回采巷道顶板切缝减小护巷煤柱宽度的技术基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在开采煤炭过程中,为了保护巷道和管理采场顶板,常常留下各类煤柱,这些煤柱是造成地下资源损大的主要根源。特别是近些年来,在煤层顶板中存在一层或者数层较坚硬的岩层地质条件下,随着矿井机械化程度的提高,工作面采高的增加,采动影响范围越来越大,回采巷道煤柱上集中应力增加,分布范围增大,导致回采巷道护巷煤柱很大。对于高瓦斯矿井,为了满足安全生产的需要,工作面采用“两进两回”或“三进两回”的布置方式,为了减少巷道掘进率,其中一条或者两条回采巷道保留下来为下个工作面利用,免受工作面采动影响,一侧护巷煤柱宽度达到50m,这样导致回采巷道煤柱宽度问题更为突出,而这些煤柱又难以回收,导致采区回采率大幅下降,煤炭资源损失严重。因此,开展减小回采巷道护巷煤柱宽度的技术基础研究,是国民经济和社会发展中迫切需要解决的关键科学问题,有着重要的科学意义和广泛的应用前景。
     护巷煤柱能否减小,取决于开采时工作面侧向应力集中的程度,而集中应力大小又取决于开采煤层的厚度、强度、煤层顶、底板岩层结构及其力学特性以及垮落后顶板形成的结构等因素。随着采高的增大,冒落的矸石难以充满采空区,顶板以一定角度向采空区倾斜,侧向集中应力增大,煤柱边缘煤体破坏,集中应力向煤体转移,导致煤柱宽度大幅增加;因此,能够保证安全、有效的减小煤柱的宽度,侧向集中应力控制尤为关键。根据开采引起集中应力分布规律,提出用预裂爆破切缝的方法转移开采引起煤柱集中应力(沿靠近工作面回采巷道顶板上方边缘垂直顶板切缝),即预裂爆破切缝弱化采动影响应力传递减小护巷煤柱宽度。本文针对赵庄煤矿的地质条件,采用理论分析、实验室模型试验、数值模拟计算的综合研究方法,对切缝前、后侧向顶板形成结构、垮落移动变形特征、围岩、侧向煤体应力分布规律等进行研究,获得如下主要结论:
     (1)当顶板未切缝时,垮落的矸石未能充满采空区,侧向顶板处于悬臂状态,此时顶板结构可简化为悬臂梁结构;当回采巷道顶板切缝并且垮落矸石充满采空区时,侧向顶板在矸石的支撑作用下可简化为多跨梁结构。
     (2)根据侧向顶板的结构形式,通过受力分析,建立了侧向附加集中应力的力学模型,得出切缝前、后工作面侧向顶板运动在煤体中产生的集中应力计算公式:未切缝时:
     切缝后(垮落的矸石充满采空区):
     (3)基于赵庄矿地质条件,采用相似模拟试验和数值模拟研究了不同切缝深度下顶板垮落特征,煤柱及上覆岩层应力分布变化规律。模拟结果表明,以切缝深度作为垮落角顶点,随着切缝深度的增加,垮落角逐渐减小。不切缝时,垮落角为61°,当切缝深度为15m时,垮落角为37°,切缝深度为20m时,垮落角为33°;随着切缝深度的增加,煤柱应力峰值和平均应力逐渐减小,峰值位置越靠近采空区边缘。与不切缝相比,当切缝深度为15m时,煤柱应力峰值与平均应力减小幅度最大,分别减小了46.5%和48.3%,之后随着切缝深度的增加,减小幅度较小
     随着切缝深度的增加,煤柱应力峰值位置与回采巷道煤壁距离呈负指数规律减小,与工作面后方距离呈负对数规律减小;与煤柱平均应力呈负对数规律减小
     (4)在煤柱上覆岩层,随着切缝深度的增加,应力峰值逐渐减小,岩层层位越低,应力峰值越大;在采空区上覆岩层靠近切缝边缘,其应力逐渐增加,岩层层位越高,应力越大。与不切缝相比,切缝深度为15m时,岩层应力峰值减小幅度较大,10m高处岩层应力峰值为15.8MPa,20m高处为14MPa,之后减小幅度较小;切缝深度达到30m时,1Om高处岩层应力峰值为15MPa,20m高处岩层应力峰值为12.98MPa。
     (5)根据理论研究、试验研究得出侧向顶板垮落引起集中应力分布规律,采用极限平衡法推导出切缝前、后塑性区宽度的计算公式,研究表明,在赵庄矿地质条件下,顶板切缝深度为15m时,护巷煤柱宽度可减小60%。
During the coal mining, in order to protect the road and manage the roof, all kinds of coal pillar are always left which are the major source losses of underground resources. Especially in recent years, in the geological conditions of the coal seam with one or several hard rock stratums, and with the improvement of mechanization, and the increase of mining height in working place, the expansion of the mining area and the increase of the concentrated stress in the coal pillar with the mining roadway, and the larger distribution, it leads to the big coal pillar in the mining lanes. As for the high gas mine, in order to meet the safety requirement, the working face is decorated by the way of "two into two out" or "three into and two out". In order to reduce the rate of tunneling, one or two mining lanes are reserved for the next working face in case the mining face is influenced—the width of the one side for the protection lane coal pillar is up to50m, which caused the width problem of the coal pillar in the mining lane to be more obvious. Besides, these coal pillars are difficult to be recovered, which leads to the decline of the rate recovery in mining and the great losses of coal resources. Therefore, the technical basic research of reducing the width of the coal pillar is a scientific problem and urgent need of the national economic and social development, which has important scientific significance and wide application.
