负相关,而样地Ⅲ之间呈正相关,相关性均不显著(P>0.05)。结果说明,虽然蝗虫种类相似,但植被组成的差异,会造成蝗虫群落的组成及动态上的差异。
     以上研究结果可为此草原上蝗虫的监测及综合治理提供有效的理论依据。
     (二)遗传分化
     研究明确科尔沁平原丘陵草甸草原蝗虫群落结构中,亚洲小车蝗、黄胫小车蝗是此草原中、晚期优势种蝗虫,发生密度大,是该区草业发展的重要威胁且该两种蝗虫分布广泛。为明确该两种蝗虫不同地理种群的生态适应性及其遗传分化,选用ISSR、mtDNA(线粒体DNA)分子标记方法,研究了两种蝗虫地理种群间的遗传结构和基因交流模式,以期为该两种蝗虫制定防治策略提供遗传学的理论依据。研究结果如下:
     1.(1)对黄胫小车蝗各地理种群的线粒体DNA (mtDNA)的CO Ⅰ、Cytb基因片段进行了扩增、测序,在CO Ⅰ基因片段中检测到21种单倍型(GenBank登录号:KC297197-KC297217),单倍型遗传距离在0.003~0.027之间;在Cytb基因片段中检测到15种单倍型(GenBank登录号:KC484967~KC484981)单倍型间的遗传距离在0.002~0.007之间。基于mtDNA CO I、Cytb基因的单倍型构建的邻接系统发育进化树与单倍型网络图显示,黄胫小车蝗各地理种群中的单倍型散布在不同的分布群中,分布格局较为混杂,未形成明显的系统地理结构。
     (2)基于ISSR分子标记,黄胫小车蝗总群体的Nei氏遗传指数为0.2628,各地理种群的数值在0.2171-0.2563之间;黄胫小车蝗总群体的Shannon信息指数为0.4129,各地理种群的数值在0.3257~0.3805之间。基于mtDNA CO I基因序列,黄胫小车蝗总群体的单倍型多样度为0.653,各地理种群的数值在0.423-0.790之间。基于mtDNA Cytb基因序列,黄胫小车蝗总群体的单倍型多样度为0.462,各地理种群的数值在0.125~0.625之间。研究结果显示黄胫小车蝗具有较高的遗传多样性,表明其对环境的变化具有较大的生存空间和适应潜力。
     (3)基于ISSR、mtDNA分子标记研究结果显示,黄胫小车蝗各地理种群的总固定系数Fst、遗传分化系数Gst均较低,基因流Nm均大于4:AMOVA分子变异分析结果显示,黄胫小车蝗的遗传变异主要来自种群内部,种群间的遗传变异较低;成对种群的遗传距离矩阵与采集地点地理距离的自然对数矩阵之间未呈现出显著相关性。以上结果表明,黄胫小车蝗各种群间的基因交流并未受到地理距离的影响,地理隔离并非是导致黄胫小车蝗种群间遗传分化的主导因素。
     2.基于ISSR分子标记对亚洲小车蝗地理种群遗传分化的研究显示。亚洲小车蝗总群体的Nei氏遗传指数为0.2339,各地理种群的数值在0.1738-0.2445之间。亚洲小车蝗总群体的Sbannon信息指数为0.3753,各地理种群的数值在0.2569~0.3568之间。表明该种蝗虫对于变化的环境有着较强的适应能力。
     亚洲小车蝗种群间遗传分化指数Gst为0.1155,基因流Nm为3.83,种群间的变异占总变异的11.55%,种群内的变异占总变异的88.45%,地理种群间的遗传距离与地理距离之间无显著相关性。说明亚洲小车蝗种群间的遗传交流较为充分,遗传分化程度较低,基因交流并未受到地理距离的影响。
I Community structure
     The Horqin plain hilly meadow steppe is one of the important grassland in China. Enormous damage was caused by grasshoppers in Horqin plain hilly meadow steppe annualy. In order to suppresse the populations of the grasshoppers and to develop integrated pest management strategy for the pest, systematic studies were carry out for the study of the community structure of grasshopper including species composition, flora geographical elements, time structure, space structure and diversity as well as the relationship between grasshopper community and plant community during2011-2012. The results are as follows:
     1.22grasshopper species were identified which belonging to6families and17genera from the8typical plots in the grassland72.73%of the species (16species) were Oedipodidae and Arcypteridae. The palaearctic species were superior in numbers (72.73%of total number).
     2. The seasonal dynamic of grasshopper species and dominant species composition were affected significantly by the environment factors such as temperature and plant community. The most species which was17species identified belonging to6families and17genera was found on July20. The level of space utilize was different due to the different biological characteristics of grasshopper. Results from cluster analysis indicated that4grasshopper feeding group were present when the euclidean distance is9.5.
     3. Community diversity index of grasshopper was ranked successively:July>August>June>September; Community evenness index of grasshopper was ranked successively:June>August>July>September; Community richness index of grasshopper was ranked successively:July>August>September>June. The difference of parameter of grasshopper community was affected by the plant community and terrain. Community similarity index was different in different months due to the different of grasshopper community composition. The distribution of grasshopper species was affected by terrain.
     4. The results of grasshopper guild structure indicated that there were six guilds present in the grassland by clustering analysis, and the habitat and biocompatibility were significantly different in those six guilds which explained that diverse habitat provided a variety living space for grasshoppers. The environmental factors such as illumination and terrain with the biological characteristics of grasshopper played an important role in the distribution of grassland grasshopper. To maximize the biological fitness, the grasshopper community was divided into different resource utilization guilds. Three principal components were extracted from ecological traits. These principal components cumulated82.91%variance proportion and they represented the biological information about substrate, height up on the plant, terrain and sunlight regime. Since different species of grasshopper had different degree about utilization of environment resource that they presented diverse ecologic niche breadths and the similarity of environment requirement depended on the niche overlaps among the species.
     5. To understand the relationship between plant community structure, grasshopper community structure, three types of plots (Ⅰ Stipa baicalensis+Cleistogenes chinensis; Ⅱ Stipa baicalensis+C. squarrosa; Ⅲ Setaira viridis+Artemisia Pectinatal+S. baicalensis)were selected and surveyed from June to August in2012. The results indicated that the important value, height, coverage and density of plant were different significantly. The grasshoppers which own higher biomass were divided into different dominant species at different time. The species of early occurence were Bryodemella tuberculatum dilutum and Pararcyptera microptera meridionalis, the species of middle occurence were Calliptamus abbreviatus and Oedaleus decorus asiaticus, the species of late occurence was O. infernalis. Significant difference of the density and biomass among grasshopper was observed which indicated the selective adaptation to the diversity plant community for the grasshopper. The plant community diversity was negatively correlation with the grasshopper community diversity in plot Ⅰ and plot Ⅱ, and the plant community diversity was positively correlation with the grasshopper community diversity in plot Ⅲ. But the correlation above was not significant (P>0.05). The results showed that the difference of plant composition should cause the variety in the composition and dynamic for grasshoppers.
     II Ggenetic differentiation
     Two species, O. decorus asiaticus and O. infernalis, are the dominant grasshopper species in Horqin stepp and distribute widely. Molecular marker was utilized to study the genetic structure and gene flow of geographical populations by ISSR (inter-simple sequence repeat) and mtDNA (mitochondrial DNA), the results are as follows:
     1.(1) Partial mtDNA CO Ⅰ and Cytb gene of O. infernalis Saussure populations were amplified and sequenced. A total of21haplotypes were defined by mtDNA CO I gene (GenBank accession: KC297197-KC297217), and genetic distance varied from0.003to0.027among these haplotypes. A total of15haplotypes were defined in mtDNA Cytb gene (GenBank accession:KC484967-KC484981), and genetic distance varied from0.002to0.007among these haplotypes. The Neighbor-Joining phylogenetic tree and haplotype network which based on the mtDNA CO I and Cytb gene showed that haplotypes were distributed in different clades and no significant geographical structure formed.
     (2) The total Nei's gene diversity was0.2628, varied from0.2171to0.2563within populations. The total shannon information index was0.4129, varied from0.3257to0.3805within populations by ISSR. The total haplotype diversity was0.653, varied from0.423to0.790within populations based on mtDNA CO I gene. The total haplotype diversity was0.462, varied from0.125to0.625based on mtDNA Cytb gene. A high degree of genetic diversity displayed by O. infernalis was discoveried.
     (3) The overall Fst and Gst was low, and the gene flow was greater than4based on the molecular markers of ISSR and mtDNA. Molecular variance analysis (AMOVA) demonstrated that observed genetic differences mainly occur within populations, and just a little difference among populations. The pairwise genetic distance were not correlated with the natural logarithm of geographical distance among populations. These results suggest that the gene flow among population of O. infernalis is not affected by the geographical distance, and the geographical isolation is not the major factor to cause the genetic differentiation among populations of O. infernalis.
     2. The total Nei's gene diversity was0.2339, varied from0.1738to0.2445within populations. The total shannon information index was0.3753, varied from0.2569to0.3568within populations by ISSR. These results show the grasshopper possess strong adaptive capacity against the change of environment.
     The overall Gst was0.1155, and the gene flow was3.83. The variance proportion among populations was11.55%and the variance proportion within populations was88.45%. The genetic distance among populations was not correlated with the geographical distribution. These results reveal that the level of gene flow among different populations is high, however, the degree of genetic differentiation is low, gene low is not affected by the geographical distance.
引文
1. 卜云,郑哲民,2005.COⅡ基因在昆虫分子系统学研究中的作用和地位.昆虫知识,42(1):18-22.
    2. 常宏理,魏丽男,刘显芝,1994.扎鲁特旗植被过渡性特征的研究.草业科学,11(3):5-6.
    3. 车晋滇,杨建国,2005.北方习见蝗虫彩色图谱.北京:中国农业出版社.
    4. 陈复生,付承玉,汪泰初,2003.动物线粒体基因分子系统学研究进展.安徽农业科学,31(4):596-598.
    5. 陈广平,郝树广,庞保平,等,2009.光周期对内蒙古三种草原蝗虫高龄若虫发育、存活、羽化、生殖的影响.昆虫知识,46(1):51-56.
    6. 陈锦云,周立志,2011.安徽沿江浅水湖泊越冬水鸟群落的集团结构.生态学报,31(18):532-5331.
    7. 陈燕妮,孙振兴,常林瑞,2010.长竹蛏不同地理居群的遗传多样性.水生生物学报,34(2):270-277.
    8. 陈永林,1981.新疆维吾尔自治区的蝗虫研究:蝗虫的分布(续).昆虫学报,26(3):166-173.
    9. 陈永林,1991.蝗虫和蝗灾.生物学通报,11:9-11.
    10.董辉,2012.基于分子标记和Wolbachia的松毛虫赤眼蜂种群遗传分化研究.沈阳农业大学,博士学位论文.
    11.范喜顺,胡德夫,陈合志,等,2008.华北平原耕作区鸟类群落的集团结构及生态位.干旱区研究,25(4):544-549.
    12.付海滨,2006.赤眼蜂分子鉴定及其种群分化研究.沈阳农业大学,博士学位论文.
    13.高东,杜飞,朱有勇,2009.低背景、高分辨率PAGE简易银染法.遗传,31(6):668-673.
    14.高书晶,韩靖玲,刘爱萍,2011a.亚洲小车蝗和黄胫小车蝗不同地理种群的RAPD遗传分化研究.华北农学报,26(2):94-100.
    15.高书晶,李东伟,刘爱萍,等,2010.亚洲小车蝗不同地理种群遗传多样性的等位酶分析.生态学杂志,29(10):1967-1972.
    16.高书晶,李东伟,刘爱萍,等,2011b.不同地理种群的亚洲小车蝗mtDNA CO Ⅰ基因序列及其相互关系.草地学报,19(5):846-851.
    17.高书晶,李东伟,刘爱萍,2012.基于线粒体16S rRNA基因亚洲小车蝗7个地理种群的遗传变异分析.华北农学报,27(4):54-59.
    18.高书晶,刘爱萍,韩静玲,等,201 1c.不同地理种群的亚洲小车蝗mtDNA ND1基因序列及其相互关系.应用昆虫学报,48(4):811-819.
    19.戈峰,2008.昆虫生态学原理与方法.北京:高等教育出版社.
    20.龚鹏,杨效文,张孝羲,等,2001a.棉蚜(Aphis gossypii)种群寄主分化和季节分化的微卫星引物PCR研究.生态学报,21(5):765-771.
    21.龚鹏,张孝羲,杨效文,等,2001b.用微卫星引物PCR分析棉蚜不同蚜型的DNA多态性.昆虫学报,44(4):416-418.
    22.郭中伟,李鸿昌,2002.关于蝗虫多样性与草原生态系统可持续发展的若干科学问题.昆虫知识,39(6):401-405.
    23.韩海斌,周晓榕,庞保平,等,2013.内蒙古亚洲小车蝗种群遗传多样性的微卫星分析.昆虫学报,56(1):79-87.
    24.郝树广,秦启联,王正军,等,2002.国际蝗虫灾害的防治策略和技术:现状与展望.昆虫学报,45(4):531-537.
    25.郝树广,张孝羲,1998.对害虫经济阈值理论的再思考.生态学杂志,17(2):71-77.
    26.何建平,奚耕思,路健,等,2006.黄胫小车蝗受精囊内含物研究.昆虫学报,49(1):38-44.
    27.贺达汉,1996.荒漠草原蝗虫群落特征及数学模型研究.陕西师范大学,博士学位论文.
    28.黄原,1998.分子系统学原理、方法及应用.北京:中国农业出版社.
    29.姜子俊,姜东怡,.陈廷芝,1994.内蒙古汛期降水分片短期气候预测的尝试.内蒙古气象,6:1-6.
    30.蒋国芳,郑哲民,2001.蝗虫分子系统学研究进展.昆虫知识,38(2):81-86.
    31.蒋杰贤,王奎武,陈永年,2002.菜青虫为害春甘蓝不同生育期对产量的影响及经济阈值的研究.上海交通大学学报,20(4):312-316.
    32.蒋湘,买买提明,张龙,2003.夜间迁飞的亚洲小车蝗.草地学报,11(1):75-77.
    33.康乐,1995.放牧干扰下的蝗虫-植物相互作用关系.生态学报,15(1):1-11.
    34.康乐,1996.分子生态学及其在未来生态学发展中的地位和作用.科学通报(增刊),41:36-46.
    35.康乐,李鸿昌,陈永林,1989.内蒙古锡林河流域直翅目昆虫生态分布规律与植被类型关系的研究.植物生态学与地植物学学报,13(4):341-349.
    36.康乐,李鸿昌,马耀,等,1990.内蒙古草地害虫的发生与防治.中国草地,5:49-57.
    37.李春辉,赵虎,2011.2011年扎鲁特旗气候特点对农牧业生产的影响.内蒙古农业科技,3:113.
    38.李春选,马恩波,郑先云,2003.中国4种蝗虫不同种群的遗传分化.遗传学报,30(3):234-244.
    39.李东伟,高书晶,庞保平,等,2010.内蒙古地区亚洲小车蝗不同地理种群的RAPD分析.昆虫知识,47(3):472-478.