     The decrease of the coal pillar of protected lane depends on the lateral stress concentration during the mining. At the same time, the stress concentration depends on the thickness and strength of the coal seam mining, and the structure of and mechanical properties of the roof and floor in the coal seam rock and the structure of the roof after collapse, and other factors. With the increase of the mining height, the fall coal gangue is difficult to fill the goaf, so the roof with a certain Angle tilt to the gob side. Then the lateral stress concentration increases, the coal pillar edge is damaged, and the concentrated stress transfers to the coal seam side, and at last the width of the coal pillar increases. Therefore, to ensure the safety and effectiveness of reducing the coal pillar width, the control of the lateral concentrated stress is very important. According to the stress distribution caused by the mining, we advises that the pre-split blasting cut seam method is used to transfer the concentrated stress (near mining face roadway the roof along the edge of roof to cutting the vertical seam), that is, pre-split blasting cut seam mining method is used to weaken the effect of the stress to transfer and reduce the width of the coal pillar. According to the geological conditions of ZhaoZhuang Coal Mine, the theoretical analysis, the laboratory model test and the numerical simulation have been adopted. The formation structure of the roof breaks, the fall deformation characteristics, the surrounding rock and the lateral stress distribution law of coal before sewing and back also have been studied. At last the main conclusions as follows:
     (1) When the roof is not cut and the collapse coal gangue does not fill the goaf, the lateral roof is in a state of cantilever, which can be simplified as a cantilever beam structure. When the mining roof is cut and the collapse coal gangue fills the goaf, the lateral roof under the support of the coal gangue can be simplified as a cross beam structure.
     (2) According to the structure of the lateral roof, through the force analysis, the mechanical model of the lateral additional stress concentration is established and the concentration stress formula which made by the movement of the lateral roof, and before&after the seam is cut in the coal mining face is acquired: When it is not cut: After it is cut (the collapse coal gangue fills the goaf):
     (3) Based on the geological conditions of ZhaoZhuang Coal Mine, the similar simulation experiment and numerical simulation have been adopted to study carving characteristics of the roof under the different cutting seam depth, the stress distribution on the coal pillar and overlaying strata. The results showed that, the cutting seam depth is used as vertex of the fall Angle, with the increased depth of the cut seam, the fall Angle gradually reduces. When the seam is not cut, the fall Angle is61°. When the cutting depth is15m, the fall Angle is37°. When the cutting depth is20m, the fall Angle is33°. With the increased depth of the cut seam, the peak stress of the coal pillar and the average stress decrease, and the peak stress position is gradually nearer to the edge of the goaf. Compared with no cutting, when the cutting depth is15m, the peak stress and average stress reduce most, that is, reduce by46.5%and48.3%respectively. After that, with the increased depth of the cutting, the reduce scale is small.
     With the increased depth of the cutting seam, the position of the peak stress for the coal pillar and the distance of the mining roadway wall reduce in a way of negative exponent. The distance to the back of working face decreases in a way of negative logarithm and the average stress for the coal pillar reduces in a way of negative logarithm.
     (4) On the overlaying strata of the coal pillar, with the increased depth of the cut seam, the peak stress gradually reduces. When the strata horizon is lower, the peak stress is greater. The gaof strata which is near to the edge of the cutting seam, the stress gradually increases. When the rock layer is higher, the stress is greater. Compared with no cutting, when the depth of the cut seam is15m, the peak stress of the rock decreases to a larger extent. When it is at10m high, the peak stress is15.8MPa. When it is20m high, the peak stress is14MPa. After that the reduce scale is small. When the depth of the cut seam is up to30m, at the depth of10m, the peak stress of the rock is15MPa, and at the height of20m, the peak stress is12.98MPa.