    40.李宏实,1991.吉林省西部草原蝗虫群落的集团结构.生态学报,11(1):73-79.
    41.李宏实,张喜军,1991.吉林省西部草原蝗虫的群落结构.东北农学院学报,22(4):374-377.
    42.李鸿昌,1981.内蒙古锡盟典型草原优势蝗虫的食性选择及其影响因子.草原生态系统研究,1:93-102.
    43.李鸿昌,郝树广,康乐,2007.内蒙古地区不同景观植被地带蝗总科生态区系的区域性分异.昆虫学报,50(4):361-375.
    44.李鸿昌,马耀,张卓然等,1990.内蒙古蝗总科Acridoidea区系组成及其区域分布的研究.昆虫分类学报,3:170-193.
    45.李鸿昌,邱星辉,1992.中国北方草地蝗虫学研究概况.昆虫知识,29(3):149-152.
    46.李继变,任竹梅,2009.角倍蚜mtDNA Cytb基因遗传多样性分析.复旦学报(自然科学版),48(5):680-686.
    47.李金霞,史新强,2009.内蒙古扎鲁特旗1961-2000年气候演变趋势及特征分析.阴山学刊,23(2):43-49.
    48.李菁,2010.基于分子标记和Wolbachia感染检测的亚洲玉米螟种群遗传分化与基因流研究.中国农业科学院,博士学位论文.
    49.李菁,张颖,王振营,等,2010.基于线粒体DNA COⅡ基因的亚洲玉米螟中国不同地理种群遗传分化及基因流研究.昆虫学报,53(10):1135-1143.
    50.李美,朱恩林,陈志群,等,2008.基于5个mtDNA基因序列的中国4飞蝗地理种群系统发育关系研究.北京农学院学报,23(3):22-25.
    51.李新华,1993.天山北坡草地蝗虫群落的数量分类与排序.草业科学,10(2):66-69.
    52.李新华,赵智刚,牛永绮,1998.草场蝗虫的种群密度与受害程度及经济阈值的探讨.干旱环境监测,12(3):158-160.
    53.李亚妮,王文强,廉振民.2011.延安北洛河流域蝗虫群落的边缘效应.浙江农林大学学报,28(2):275-279.
    54.廉振民,苏晓红,1995.牧场蝗虫复合防治指标的研究.植物保护学报,22(2):171-175.
    55.梁锦丽,孟宇竹,雷昌贵,2008.黄胫小车蝗脂类的提取分离和组成研究.中国粮油学报,23(2):102-105.
    56.林能锋,苏永全,丁少雄,2008.大黄鱼微卫星标记引物在石首鱼科几个近缘种中的通用性研究. 中国水产科学,15(2):237-243.
    57.刘彬,周立志,汪文革,等,2009.大别山山地次生林鸟类群落集团结构的季节变化.动物学研究,30(3):277-287.
    58.刘波,郑哲民,张迎春,等,1999.稻蝗属基因组DNA提取方法.陕西师范大学学报(自然科学版),27(3):97-99.
    59.刘缠民,廉振民,2001.陕西北部蝗虫群落多样性研究.徐州师范大学学报(自然科学版),19(2):63-65.
    60.刘国春,2008.扎鲁特草业生产指南.长春:长春出版社.
    61.刘文萍,邓合黎,1997.木里蝶类多样性研究.生态学报.,17(3):266-271.
    62.刘晓英,廉振民,2004.现代生物技术在蝗虫生物系统学研究中的应用.陕西农业科学,6:65-68.
    63.刘艳,张泽华,王广军,2011.草地蝗虫防治的经济阈值与生态阈值研究进展.草业科学,28(2):308-312.
    64.卢辉,2005.内蒙古典型草原亚洲小车蝗防治经济阈值和生态阈值研究.中国农业科学院,硕士毕业论文.
    65.卢辉,韩建国,张录达,2009.高光谱遥感模型对亚洲小车蝗危害程度研究.光谱学与光谱分析,29(增刊3):745-748.
    66.卢辉,韩建国,张泽华,2008a.典型草原亚洲小车蝗危害对植物补偿生长的作用.草业科学,25(5):112-116.
    67.卢辉,韩建国,张泽华,2008b.锡林郭勒典型草原植物多样性和蝗虫种群的关系.草原与草坪,3:21-28.
    68.卢巧英,张文学,郭威龙,等,2008.韭菜迟眼蕈蚊防治阈值研究.西北农业大学学报,17(2):279-284.
    69.罗海燕,陈业渊,2008ISSR分子标记及其应用.安徽农学通报,14(19):45-47.
    70.马晋,李涛,龙文敏,等,2010.中华稻蝗不同地理种群遗传多样性的AFLP分析.遗传,32(2):163-169.
    71.孟德荣,金世雄,2002.沧州市郊区蝗虫的初步调查.昆虫知识,39(2):120-122.
    72.庞雄飞,尤民生,1996.昆虫群落生态学.北京:中国农业出版社.
    73.朴红梅,李万良,穆楠,2007.ISSR标记的研究与应用.吉林农业科学,32(5):28-30.
    74.齐巧丽,李贺年,李德新,等,2009.河北保定区秋末土蝗优势种的初步调查.安徽农业科学,37(9):4080-4081.
    75.乔璋,乌麻尔别克,熊玲,等,1996.西伯利亚蝗对草原的危害及其防治指标的研究.草地学报,4(1):39-48.
    76.邱星辉,康乐,李鸿昌,2004.内蒙古草原主要蝗虫的防治经济阈值.昆虫学报,47(5):595-598.
    77.邱星辉,李鸿昌,1997.大针茅草原蝗虫的群落结构和能流研究.生态学报,17(1):18-22.
    78.区余端,苏志尧,李镇魁,等,2011.地形因子对粤北山地森林不同生长型地表植物分布格局的影响.应用生态学报,22(5):1107-1113.
    79.任炳忠,2002.松嫩草原蝗虫的生物·生态学.长春:吉林科学技术出版社.
    80.任炳忠,赵卓,郝锡联,2000.松嫩草原蝗虫群落动态变化的初步研究.吉林农业大学学报,22(1):123-128.
    81.任春光,2009.白洋淀的蝗虫与治理.北京:中国农业科学技术出版社.
    82.任俐,张建珍,李春选,等,2005.飞蝗五个自然种群的遗传分化研究.山西大学学报(自然科学版),28(4):415-420.
    83.任竹梅,马恩波,郭亚平,2002a.不同区域日本稻蝗Cytb基因序列及相互关系.山西大学学报(自然科学版),25(3):244-248.
    84.任竹梅,马恩波,郭亚平,2002b.山稻蝗及相关物种Cytb基因序列及其遗传关系.遗传学报,29(6):507-513.
    85.任竹梅,马恩波,郭亚平,2003.不同地域小稻蝗mtDNA部分序列及其相互关系.昆虫学报,46(1):51-57.
    86.宋铭晶,张知彬,徐来祥,2003.动物种群遗传多态性研究中的PCR技术.动物学杂志,38(1)93-97.
    87.宋忠魁,孙奉玉,李梦芸,等,2012.北部湾6个拟穴青蟹群体遗传多样性的ISSR分析.生态学杂志,31(10):2585-2590.
    88.孙涛,龙瑞军,刘志军,2010.祁连山高山草地蝗虫群落组成、发生时间动态及生物学特性.应用与环境生物学报,16(4):550-554.
    89.孙涛,龙瑞军,刘志云,2010.祁连山北麓四种天然草地蝗虫物种多样性比较研究.昆虫学报,53(6):702-707.
    90.孙嵬,崔娟,臧冬初,等,2010.温度和土壤含水量对东亚飞蝗卵孵化的影响.山东农业科学,3:67-69.
    91.孙嵬,类成平,张柱亭,等,2013.科尔沁平原丘陵草甸草原蝗虫群落集团结构.生态学杂志,32(5):1269-1276.
    92.孙晓玲,任炳忠,赵卓,等,2006.东北地区不同生境内蝗虫区系的比较.生态学杂志,25(3):286-289.
    93.邰丽华,贾建宇,王塔娜,等,2011.内蒙古中东部地区亚洲小车蝗3个种群的遗传多样性分析.华北农学报,26(1):122-126.
    94.田方文,李振国,2009.鲁北黄胫小车蝗生物学特性及发生规律的初步观察.中国植保导刊,29(10):34-36.
    95.万方浩,陈常铭,1986.综防区和化防区稻田害虫—天敌群落组成及多样性研究.生态学报,6(2):159-170.
    96.王栋,1953.牧草学通论.兰州:畜牧兽医图书出版社.
    97.王栋,1955.草原管理学.兰州:畜牧兽医图书出版社.
    98.王萌,李世国,侯和胜,等,2010.大连沿海鼠尾藻野生种群遗传结构的ISSR分析.生态学杂志,29(6):1181-1186.
    99.王少丽,徐广,杨效文,等,2003.棉铃虫不同寄主植物种群间的微卫星引物扩增多态性研究.棉花学报,15(2):79-82.
    100.王正军,秦启联,郝树广,等,2002.我国蝗虫暴发成灾的现状及其持续控制对策.昆虫知识,39(3):172-175.
    101.吴慧慧,徐云虎,曹广春等,2012.内蒙古典型草原草地类型对蝗虫群落优势种群的生态效应.中国农业科学,45(20):4178-4186.
    102.吴亚,金翠霞,1981.试论草原害虫的发生与防治.中国农业科学,4:81-85.
    103.谢映平,马力,薛皎亮等,2007.应用微卫星技术分析五种蚧虫的亲缘关系.山西农业大学学(自然科学版),27(4):400-404.
    104.徐利敏,冯万玉,白全江,2006.可可油杀虫剂对亚洲小车蝗蝗蝻的毒力测定.华北农学报,21(6):188-190.
    105.颜忠诚,1995.草原蝗虫的栖境选择.中国科学院,博士学位论文.
    106.颜忠诚,陈永林,1997.内蒙古锡林河流域不同生境中蝗虫种类组成的分析.昆虫学报,40(3):271-275.
    107.颜忠诚,陈永林,1998.放牧对蝗虫栖境结构的改变及其对蝗虫栖境选择的影响.生态学报,18(3):278-282.
    108.杨雪,赵桂仿,周天华等,2007.近缘物种的遗传多样性及其亲缘关系的取样策略研究.西北植物学报,27(6):1121-1126.
    109.姚小波,王翠玲,覃荣,等,2010.西藏飞蝗卵的发育与蝻期各龄的外部形态初步研究.西藏农业科技,32(4):8-11.
    110.叶海燕,黄原,2011.基于线粒体Cytb基因序列探讨中国斑翅蝗科部分种类的系统发育关系.生命科学研究,15(3):229-235.
    111.印象初,1984.青藏高原的蝗虫.北京:科学出版社.
    112.余鸣,2006.蝗虫生态阈值研究.中国农业科学院,博士后出站报告.
    113.曾庆国,陈艺燕,2005.微卫星位点筛选方法综述.生态科学,24(4):368-372.
    114.张宏杰,廉振民,霍科科,2002.中国蝗虫生物多样性研究进展.汉中师范学院学报(自然科学),20(2):82-88.
    115.张建珍,郭亚平,段毅豪,2004a.日本稻蝗、中华稻蝗和赤胫伪稻蝗地理种群的RAPD遗传分化研究.生态学报,24(7):1339-1405.
    116.张建珍,郭亚平,马恩波,2004b.不同保存方式下蝗虫组织DNA的提取及RAPD分析.动物学杂志,39(2):53-57.
    117.张建珍,张敏,郭亚平,等,2005.徐州、平山两地中华稻蝗和日本稻蝗的群体遗传关系分析.中国农业科学,38(1):70-75.
    118.张军霞,赵成章,殷翠琴,等,2012.黑河上游天然草地亚洲小车蝗蝗蝻与成虫多度分布与地形关系的GAM分析.昆虫学报,55(12):1368-1375.
    119.张军霞,赵成章,殷翠琴,等,2013.黑河上游天然草地亚洲小车蝗多度与地形的关系.生态学杂志,32(2):305-310.
    120.张立勋,阮禄章,安蓓,等,2005.西藏雪鸡青海亚种的种群遗传结构和地理变异.动物学报,51(6):1044-1049.
    121.张龙,2011.国内外蝗害治理技术现状与展望.应用昆虫学报,48(4):804-810.
    122.张民照,2008.不同地理飞蝗种群的遗传多样性.昆虫知识,45(5):726-729.
    123.张民照,康乐,2005.飞蝗(Locusta migratoria)地理种群在中国的遗传分化.中国科学C辑,35(3):220-230.
    124.张民照,康乐,2001.飞蝗总DNA的抽提及其RAPD分析条件的摸索.动物学研究,22(1):20-26.
    125.张泉,乌麻尔别克,乔璋,等,2001.意大利蝗造成牧草损失研究及防治指标的评定.新疆农业科学,38(6):328-331.
    126.张淑艳,王铁娟,李伟琼,等,2010.白沙蒿不同地理种群遗传分化的ISSR分析.植物研究,30(4):455-460.
    127.赵成章,周伟,王科明,等,2009.黑河中上游草原蝗虫生态分布与生境的关系.兰州大学学报(自然科学版),45(4):42-47.
    128.赵成章,周伟,王科明,等,2011.黑河上游蝗虫与植被关系的CCA分析.生态学报,31(12):3384-3390.
    129.赵利敏,张海莲.灰翅麦茎蜂(Cephus fumipennis)的经济危害水平和经济阈值(膜翅目:茎蜂科).西北农业学报,2008,17(1):65-69.
    130.赵忠伟,张洋,曹广春,等,2011.三种几丁质合成抑制剂对意大利蝗的防治研究.应用昆虫学报,48(4):909-914.
    131.赵卓,于艳萍,任炳忠,2004.吉林省四平郊区蝗虫群落组成及其时间动态研究.吉林农业大学学报,26(3):267-271.
    132.郑方强,张晓华,墨铁路,等,2008.苹果园主要害虫及其天敌生态位和集团分析.生态学报,28(10):4830-4840.
    133.郑先云,2006.斑翅蝗科部分种群遗传结构研究.山西大学,博士学位论文.
    134.郑向忠,徐宏发,陆厚基,1997.动物种群遗传异质性研究进展.生物多样性,5(3):210-216.
    135.郑哲民,1985.云贵川陕宁地区的蝗虫.北京:科学出版社.
    136.中国农业大学,2001.草地学.2版.北京:中国农业出版社.
    137.周放,1987.鼎湖山森林鸟类群落的集团结构.生态学报,7(2):176-184.
    138.周伟,赵成章,王科明,2010.黑河流域草原蝗虫分布特征及其与生境的关系.干旱区资源与环境,24(5):147-152.
    139.周伟,赵成章,王科明,等,2011.黑河上游草地蝗虫群落特征及其与植被的关系.水土保持通报,31(1):35-39.
    140.周晓榕,陈阳,郭永华,等,2012.内蒙古荒漠草原亚洲小车蝗的种群动态.应用昆虫学报,49(6):1598-1603.