     (5) According to the theoretical and the experimental study, the stress distribution is caused by fall-down of the roof on the lateral side, the calculation formula of the width of the plastic zone before and after the seam cutting is deduced based on the limit equilibrium method. It is showed that, under the geological conditions of ZhaoZhuang Coal Mine, the depth of the roof cutting seam is15m; the width of the protection coal pillar can be reduced by60%.
引文
[1]姚建国,毛德兵.我国煤矿高效集约化生产的思考[J].煤矿机电,2003,(6)1-6.
    [2]刘听成.无煤柱护巷的应用与进展[J].矿山压力与顶板管理.1994(4).
    [3]陆士良.无煤柱区段巷道的矿压显现及适用性研究[J].徐州:中国矿业学院学报,1980(4)
    [4]陆士良编著.无煤柱护巷的矿压显现[M].北京:煤炭工业出版社,1982.
    [5]丁焜,童有德.我国无煤柱开采的发展与展望[J].徐州:矿山压力与顶板管理,1984.
    [6]李学华.综放沿空掘巷围岩大小结构稳定性的研究[D].徐州:中国矿业大学,2000.
    [7]侯朝炯,李学华.综放沿空掘巷围岩大、小结构的稳定性原理[J].煤炭学报,2001,26(1):1-7.
    [8]柏建彪.综放沿空掘巷围岩稳定性原理及控制技术研究[D].徐州:中国矿业大学,2002.
    [9]刘听成.无煤柱护巷的应用与进展[J].矿山压力与顶板管理.1994(4).
    [10]张俊云.沿空留巷巷旁煤体作用机理及锚杆支护研究[D].西安:西安矿业学院,1998.
    [11]华心祝.我国沿空留巷支护技术发展现状及改进建议[J],煤炭科学技术,2006,34(12):78-81.
    [12]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [13]山东矿业学院矿山压力研究室关于“矿山压力和岩层控制理论的看法和意见(纲要)”1983.5.
    [14]宋振骐.实用矿山压力控制[M].泰安:山东矿业学院矿压研究所,1992.
    [15]宋振骇,蒋金泉.煤矿岩层控制的研究重点与方向[J],岩石力学与工程学报,1996(2):128-134.
    [16]宋振骐,宋扬等.内外应力场理论及其在矿压控制中的应用[A],中国北方岩石力学与工程应用学术会议论文集[C],郑州:科学出版社,1991:43-51.
    [17]姜福兴等,矿压控制设计[M],中国矿业大学出版社.1996.
    [18]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,1994.
    [19]钱鸣高,张顶立.砌体梁的“S-R”稳定及其应用[J].矿山压力与顶板管理,1994,3:6-11.
    [20]许家林.岩层移动控制的关键层理论及其应用[D],江苏徐州:中国矿业大学博士学位论文,1999.
    [21]钱鸣高,缪协兴,许家林等.岩层控制关键层理论[M].徐州:中国矿业大学出版社,2003.
    [22]钱鸣高等.采场覆岩中关键层上载荷的变化规律[J].煤炭学报,1998,23(2)135-139.
    [23]钱鸣高,缪协兴,许家林等.岩层控制关键层理论[J].煤炭学报,1996,21(3):226-230.
    [24]茅献彪,缪协兴,钱鸣高.采动覆岩中关键层的破断规律研究[J].中国矿业大学学报,1998,27(1):39-42.
    [25]许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究[J].煤炭学报,2000,25(2):122-126.
    [26]侯忠杰.组合关键层理论的应用研究及其参数确定[J].煤炭学报,2001,26(6):611-615.
    [27]候忠杰.断裂带老顶的判别准则及在浅埋煤层中的应用[J].煤炭学报,2003,28(1):8-12.
    [28]侯忠杰.浅埋煤层关键层研究[J].煤炭学报,1999,24(4):359-363.
    [29]姜福兴.岩层质量指数及其应用[J].岩石力学与工程学报,1994(3):270-278.
    [30]姜福兴,王春秋,宋振骥.采场覆岩空间结构与应力场动态关系探讨[A],中国科协第46次“青年科学家论坛”文集,中国科学技术出版社,1999.
    [31]姜福兴,XunLuo微震监测技术在矿井岩层破裂监测中的应用[J].岩土工程学报,2002(2):147-149.
    [32]姜福兴,XunLuo,杨淑华.采场覆岩空间破裂与采动应力场的微震研究[J].岩土工程学报,2003(1):23-25.
    [33]贾喜荣.浅析坚硬顶板的下沉与断裂[J].山西矿业学院学报,1984(1):58-71.
    [34]贾喜荣,刘国利,徐林生.采场矿压计算分析方法[J].煤炭学报,1993, 18(5):13-19.