    141. Aitken N, Smith S, Schwarz C, et al.,2004. Single nucleotide polymorphism (SNP) discovery in mammals:a targeted-gene approach. Molecular Ecology,13(6):14-23.
    142. Anderson E, Stebbins Jr GL,1954. Hybridization as an evolutionary stimulus. Evolution,378-388.
    143. Anderson NL,1964. Some relationships between grasshoppers and vegetation. Annals of the Entomological Society of America,57(6):736-742.
    144. Arnold ML, Appels R, Shaw DD,1986. The heterochromatin of grasshoppers from the Caledia captiva species complex. I. Sequence evolution and conservation in a highly repeated DNA family. Molecular biology and evolution,3(1):29-43.
    145. Avise JC,1992. Molecular population structure and the biogeographic history of a regional fauna a case history with lessons for conservation biology. Oikos,63:62-76.
    146. Avise JC,1998. The history and purview of phylogeography:a personal reflection. Molecular Ecology, 7(4):371-379.
    147. Awasthi A, Nagaraja GM, Naik GV, et al.,2004. Genetic diversity and relationships in mulberry (genus Morus) as revealed by RAPD and ISSR marker assays. BMC genetics,5(1):1.
    148. Baker RD, Young NE, Laws JA,1985. Changes in the body composition of cattle exhibiting compensatory growth and the modifying effects of grazing management. Animal Production,41(3): 309-321.
    149. Balloux F, Moulin NL,2002. The estimation of population differentiation with microsatellite markers. Molecular Ecology,11:155-165.
    150. Bandelt HJ, Forster P, Rohl A,1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution,16(1):37-48.
    151. Baruch E, Weller JL,2008. Estimation of the number of SNP genetic markers required for parentage verification. Animal Genetics,39(5):474.
    152. Batary P, Orci KM, Baldi A, et al,2007. Effects of local and landscape scale and cattle grazing intensity on Orthoptera assemblages of the Hungarian Great Plain. Basic and Applied Ecology,8(3): 280-290.
    153. Bazelet CS, Samways MJ,2011. Grasshopper assemblage response to conservation ecological networks in a timber plantation matrix. Agriculture, Ecosystems & Environment,144(1):124-129.
    154. Behmer ST, Joern A,2008. Coexisting generalist herbivores occupy unique nutritional feeding niches. Proceedings of the National Academy of Sciences,105(6):1977-1982.
    155. Bell G I,1996. Evolution of simple sequence repeats. Computational Chemistry,20:41-48.
    156. Bella JL, Martinez-Rodriguez P, Arroyo-Yebras F, et al.,2010. Wolbachia infection in the Chorthippus parallelus hybrid zone:Evidence for its role as a reproductive barrier. Journal of Orthoptera Research, 19(2):205-212.
    157. Bennett AF, Radford JQ,2003. Know your ecological thresholds. Thinking Bush,2:1-3.
    158. Bensasson D, Zhang DX, Hewitt GM,2000. Frequent assimilation of mitochondrial DNA by grasshopper nuclear genomes. Molecular Biology and Evolution,17(3):406-415.
    159. Bentley BR, Clements RO,1989. Impact of time of sowing on pest damage to direct-drilled grass and the mode of attack by dipterous stem borers. Crop Protection,8(1):55-62.
    160. Berthier K, Loiseau A, Streiff R, et al.,2008 Eleven polymorphic microsatellite markers for Oedaleus decorus (Orthoptera, Acrididae), an endangered grasshopper in Central Europe. Molecular ecology resources,8(6):1363-1366.
    161. Botstein D, White RL, Skolnick M, et al.,1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics,32(3):314-331.
    162. Branson DH, Sword GA,2009. Grasshopper herbivory affects native plant diversity and abundance in a grassland dominated by the exotic grass Agropyron cristatum. Restoration ecology,17(1):89-96.
    163. Branson DH, Sword GA,2010. An experimental analysis of grasshopper community responses to fire and livestock grazing in a northern mixed-grass prairie. Environmental Entomology,39(5):1441-1446.
    164. Bugrov A, Novikova O, Mayorov V, et al.,2006. Molecular phylogeny of Palaearctic genera of Gomphocerinae grasshoppers (Orthoptera, Acrididae).Systematic Entomology,31:362-368.
    165. Cagnolo L, Molina SI, Valladares GR,2002. Diversity and guild structure of insect assemblages under grazing and exclusion regimes in a montane grassland from Central Argentina. Biodiversity and Conservation,11:407-420.
    166. Capinera JL, Parton WJ, Detling JK,1983. Application of a grassland simulation model to grasshopper pest management on the North American shortgrass prairie. Developments in Environmental Modelling,5:335-344.
    167. Casenave JLD. Cueto VR, Marone L,2008. Seasonal dynamics of guild structure in a bird assemblage of the central Monte desert. Basic and Applied Ecology,9:78-90.
    168. Chambers BQ, Samways MJ,1998. Grasshopper response to a 40-year experimental burning and mowing regime, with recommendations for invertebrate conservation management. Biodiversity and Conservation,7(8):985-1012.
    169. Chapuis M, Loiseau A, Michalakis Y, et al.,2005. Characterization and PCR multiplexing of polymorphic microsatellite loci for the locust Locusta migratoria. Molecular Ecology Notes,5(3): 554-557.
    170. Chapuis MP, Loiseau A, Michalakis Y, et al.,2009. Outbreaks, gene flow and effective population size in the migratory locust, Locusta migratoria:a regional-scale comparative survey. Molecular Ecology, 18(5):792-800.
    171. Chapuis MP, Popple JA, Simpson SJ, et al.,2008. Eight polymorphic microsatellite loci for the Australian plague locust, Chortoicetes terminifera. Molecular Ecology Resources,8(6):1414-1416.
    172. Charters YM, Robertson A, Wilkinson MJ, et al.,1996. PCR analysis of oliseed rape cultivars(Brassica napus L. ssp. oleifers) using 5'-anchored simple sequence repeat (SSR) primers. Theoretical and Applied Genetics,92:442-447.
    173. Cheke RA, Jago ND, Ritchie JM, et al.,1990. A migrant pest in the Sahel:The senegalese grasshopper oedaleus senegalensis [and Discussion]. Philosophical Transactions of the Royal Society of London. B, Biological Sciences,328(1251):539-553.
    174. Chen H, Zhao Y, Kang L,2004. Comparison of the olfactory sensitivity of two sympatric steppe grasshopper species (Orthoptera:Acrididae) to plant volatile compounds. Science in China Series C: Life Sciences,47(2):115-123.
    175. Chen HH, Zhao YX, Kang L,2003. Antennal sensilla of grasshoppers (Orthoptera:Acrididae) in relation to food preferences and habits. Journal of Biosciences,28(6):743-752.
    176. Clark PJ, Reed JM, Chew FS,2007. Effects of urbanization on butterfly species richness, guild structure, and rarity. Urban Ecosystems,10:321-337.
    177. Cooper SJB, Ibrahim KM, Hewitt GM,1995. Postglacial expansion and genome subdivision in the European grasshopper Chorthippus parallelus. Molecular Ecology,4(1):49-60.
    178. Coxwell CC, Bock CE,1995. Spatial variation in diurnal surface temperatures and the distribution and abundance of an alpine grasshopper. Oecologia,104(4):433-439.
    179. De Groote H, Douro-Kpindou OK, Ouambama Z, et al.,2001. Assessing the feasibility of biological control of locusts and grasshoppers in West Africa:Incorporating the farmers' perspective. Agriculture and Human Values,18(4):413-428.
    180. Dennis JF, Brusven MA,1993. Spatial analysis of grasshopper density and ecological disturbance on southern Idaho rangeland. Agriculture, ecosystems & environment,43 (1):31-47.