    [35]贾喜荣.矿山岩层力学汇[M].北京:煤炭工业出版社,1997.
    [36]JiaXirong. Rock Slab Theory of Ground Pressure in the Working and Practices Seeond National Conference on GROUD CONTROL NMNNG, october 1996, CALCUTA NDIA.
    [37]贾喜荣,翟英达.采场薄板矿压理论与实践综述[J].矿山压力与顶板管理,1999,No.3:22-25.
    [38]贾喜荣,李海,王青平等.薄板矿压理论在放顶煤工作面中的应用[J].太原理工大学学报,1999,30(2):179-183.
    [39]陈忠辉,谢和平,李全生.长壁工作面采场围岩铰接薄板组力学模型研究[J].煤炭学报,2005,30(2):172-176.
    [40]史元伟.采煤工作面围岩控制原理和技术[M].徐州:中国矿业大学出版社,2003.
    [41]史元伟,宁宇,齐庆新.综采放顶煤工作面岩层控制与工艺参数优选汇[M].徐州:中国矿业大学出版社,2006.
    [42]任德惠.井工开采矿山压力与岩层控制[M].重庆大学出版社,1990.
    [43]姜福兴.矿山压力与岩层控制[M].煤炭工业出版社,2004.
    [44]欧阳辉,软岩采场前方支承压力的分布规律[J].贵州工学院学报,1995,24(5):19-25.
    [45]陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994.5.
    [46]侯朝炯,李学华等.综放沿空掘巷围岩大、小结构稳定性原理[J].煤炭学报,2001,26(1):1-6.
    [47]王卫军,冯涛,侯朝炯等.沿空掘巷实体煤帮应力分布与围岩损伤关系分析[J].岩石力学与工程学报,2002,21(11):1590-1593.
    [48]马其华.长壁采场覆岩“0”型空间结构及相关矿山压力研究[D].山东科技大学博士学位论文,2005.
    [49]谢广祥.综放面宏观力学场研究[D].安徽理工大学,2005.
    [50]史元伟著.采煤工作面围岩控制原理和技术[M](上、下).徐州:中国矿业大学出版社,2003.6.
    [51]史元伟.采场支承压力的解析计算研究[J].煤炭学报,1993,18(6):1-10.
    [52]史元伟,郭藩强,康立军等著.矿井多煤层开采围岩应力分析与设计优化[M].煤炭工业出版社,1995.9.
    [53]Salamon MDG, MUNROAH, A study of the strength of coal pillars[J].Journal of The South African Institute of Mining and Metallergy,1967,56-67.
    [54]Newman DA. Planning and design for barrier Pillared recovery:Three case histories[J]. International conference on ground in mining,1995(1): 1048-1053.
    [55]A H Wilson. Pillar stability in log wall mining state of the art of ground control in long wall Mining and mining subsidence [J]. New York:Soeiety of Mining Engineers,1982.77-88.
    [56]Wilson A H Ashin D P. Research into the determination off pillar size. The MiningEngineer.1972(131):409-417.
    [57]J M Galvin, B K hebblewhite. Australian coal Pillar performance [J]. Report University of New South Male,1996(3):102-106.
    [58]白予,刘天泉.条带开采中条带尺寸研究煤炭学报[J].1995(03:)257-259.
    [59]侯朝炯,马念杰.煤层巷道两帮煤体应力和极限平衡区的探讨[J].煤炭学报,1989(03):27-29.
    [60]杨友伟.工作面侧向支承压力分布及保留巷道控制研究[D].山东科技大学,2010.
    [61]陈金国.不稳定围岩区段煤柱尺寸的确定[J].矿山压力与顶板管理,2000,(4):40-41.
    [62]郑书兵.寺河煤矿大采高工作面合理煤柱尺寸留设[J].煤矿安全,2007,(2):28-30.
    [63]李洪武.综放开采区段煤柱应力分布及其尺寸优化[J].煤炭科学技术,2007,35(8):39-44.
    [64]刘正和,许志强.综放开采区段煤柱应力分布及其尺寸优化设计研究[J].山西煤炭,2009,29(1):19-21.
    [65]常聚才,谢广祥,杨科.综放沿空巷道小煤柱合理宽度的确定[J].矿业研究与 开发,2007,28(2):14-17.
    [66]张开智,夏均民,蒋金泉.钻孔煤粉量变化规律在区段煤柱合理参数确定中的应用[J].岩石力学与工程学报,2004,23(8):1307-1310.
    [67]A Kushwaha,G Banerjee Exlloitation of developed coal mine Pillars by shortwall mining-a case examples[J].International Journal of Rock Mechanics&Mining Sciences 2005,42:127-136.
    [68]Ormonde R.Szwedzicki T.Monitoring of Post-failure pillar behaviour. Laboratory studies, Publ by A.A.Balkema,1993,393.
    [69]C D Martina,W G Maybee.The strength of hard-rock pillars[J]. International Journal of Rock Meehanies&Mining Sciences,2000,37:1239-1246.
    [70]Van Der Merwe J N. South African coal pillar database[J]. Journal of The South African Institute of Mining and Metallurgy,2006,106(2):115-128.
    [71]李洪,耿献文,朱学军.区段煤柱宽度的实测确定[J].矿山压力与顶板管理,2005,(1):31-33.
    [72]崔芳鹏,武强等.断层防水煤(岩)柱安全宽度的计算与评价[J].辽宁工程技术大学学报,2009,28(4):517-520.
    [73]毕宣可,战玉宝,王玉.护巷小煤柱留设的可行性研究[J].中国矿业,2007,16(9):53-56.
    [74]娄金福,蓝航,刘少虹等.铜川矿区区段煤柱宽度优化研究[J].煤炭科学技术,2011,39(5):29-32.
    [75]任满翊.旺格维利采煤法煤柱尺寸的合理确定[J].矿山压力与顶板管理,2004,(1):42-44.
    [76]胡友健.保护煤柱设计中的几个问题的探讨[J].西安矿业学院学报,1989,(1):36-42.
    [77]张国华,张雪峰,蒲文龙等.中厚煤层区段煤柱留设宽度理论确定[J].西安科技大学学报,2009,29(5):521-526.
    [78]孔令海,孔令海,姜福兴等.特厚煤层综放工作面区段煤柱合理宽度的微地震监测[J].煤炭学报,2009,34(1):871-874.
    [79]奚家米,毛久海,杨更社等.回采巷道合理煤柱宽度确定方法研究与应用[J].采 矿安全工程学报,2008,25(4):400-404.
    [80]贾喜荣,王丽.回采巷道煤柱临界宽度理论计算方法[J].太原理工大学学报学报,2011,42(1):102-103.
    [81]王旭春,黄福昌,张怀新等.H·威尔逊煤柱设计公式探讨及改进[J].煤炭学报,2002,27(6):604-608.
    [82]李忠华,官福海.弹塑性煤柱的应力场计算[J].采矿与安全工程学报2006,23(1):79-82.
    [83]刘长武,丁开旭.论井下隔水煤柱承压破坏的临界尺寸[J].煤炭学报,2001,26(6):632-636.
    [84]石伟,徐信增.煤矿区段护巷煤柱合理尺寸研究[J].煤炭技术2010,29(12):67-69.
    [85]李东升,李德海,宋常胜.条带煤柱设计中极限平衡理论的修正应用[J].辽宁工程技术大学学报,2003,22(1):7-9.
    [86]Willson A.H. Pillar stability in longwall mining stat-of-the-Art of Ground Control in Longwall Mining and Mining Subsidence, Soeiety of Mining Engineers.Newyork,1982.
    [87]Wilson A. N. An hypothesis concerning pillar stability[J]. Mining Engineer,1972,6:85-90.
    [88]Whittaker B. N. Design and stability of pillar in longwall mining[J]. MiningEngineer,1979,13:68-72.
    [89]A H Wilson. Pillar stability in log wall mining state of the art of ground control in long wall Mining and mining subsidence[J]. New York:Soeiety of Mining Engineers,1982.77-88.
    [90]Salmaon M D G and A. H. Munro. A study of the strength of coal Pillars. JS Afr Inst Min Meatll.1967.
    [91]Wilson A H Ashin D. P Research into the determination off pillar size. The Miniing Engineerl972(131):409-417.
    [92]Salamon, M. D. G, A. H. Munro. A study of the strength of coal pillar. S. Afr. Inst. Min. Metall[J],1967.
    [93]贾光胜,康立军.综放开采采准巷道护巷煤柱稳定性研究[J].煤炭学报,2002,27(]):6-10.
    [94]翟所业,张开智.煤柱中部弹性区的临界宽度[J].矿山压力与顶板管理,2003,(4):14-17.
    [95]宋选民,王安.浅埋煤层回采巷道合理煤柱宽度的实测研究[J].太原理工大学学报,2003,34(6):674-67.
    [96]张开智,郭周克,程秀洋等.坚硬顶板煤柱稳定性实测分析[J].煤炭科学技术,2002,30(4):12-15.
    [97]程秀洋,李洪.运用实测技术确定区段煤柱宽度[J].煤,2003,(3):8-10.
    [98]王志磊.大倾角沿底掘进综放面区段煤柱合理参数研究[J].中州煤炭,2007,(6):11-13.