    181. Diaz FP,1999. Economic threshold of Heliothis virescens in three tobacco varieties from Cuba. Revista Colombiana de Entomologia,25:33-36.
    182. Eanes WF,1999. Analysis of selection on enzyme polymorphisms. Annual Review of Ecology and Evolution,17:334-340.
    183. Elliott M, Whitfield AK, Potter IC, et al.,2007. The guild approach to categorizing estuarine fish assemblages:A global review. Fish and Fisheries,8(3):241-268.
    184. Endersby NM, Mckechnie SW, Ridland PM, et al.,2005. Microsatellites reveal a lack of structure in Australian populations of the diamondback moth, Plutella xylostella (L.). Molecular Ecology,15(1): 107-118.
    185. Evans EW,1984. Fire as a natural disturbance to grasshopper assemblages of tallgrass prairie. Oikos. 43:9-16.
    186. Evans EW,1988. Grasshopper (Insecta:Orthoptera:Acrididae) assemblages of tallgrass prairie: Influences of fire frequency, topography, and vegetation. Canadian Journal of Zoology,66(7): 1495-1501.
    187. Excoffier LG., Laval S, Schneider S,2005. Arlequin ver.3.0:An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online,1:47-50.
    188. Fang D, Krueger RR, Roose ML,1998. Phylogenetic relationships among selected Citrus germplasm accessions revealed by inter-simple sequence repeat (ISSR) markers. Journal of the American Society for Horticultural Science,123(4):612-617.
    189. Fartmann T, Behrens M, Loritz H,2008. Orthopteran communities in the conifer-broadleaved woodland zone of the Russian Far East. European Journal of Entomology,105:673-680.
    190. Fitzsimmons NN, Moritz C, Moore SS,1995. Conservation and dynamics of microsatellite loci over 300 million years of marine turtle evolution. Molecular Biology and Evolution,12(3):432-440.
    191. Fielding DJ, Brusven MA,1993. Grasshopper (Orthoptera:Acrididae) community composition and ecological disturbance on southern Idaho rangeland. Environmental Entomology,22(1):71-81.
    192. Flook PK, Rowell CHF,1997. The phylogeny of the caelifera (Insecta, Orthiptera) as deduced from mtrRN A genes sequences. Journal of Molecular Evolution,8(1):89-103.
    193. Flook PK, Rowell CHF, Gellissen G,1995. The sequence, organization, and evolution of the locust migratoria mitochondrial genome. Molecular Phylogenetics and Evolution,41 (6):928-941.
    194. Frenzel M, Brandl R,1998. Diversity and composition of phytophagous insect guilds on Brassicaceae. Oecologia,113:391-399.
    195. Funk DJ, Futuyma DJ, Orti G, Meyer A,1995. Mitochondrial DNA sequences and multiple data sets:A phylogenetic study of phytophagous beetles (Chrysomelidae:Ophraellla). Molecular Biology and Evolution,12:627-640.
    196. Gebeyehu S, Samways MJ,2003. Responses of grasshopper assemblages to long-term grazing management in a semi-arid African savanna. Agriculture, ecosystems & environment,95(2):613-622.
    197. Gitay H, Agnew ADQ,1989. Plant community structure, connectance, niche limitation and species guilds within a dune slack grassland. Plant Ecology,83:241-248.
    198. Godwin ID, Aiken EAB, Smith LW,1997. Application of inter-simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis,18:1524-1528.
    199. Goldstein D B, Schlotterer C,1999. Microsatellites:Evolution and Applications. Oxford:Oxford University Press.
    200. Gregg WW, Rose FL,1985. Influences of aquatic macrophytes on invertebrate community structure, guild structure, and microdistribution in streams. Journal of Applied Phycology,128:45-56.
    201.Hamer JE, Farrall L, Orbach MJ, et al.,1989. Host species-specific conservation of a family of repeated DNA sequences in the genome of a fungal plant pathogen. Proceedings of the National Academy of Sciences,86(24):9981-9985.
    202. Harrison RG,1989. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends in Ecology & Evolution,4(1):6-11.
    203. Hawkins CP, MacMahon JA,1989. Guilds:The multiple meanings of a concept. Annual Review of Entomology,34(1):423-451.
    204. Hewitt GM,1964. Population cytology of British grasshoppers. Chromosoma,15(2):212-230.
    205. Hill JVG,2012. Habitat associations of grasshoppers (Orthoptera:Acrididae) in the Heterogeneous Cedar glade landscape of the central basin of Tennessee. Journal of Orthoptera Research,21(2): 227-233.
    206. Hochkirch A, GORZIG Y,2009. Colonization and speciation on volcanic islands:Phylogeography of the flightless grasshopper genus Arminda (Orthoptera, Acrididae) on the Canary Islands. Systematic Entomology,34(1):188-197.
    207. Hughes AR, Inouye BD, Johnson MJ, et al.,2008. Ecological consequences of genetic diversity. Ecology Letters,11(6):609-623.
    208. Jauregui BM, Rosa-Garcia R, Garcia U, et al.,2008. Effects of stocking density and breed of goats on vegetation and grasshopper occurrence in heathlands. Agriculture, ecosystems & environment,123(1): 219-224.
    209. Jepson-Innes K, Bock CE.1989. Response of grasshoppers (Orthoptera:Acrididae) to livestock grazing in southeastern Arizona:Differences between seasons and subfamilies. Oecologia,78(3): 430-431.
    210. Ji R, Simpson SJ, Yu F, et al.,2008. Diets of migratory rosy starlings (Passeriformes:Sturnidae) and their effects on grasshoppers:Implications for a biological agent for insect pests. Biological Control, 46(3):547-551.
    211. Joern A,1979. Feeding Patterns in Grasshoppers (Orthoptera:Acrididae):Factors Influencing Diet Specialization. Oecologia,38:325-347.
    212. Joern A,1982. Distributions, densities, and relative abundances of grasshoppers (Orthoptera: Acrididae) in a Nebraska sandhills prairie. The Prairie Naturalist,14(2):37-45.
    213. Joern A,1982. Vegetation structure and microhabitat selection in grasshoppers (Orthoptera, Acrididae). The Southwestern Naturalist,27(2):197-209.
    214. Joern A, Lawlor LR,1980. Food and microhabitat utilization by grasshoppers from arid grasslands comparisons with neutral models. Ecology,61(3):591-599.
    215. Joern A, Lawlor LR,1981. Guild structure in grasshopper assemblages based on food and microhabitat resources. OIKOS,37:93-104.
    216. Jonas JL, Joern A,2007. Grasshopper (Orthoptera:Acrididae) communities respond to fire, bison grazing and weather in North American tallgrass prairie:A long-term study. Oecologia,153(3): 699-711.
    217. Jonas JL, Whiles MR, Charlton RE,2002. Aboveground invertebrate responses to land management differences in a central Kansas grassland. Environmental Entomology,31(6):1142-1152.
    218. Joshi SP, Gupta VS, Aggarwal RK, et al,2000. Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza. TAG Theoretical and Applied Genetics,100(8):1311-1320.
    219. Kearney M, Spindler J, Shao W, et al.,2011. Genetic diversity of simian immunodeficiency virus encoding HIV-1 reverse transcriptase persists in macaques despite antiretroviral therapy. Journal of Virology,85(2):1067-1076.
    220. Kemp WP, Harvey SJ, O' neill KM,1990. Patterns of vegetation and grasshopper community composition. Oecologia,83(3):299-308.
    221. Kim S, Misra A,2007. SNP genotyping:Technologies and biomedical applications. Annual Review of Biomedical Engineering,9:289-320.