    [99]韩承强,张开智,徐小兵等.区段小煤柱破坏规律及合理尺寸研究[J].采矿与安全工程学报,2007,24(3):370-373.
    [100]杨健彬,徐乃忠.双巷掘进两巷围岩变形及煤柱留设尺寸研究[J].煤炭技术,2007,26(11):123-125.
    [101]张科学.深部煤层群沿空掘巷护巷煤柱合理宽度的确定[J].煤炭学报,2011,33supp(1):28-35.
    [102]林健,吴拥政,申志平等.宁武煤矿小煤柱护巷技术及其应用[J].煤炭科学技术,2005,33(12):5-7.
    [103]刘长友,刘奎,郭永峰等.超长“孤岛”综放面大煤柱护巷的数值模拟[J].中国矿业大学学报,2006,35(4):443-477.
    [104]解兴智,高圣元,任艳芳.连续采煤机短壁机械化开采煤柱合理宽度研究[J].煤炭科学技术,2011,39(12):16-19.
    [105]刘波,贺雷,罗立平.流-固耦合作用下防隔水煤柱留设的数值模拟[J].采矿与安全工程学报,2009,26(4):445-454.
    [106]杨科,谢广祥,常聚才.煤杜宽度对巷道围岩稳定性影响分析[J].地下空间与工程学报,2009,5(5):991-995.
    [107]王永秀,齐庆新,陈兵等.煤柱应力分布规律的数值模拟分析[J].煤炭科学技术,2004,32(10):59-62.
    [108]柏建彪,侯朝炯.沿空掘巷窄煤柱稳定性数值模拟研究[J].岩石力学与工程学报,2004,23(20):3475-3479.
    [109]刘增辉,康天合.综放煤巷合理煤柱尺寸的物理模拟研究[J].矿山压力与顶板管理,2005,(1):24-26.
    [110]Pariseau W G. Applications of finite element analysis to mining engineering [A]. Hudson J. A. Comprehensive Rock Engineering[C]. Oxford: Pergamon Press,1993.244-246.
    [111]G Murali Mohan, P R Sheorey, A Kushwaha. Numerical estimation of pillar strength in coal mines[J]. International Journal of Rovk Mechaniecs&Mining Seiences,2001,38:1185-1192.
    [112]MA Nian-jie, LIU Hong-tao, SHI Hao-yu. Numericals imulation research of coal pillar safety in shangwan mine Asia Pacific Symposium on safety[M], 2005.
    [113]黄庆享,陈杰,杨宗义.浅埋厚煤层分层开采合理隔离煤柱尺寸模拟研究[J].西安科技大学学报,2001,21(3):193-195.
    [114]王永秀,齐庆新,陈兵等.煤柱应力分布规律的数值模拟分析[J].煤炭科学技术,32(10):59-62.
    [115]柏建彪,侯朝炯,黄汉富.沿空掘巷窄煤柱稳定性数值模拟研究[J].岩石力学与工程学报,2004,23(20):3475-3479.
    [116]冯锦艳,王金安,韦文兵.煤柱宽度对综放留巷稳定性影响的研究[J].矿山压力与顶板管理,2005,(4):68-71.
    [117]朱建明,彭新坡,姚仰平等.SMP准则在计算煤柱极限强度中的应用[J].岩土力学,2010,31(9):2987-2990.
    [118]彭文庆,王卫军,李青锋.不同断层倾角条件下防水煤柱合理宽度的研究[J].采矿与安全工程学报,2009,26(2):179-186.
    [119]彭文庆,王卫军.浅埋厚煤层分层开采保护煤柱合理宽度研究[J].采矿与安全工程学报,2008,36(11):14-17.
    [120]高玮.倾斜煤柱稳定性的弹塑性分析[J].力学与实践,2001,23(2):23-26.
    [121]朱建明,马中文.区段煤柱弹塑性宽度计算及其应用[J].金属矿山,2011, (8):29-36.
    [122]杨科,王颂华,王树全.综放回采巷道护巷煤柱合理宽度分析[J].辽宁工程技术大学学报,2005,25(suppl):30-33.
    [123]谢广祥,杨科,刘全明.综放面倾向煤柱支承压力分布规律研究[J].岩石力学与工程学报,2006,25(3):545-549.
    [124]韩玉林.松软煤层综放开采护巷煤柱合理宽度研究[J].煤炭科学技术,2011,39(9):5-8.
    [125]王海成.大采高综采煤层塑性区计算分析[J].煤炭技术,2009,28(7):74-76.
    [126]赵国旭,谢和平,马伟民.宽厚煤柱的稳定性研究[J].辽宁工程技术大学学报,2004,23(1):38-40.