    222. Kindler E, Arlettaz R, Heckel G,2012. Deep phylogeographic divergence and cytonuclear discordance in the grasshopper Oedaleus decorus. Molecular Phylogenetics and Evolution,65(2):695-704.
    223. Kroon HD, Olff H,1995. On the use of the guild concept in plant ecology. Folia Geobotanica & Phytotaxonomica,30:519-528.
    224. Kwok PY,2001. Methods for genotyping single nucleotide polymorphisms. Annual Review of Genomics Human Genetics,2:235-258.
    225. Lander ES,1996. The new genomics:global views of biology. Science,274:536-539.
    226. Laws AN, Joern A,2011. Grasshopper fecundity responses to grazing and fire in a tallgrass prairie. Environmental Entomology,40(5):979-988.
    227. Ledergerber S, Thommen GH, Baur B,1997. Grazing damage to plants and gastropod and grasshopper densities in a CO2-enrichment experiment on calcareous grassland. Acta Oecologica, 18(3):255-261.
    228. Levins R,1968. Evolution in Changing Environments:Some Theoretical Explorations. Princeton: Princeton University Press.
    229. Li A, Ge S,2001. Genetic variation and clonal diversity of Psammochloa villosa (Poaceae) detected by ISSR markers. Annals of Botany,87(5):585-590.
    230. Li ZX, Shen ZR,2002. PCR-based technique for identification and detection of Trichogramma spp. (Hymenoptera:Trichogrammatidae). Entomologia Sinica,9(1):9-16.
    231. Librado P, Rozas J,2009. DnaSP v5:A software for comprehensive analysis of DNA polymorphism data. Bioinformatics,25:1451-1452.
    232. Litzenberger G, Chapco W,2001. A molecular phylogeographic perspective on a fifty-year-old taxonomic issue in grasshopper systematics. Heredity,86,54-59.
    233. Liu H, Beckenbach AT,1992. Evolution of the mitochondrial cytochrome oxidase Ⅱ gene among 10 orders of insects. Molecular Phylogenetics and Evolution,1:41-52.
    234. Loaiza V, Jonas JL, Joern A,2011. Grasshoppers (Orthoptera:Acrididae) select vegetation patches in local-scale responses to foliar nitrogen but not phosphorus in native grassland. Insect Science,18(5): 533-540.
    235. Luiselli L, Eniang EA, Godfrey CA,2007. Non-random structure of a guild of geckos in a fragmented, human-altered, African rainforest. Ecological Research,22:593-603.
    236.Lunt DH, Zhang DX, Szymura JM, Hewitt GM,1996. The insect cytochrome oxidase I gene: Evolutionary patterns and conserved primers for phylogenetic studies. Insect Molecular Biology,5(3): 153-165.
    237. Lunt I,1998. Psychology in Europe:Developments, challenges, and opportunities. European Psychologist,3(2):93.
    238. Marjirie,2003. Insect Molecular Genetics. USA:Elsevier Science press.
    239. Millar CL, Libby WJ,1991. Strategies for conserving clinal, ecorypic, and disjunct population diversity in widespread species. In:Falk DA, Holsinger KE eds. Genetics and Conservation of Rare Plants. Oxford University Press, New York.149-170.
    240. Morita A, Nakayama T, Doba N, et al.,2007. Genotyping of triallelic SNPs using TaqMan PCR. Molecular and Cellular Probes,21(3):171-176.
    241. Moritz C, Dowling TE, Brown WM,1987. Evolution of animal mitochondrial DNA:Relevance for population biology and systematics. Annual review of ecology and systematics:269-292.
    242. Mueller UG, Wolfenbarger LL,1999. AFLP genotyping and fingerprinting. Trends in Ecology and Evolution,14:389-394.
    243. Muradian R,2001. Ecological thresholds a survey. Ecological Economics,38:7-24.
    244. Nagaoka T, Ogihara Y,1997. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theoretical and Applied Genetics,94:597-602.
    245. Ne i M,1972. Genetic distance between populations. American Naturalist,106:283-292.
    246. Nei M,1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America,70:3321-3323.
    247. Ni SX, Lockwood JA, Wei YC, et al.,2003. Spatial clustering of rangeland grasshoppers (Orthoptera: Acrididae) in the Qinghai Lake region of northwestern China. Agriculture, Ecosystems and Environment,95:61-68.
    248. O' Neill KM, Larson DP, Kemp WP,2002. Sweep sampling technique affects estimates of the relative abundance and community composition of grasshoppers (Orthoptera:Acrididae). Journal of Agricultural and Urban Entomology,19(3):125-131.
    249. O'Neill KM, Olson BE, Rolston MG, et al.,2003. Effects of livestock grazing on rangeland grasshopper (Orthoptera:Acrididae) abundance. Agriculture, ecosystems & environment,97(1):51-64.
    250. Oedekoven MA, Joern A,1998. Stage-based mortality of grassland grasshoppers (Acrididae) from wandering spider (Lycosidae) predation. Acta Oecologica,19(6):507-515.
    251. Parker PQ Snow AA, Schug MD, et al.,1998. What Molecules can tell us about populations:Choosing and using a molecular marker. Ecology,79(2):361-382.
    252. Parkin EJ, Butlin RK,2004. Within-and between-individual sequence variation among ITS1 copies in the meadow grasshopper Chorthippus parallelus indicates frequent intrachromosomal gene conversion. Molecular Biology and Evolution,21 (8):1595-1601.
    253. Peakall R, Smouse PE,2006. GENALEX 6:Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes,6:288-295.
    254. Perez T, Albornoz J, Dominguez A,1998. An evaluation of RAPD fragment reproducibility and nature. Molecular Ecology,7 (10):1347-1357.
    255. Pfadt RE,1982. Density and diversity of grasshoppers (Orthoptera:Acrididae) in an outbreak on Arizona rangeland. Environmental Entomology,11(3):690-694.
    256. Pianka ER,1973. The structure of lizard communities. Annual Review of Ecology and Systematics,4: 53-74.
    257. Price PW,1997. Insect Ecology.3 rd ed. New York:John Wiley & Sons.
    258. Reum JCP, Essington TE,2008. Seasonal variation in guild structure of the puget sound demersal fish community. Estuaries and Coasts,31:790-801.
    259. Rico C, Rico I, Hewitt G,1996.470 million years of conservation of microsatellite loci among fish species. Proceedings of the Royal Society of London. Series B:Biological Sciences,263(1370): 549-557.
    260. Riley JR, Reynolds DR, Hobbs SE, et al.,1990. Nocturnal grasshopper migration in West Africa: Transport and concentration by the wind, and the implications for air-to-air control and discussion. Philosophical Transactions of the Royal Society of London. B, Biological Sciences,328(1251): 655-672.
    261. Root RB,1967. The niche exploitation pattern of the blue-gray gnatcatcher. Ecological monographs, 317-350.
    262. Root RB,2001. Guilds. Encyclopedia of Biodiversity,3:295-302.
    263. Rousset F,1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics,145(4):1219-1228.
    264. Rowell CHF,1998. The grasshoppers of Costa Rica:A survey of the parameters influencing their conservation and survival. Journal of Insect Conservation,2:225-234.
    265. Sachidanandam R, Weissman D, Schmidt SC, et al.,2001. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature,409:928-933.
    266. Samways MJ, Kreuzinger K,2001. Vegetation, ungulate and grasshopper interactions inside vs. outside an African savanna game park. Biodiversity and Conservation,10(11):1963-1981.
    267. Scott PS, Lockwood JA,1997. Spatial characteristics of rangeland grasshopper (Orthoptera:Acrididae) population dynamics in Wyoming:Implications for pest management. Population Ecology,26(5): 1056-1065.
    268. Scribner KT, Gust JR, Fields RL,1996. Isolation and characterization of novel salmon microsatellite loci:Cross-species amplification and population genetic applications. Canadian Journal of Fisheries and Aquatic Sciences,53(4):833-841.
    269. Seddon JM, Parker HG, Ostrander EA, et al.,2005. SNPs in ecological and conservation studies:A test in the Scandinavian wolf population. Molecular Ecology,14(2):503.
    270. Simberloff D, Dayan T,1991. The guild concept and the structure of ecological communities. Annual Review of Ecology and Systematics,22:115-143.
    271. Simon C, Frati F, Beckenbach A, et al.,1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequence and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America,87(6):651-701.
    272. Singh J,1998. Economic threshold for spotted bollworms Earias spp. in cotton. Gossypium arboreum L. Journal of Insect Science,11(1):66-68.
    273. Slatkin M,1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics,139(1):457-462.
    274. Smith CC,1940. The effect of overgrazing and erosion upon the biota of the mixed-grass prairie of Oklahoma. Ecology,21(3):381-397.
    275. Southwood TRE, Brown VK, Reader PM.1979. The relationships of plant and insect diversities in succession. Biological.Journal of the Linnean Society,12(4):327-348.
    276. Steck CE, Burgi M, Bolliger J, et al.,2007. Conservation of grasshopper diversity in a changing environment. Biological conservation,138(3):360-370.
    277. Stern VM, Smith RF, Van den Bosch R, et al.,1959. The integration of chemical and biological control of the spotted alfalfa aphid. University of Calif press, California.
    278. Tabarelli M, Mantovani M, Peres CA,1999. Effects of habitat fragmentation on plant guild structure in the montane Atlantic forest of southeastern Brazil. Biological Conservation,91:119-127.
    279. Tajima F,1989. The effect of change in population size on DNA polymorphism. Genetics,123(3): 597-601.
    280. Takami Y, Koshio C, Ishii M, et al.,2004. Genetic diversity and structure of urban populations of Pieris butterflies assessed using amplified fragment length polymorphism. Molecular Ecology,13(2): 245-258.
    281. Tamura K, Dudley J, Nei M, et al.,2007. MEGA 4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Phylogenetics and Evolution,24(8):1596-1599.
    282. Terborgh J, Robinson S,1986. Guilds and Their Utility in Ecology. Melbourne:Blackwell Scientific Press.
    283. Thomas MR, Scott NS,1993. Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theoretical and Applied Genetics,86(8):985-990.
    284. Thorne JL, Kishino H, Painter IS,1998. Estimating the rate of evolution of the rate of molecular evolution. Molecular Biology and Evolution,15:1647-1657.
    285. Tsujino F, Kosemura A, Inhira K, et al.,2002. Evolution of the A+T rich region of mitochondrial DNA in the melanogaster species subgroup of Drosophila. Journal of Molecular Evolution,55:573-583.
    286. Ukey SP, Naitam N, Patil MJ,1999. Determination of economic threshold level of mites on chilli crop. Journal of Soils and Crops,9(2):268-270.
    287. Van der Plas F, Anderson TM, Olff H,2012. Trait similarity patterns within grass and grasshopper communities:Multitrophic community assembly at work. Ecology,93(4):836-846.
    288. Vanderwel MC, Malcolm JR, Smith SM, et al.,2006. Insect community composition and trophic guild structure in decaying logs from eastern Canadian pine-dominated forests. Forest Ecology and Management,225:190-199.
    289. Vos P, Hogers R, Bleeker M et al.,1995. AFLP:A new technique for DNA fingerprinting. Nucleic acids research,23:4407-4414.
    290. Wachter DH, O' Neill KM, Kemp WP,1998. Grasshopper (Orthoptera:Acrididae) communities on an elevational gradient in southwestern Montana. Journal of the Kansas Entomological Society,71(1): 35-43.
    291. Wagner JL,1981. Seasonal change in guild structure:Oak woodland insectivorous birds. Ecology,62: 973-981.
    292. Wang W, Fang JY.2008. Soil respiration and human effects on global grasslands. Global and Planetary Change,67(1):20-28.
    293. Wason EL, Pennings SC,2008. Grasshopper (Orthoptera:Tettigoniidae) species composition and size across latitude in Atlantic Coast salt marshes. Estuaries and Coasts,31:335-343.
    294. Weight S,1978. Evolution and the genetics of population. In:Wright S eds. Variability Within and Among Natural Population. University of Chicago Press, Chicago.10-15.
    295. Weising K, Atkinson RG, Gardner RC,1995. Genomic fingerprinting by microsatellite primed PCR:A critical evaluation. PCR Methods Application,4:249-255.
    296. Welsh J, Muclellard M,1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research,18:7213-7218.
    297. Wenzel MA, Webster LI, Blanco G, et al.,2012. Pronounced genetic structure and low genetic diversity in European red billed chough(Pyrrhocorax pyrrhocorax) populations. Conservation Genetics,13(5):1213-1230.
    298. White EG, Sedcole JR,1991. A 20-year record of Alpine grasshopper abundance, with interpretations for climate change. New Zealand Journal of Ecology,15(2):139-152.
    299. Whitlock MC, Mccauley DE,1999. Indirect measures of gene flow and migration:Fst≠1/(4Nm+1). Heredity,82:117-125.
    300. Whittaker RH,1978. Direct gradient analysis. Ordination of plant communities,7:50.
    301. Williams JGK, Ubelik KAR, Livok KJ, et al.,1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research,18:6531-6535.
    302. Wolstenholme DR,1992. Genetic novelties in mitochondrial genomes of multicelluar animals. Current Opinion in Genetics & Devolopment,2:918-925.
    303. Wu KS, Jones R, Danneberger L, et al.,1994. Detection of microsatellite polymorphisms without cloning. Nucleic Acids Research,22:3257-3258.
    304. Wu KS, Tanksley SD,1993. Abundance, polymorphism and genetic mapping of microsatellites in rice. Molecular and General Genetics MGG,241(1-2):225-235.
    305. Yassin YA, Heist EJ, Ibrahim KM,2006. PCR primers for polymorphic microsatellite loci in the desert locust, Schistocerca gregaria (Orthoptera:Acrididae). Molecular Ecology Notes,6(3):784-786.
    306. Yoshioka A, Kadoya T, Suda S, et al.,2010. Impacts of weeping lovegrass(Eragrostis curvula) invasion on native grasshoppers:responses of habitat generalist and specialist species. Biological Invasions,12(3):531-539.
    307. Zhang DX, Hewitt GM,1997. Assessment of the universality and utility of a set of conserved mitochondrial CO I primers in insects. Insect Molecular Biology,6(2):143-150.
    308. Zhang DX, Yan LN, Ji YJ, et al.,2003. Isolation, characterization and cross-species amplification of eight microsatellite DNA loci in the migratory locust(Locusta migratoria). Molecular Ecology Notes,,3(4):483-486.
    309. Zhang DX, Yan LN, Ji YJ, et al.,2009. Unexpected relationships of substructured populations in Chinese locusta migratoria. BMC Evolutionary Biology,9(1):144.
    310. Zhao BY, Liu ZY, Lu H, et al.,2010. Damage and control of poisonous weeds in western grassland of China. Agricultural Sciences in China,9(10):1512-1521.
    311. Zheng X, Zhong Y, Duan Y, et al.,2006. Genetic Variation and Population Structure of Oriental Migratory Locust, Locusta migratoria manilensis, in China by Allozyme, SSRP-PCR, and AFLP Markers. Biochemical genetics,44(7):332-346.
    312. Zietkiewicz E, Rafalski A, Labuda D,1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction. Genomics,20:176-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700