    [127]白永亮,李源东.榆家梁矿4-2煤煤柱留设尺寸探讨[J].西部探矿工程,2010,(4):162-164.
    [128]Singh K.B. Singh T. N. Sing D. p. Jethwa F. L. Effect of Diseontinuities on Strata-movement Problem in Collieres, a review,Geotechnical and Geological Engineering,1994,12(1).
    [129]J M Galvin, B K hebblewhite. Australian coal pillar performance[J]. Report University of New South Male,1996(3):102-106.
    [130]Whittaker B N.Design and stability of Pillar in long wall mining[J]. Mining Engineer,1979(1):92-103.
    [131]131S S Peng. Strength of laboratory-size coal specimens vs.underground coal pillars[J]. Mining Engineering,1993(3):162-165.
    [132]S K Palei, S K Das. Logistic regression model for prediction of roof fall risks in bord and pillar workings in coal mines:An approach, Safety Sci. (2008),doi:10.1016/j. ssci.2008.01.
    [133]D Bunting, Chamber Pillars in Deep Anthraeite Mines[M]. Trans. AIME,1911,236-268.
    [134]E N Zern,Coal Miners Pocketbook[M]. McGraw Hill 12#ed,1928,641-645.
    [135]Whittaker B N, Unlue T, Reddish DJ, Smith S F.Pillar design aspects for stability in deep Coal mines[A]. Proceedings Visualization[C].1993,375.
    [136]魏峰远,陈俊杰,邹友峰.留设保护煤柱尺寸的影响因素及变化规律探讨[J].中国矿业,2006,15(12):61-63.
    [137]魏峰远,陈俊杰,邹友峰.影响保护煤柱尺寸留设的因素及其变化规律[J].煤炭科学技术,2006,34(10):85-87.
    [138]J. Gramberg, Achsiale Sprodmchbiding Zweiter Und Hoherer Ordnurg Scherender BeitragZum 11, Landertreffen des Intermational Buros Fur Grbirgs mechanik dder Deutsdhen.
    [139]Cruden, D. M. Rock Slope Movements in the Candion Cordillera, Canadia Geotechnical Tournal,22,4,1985,528-540.
    [140]Ayetey, J. K. Slope Stability Investigation and Design Parameters Studies in Phyilites in Ghano, Bulletion of the International Association of Engineering Geology,19-25,1985.
    [141]D. F. Howarth. The Effect of Pre-Ezisting Microcaviyies on Mechanical Rock Performance in Sedimentary and Crystalline Rock, Int. J. Rock Mech. Min. Sci. Vol.24,4,223-233,1987.
    [142]R. W. Seedsman. Strength Implication of the Crystalline and osmetic Swelling of Claysin Shaled, Int. J. Rock Min. Sci. VOl.24, No.6,357-363, 1987.
    [143]李世辉.隧道围岩稳定性系统分析[M].北京:中国铁道出版社,1991.
    [144]陈宗基,康文法.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报,1982,1(1):1-1992.
    [145]李玉生.西德煤矿防治巷道底鼓及改善支护的新方法[J].煤炭科学技术,1982(6):52-55.
    [146]Farmer, I. W.汪浩译.岩石的工程性质[M].徐州:中国矿业大学出版社,1988.
    [147]韩立军,陈学伟,李山年.软岩动压巷道锚注支护试验研究[J].煤炭学报,1998.23(4):241-245.
    [148]周钢,戴标兵.软岩回采巷道的联合支护新技术研究[J].煤炭学报,1998,23(2):145-149.
    [149]姚国平.柳新煤矿回采巷道底臌防治的研究.[硕士学位论文]中国矿业大学, 1990,5.
    [150]汪理全,李学华,周劲锋等.高应力软岩硐室底鼓及其治理[J].矿山压力与顶板管理,1997(3):131-133.
    [151]段浓田,姜浩.应用卸压控制法支护软岩巷道[J].煤矿开采,2000(supply):44-46.
    [152]潘一山,李国臻,章梦涛.深埋软弱岩层巷道底鼓机理及控制的模拟实验研究[J].矿压力与顶板管理,1992,2:9-13.
    [153]范坚.国内外软岩工程支护技术发展与动向[J].江西煤炭科技,1995(1):7-12.
    [154]黄运飞.切缝对软岩巷道维护效果的模型试验研究[J].软岩工程,1998(1):10-14.
    [155]井原恕等.采用巷帮卸压法的巷道维护效果[J].井巷地压与支护,1985(1):51-58.
    [156]Roest J.P.A.在高应力状态下通过巷道围岩卸压圈保障巷道的稳定[J].矿山压力,1985(1):74-77.
    [157]康红普.邻近开巷卸压法维护软岩大断面峒室的研究与实践[J].岩石力学与工程学报,1993,12(1):20-27.
    [158]张东升.卸压法防治胶带运输机峒室底臌的研究.[硕士学位论文]中国矿业大字,1990,12.
    [159]Serata s.Stress control methods:Quantitative approach to stabilizing mine opening in weak ground. Stability in Underground Mining,1984:52-98.
    [160]科森列夫Г.Г.岩体松动爆破卸压的应用[J].河南煤炭,1984,(1):57-59.
    [161]利特维斯基Г.Г.巷道围岩应力状态的控制[J].石煤科技,1983,(3):48-50.
    [162]马念杰,侯朝炯.采准巷道矿压理论及应用[M].煤炭工业出版社,1995,10.
    [163]李东勇,康天合,赵永宏.弱化回采巷道顶板降低工作面侧向应力的模拟研究[J].太原理工大学学报,2004,35(3):294-298.
    [164]刘正和,赵阳升,弓培林等.回采巷道顶板大深度切缝后煤柱应力分布特征[J].煤炭学报,2011,36(1):18-23.
    [165]刘正和,赵阳升,弓培林等.大采高放顶煤工作面矿压显现规律及围岩控制研究[J].太原理工大学学报,2011,42(5):524-527.
    [166]姜耀东,吕玉凯,赵毅鑫等.承压水上开采工作面底板破坏规律相似模拟试验[J].岩石力学与工程学报,2011,30(8):1572-1578.
    [167]冯国瑞,任亚峰,康立勋等.白家庄煤矿垮落法残采区上行开采相似模拟实验研究[J].煤炭学报,2011,36(4):544-550.
    [168]胡耀青,赵阳升,杨栋.采场变形破坏的三维固流耦合模拟实验研究[J]辽宁工程技术大学学报,2007,(04).
    [169]林韵梅.实验岩石力学模拟研究[M].北京:煤炭工业出版社,1984.
    [170]康天合,柴肇云,李义宝等.底层大采高综放全厚开采20 m特厚中硬煤层的物理模拟研究[J].岩石力学与工程学报,2007,26(5)1065-1072.
    [171]胡耀青,赵阳升,杨栋.带压开采顶板破坏规律的三维相似模拟研究[J].岩石力学与工程学报,2003,22(8):1239-1243.
    [172]李向阳,李俊平,周创兵等.采空场覆岩变形数值模拟与相似模拟比较研究[J].岩土力学2005,26(12):1907-1912.
    [173]弓培林,胡耀青,赵阳升.带压开采底板变形破坏规律的三维相似模拟研究[J].岩石力学与工程学报,2005,24(23):4396-4402.
    [174]郜进海,康天合,靳钟铭.巨厚薄层状顶板回采巷道围岩裂隙演化规律的相似模拟试验研究[J].岩石力学与工程学报,2004,23(19):3292-3297.
    [175]靳钟铭,徐林生.煤矿坚硬顶板控制[M].煤炭工业出版社,1994,12.
    [176]靳钟铭,魏锦平,靳文学.放顶煤采场前支承压力分布特征[J].太原理工大学学报,2001,32(3):216-218.
    [177]靳钟铭.放顶煤开采理论与技术[M].煤炭工业出版社.2001.
    [178]弓培林,靳钟铭.大采高综采采场顶板控制力学模型研究[J].岩石力学与工程学报,2008,27(1):193-198.
    [179]弓培林,靳钟铭.大采高采场覆岩结构特征及运动规律研究[J].煤炭学报,2004,29(1):7-11.
    [180]靳钟铭,徐林生.煤矿坚硬顶板控制[M].煤炭工业出版社,1994.
    [181]胡果伟,靳钟铭.大采高综采工作面矿压观测及其显现规律研究[J].太原理工大学学报,2006,37(2):127-130.
    [182]弓培林,靳钟铭,郝海金.综采采场超大空间结构稳定性控制及工艺参数优化[J]. 岩石力学与工程学报,2002,21(增):1982-1985.
    [183]靳钟铭,赵阳升,张惠轩.采场老顶变形与破坏的时效特性研究[J].煤炭学报,1991,16(2)21-28.
    [184]赵阳升.有限元法及其在采矿工程中的应用[M].煤炭工业出版社,1994.12.
    [185]张百胜.极近距离煤层开采围岩控制理论及技术研究[D].太原理工大学,2008.
    [186]张文艺等.缩小防水煤柱综放工作面矿压特征[J].矿山压力与顶板管理,2001,(12).
    [187]谢明荣,林东才.矿压测控技术[M].中国矿业大学出版社,1997.
    [188]夏红兵.煤系高岭土安全开采理论分析及试验研究[D].中国科学技术大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700