去分化表皮细胞重获再生表皮能力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景和目的
     较大面积重度的全身烧创伤患者,通过皮肤移植等常规手术方法,几乎无一避免会出现创面瘢痕愈合的结局。虽然表皮干细胞对于严重创面修复的组织工程学具有重要帮助,但重度全身烧伤患者残存的正常皮肤很少,正常皮肤的表皮干细胞数量本身就很有限,只占正常表皮基底层的1%-10%,干细胞数量远达不到修复上述创面的要求,显然这会明显限制干细胞组织工程技术在临床上的广泛应用。是否有可以解决表皮干细胞短缺,获得足量的表皮干细胞将其移植到创面,最终可能实现创面的“完美修复”这样的方法呢?
     去分化就是获得大量成体干细胞的途径之一,表皮细胞存在去分化现象。已分化成熟的终末分化表皮细胞通过去分化可以反向分成他们的父辈细胞,也就是说,表皮细胞可以从“年老的”分化状态返回到“年轻的”不完全分化、甚至具有表皮干细胞特征的幼稚状态的过程。而这些去分化来源的“年轻”细胞可用于上述创面治疗。我们如何主动地将已分化细胞在体外为诱导成为分化程度较低形式的细胞,甚至分化程度更低的再生皮肤能力更强的表皮干细胞呢?
     答案是肯定的。有报道,某些特定因素可以诱导表皮细胞去分化。因此,建立可靠而稳定的去分化方法将从根本上解决上述疾病治疗面临的表皮干细胞数量短缺的严重问题。去分化方法是一符合道德、伦理规范的替代方案,没有遗传不相容和组织排斥风险。
     成熟细胞去分化时涉及几条复杂的信号通路,如Wnt/β-连环蛋白、p38、细胞外信号调节激酶(ERK)和Janus激酶(JAK)/信号转导和转录激活因子(STAT)信号通路。但尚未有研究报告诱导分化表皮细胞退回到有再生能力不成熟状态的通路。越来越多的证据表明,Wnt信号转导对于皮肤的正常发育十分必要,Wnt信号通路的关键效应器是参与维持皮肤祖细胞群的β-连环蛋白。研究亦表明,β-连环蛋白水平升高会导致表皮干细胞增生并诱导细胞转分化为毛囊干细胞。
     本研究第一部分是在前期表皮干细胞工作基础上,继续探讨并确立稳定的表皮干细胞培养体系,为深入去分化研究奠定基础。第二部分特别针对性探讨β-连环蛋白活化对于分化表皮细胞特性的影响。首先应用氯化锂(LiCl)和高度特异性GSK-3β抑制剂诱导β-连环蛋白表达,然后针对β-连环蛋白活化对于去分化细胞的形态、表型和生长特性的影响进行观察,最后对比去分化细胞体外再生表皮的能力。
     二、方法
     新鲜人包皮片前期处理后,用中性蛋白水解酶分离得到表皮,制成单细胞悬液,用差速贴壁法移去已分化表皮细胞,光镜和电镜下观察表皮干细胞的特点,并使用表皮干细胞标记物鉴定。利用差速贴壁法从表皮片中分离出人体表皮细胞接种于6孔板并分为3组,即对照组(无处理组),LiCl处理组和GSK-3β抑制剂处理组。应用LiCl和高度特异性GSK-3β抑制剂活化β-连环蛋白表达,针对β-连环蛋白活化对于去分化细胞的形态、表型和生长特性的影响观察,并对比细胞体外再生表皮的能力。
     三、结果
     差速贴壁法分离表皮得到的表皮干细胞具有干细胞的形态特点,光镜下细胞贴壁生长,由小圆珠状渐成方形的铺路石状。电镜下核大,细胞器少,为典型非成熟细胞。2周后原代细胞铺满瓶底。用含生长促进因子的DMEM/F12培养的表皮干细胞24h即可伸展贴壁和伸展,原代细胞3-4d即铺满瓶底。原代培养的表皮干细胞免疫组化显示表皮干细胞的系列表面标记物,不表达已分化表皮细胞的标记物CK10。
     3组细胞中,免疫印迹和光动力学分析显示β-连环蛋白在LiCl组和GSK-3β抑制剂组表皮细胞核内的表达较未处理组显著增高。培养3、6d时,倒置相差显微镜下见两处理组细胞表现为表皮干细胞的典型变化。免疫组化分析表明两处理组CK10表达的数量和比例均显著下降,而表皮干细胞的标记物CK19和β1整合素的表达加强。与对照组相比,Oct4和Nanog基因在去分化的处理组细胞中高4-6倍。3d时两处理组已明显的集落形成,而对照组生长稀疏。流式细胞仪检测出的细胞周期数据表明两处理组中有较多细胞处于增殖期,且与对照组有显著差异。持续传代培养表明两处理组有更强的远期增殖潜能。培养11d后,对照组未成表皮单层,但处理组和表皮干细胞组在真皮替代物表面再生了复层表皮。
     四、结论
     采用中性蛋白酶选择性的水解真皮和表皮之间的细胞连接,再用差速贴壁法分离表皮干细胞是一种高效的表皮干细胞获取方法。含10%FBS低糖DMEM/F12是可以保持表皮干细胞去分化状态的良好培养基。
     表皮细胞在分化后能够因β-连环蛋白的表达增加而重新恢复表皮干细胞的特征。LiCl和GSK-3β抑制剂处理可引起分化后表皮细胞胞核中的β-连环蛋白表达增加。去分化细胞表皮能表现出干细胞的形态、表型和生长特性。此外,去分化的细胞所再生的表皮与表皮干细胞所产生的类似。实验结果表明,通过调控β-连环蛋白的表达实现高效的去分化过程可产生丰富的表皮干细胞。Wnt/β-连环蛋白信号通路对皮肤创面修复与再生起着重要作用。
Background and Objectives
     Scar outcome will inevitably appear in patients with severe and large area burns treatedwith conventional surgery. Epidermal stem cells are important for tissue engineering, butseverely burned patients remained extremely limited normal skin for stem cell therapy. Thenumber of not sufficient epidermal stem cells in normal skin only accounts for1%-10%ofskin base layer cells. This greatly limits the clinical application of epidermal stem cell tissueengineering technology. Is there any other method that can completely solve the shortage ofepidermal stem cells, produce them enough for transplant, and even realize "perfect woundhealing" eventually?
     Cell dedifferentiation, a popular phenomenon founded recently, is a good way to produceabundant epidermal stem cells. Mature terminally differentiating epidermal cells can reverseto their precursor cells by dedifferentiation, that to say, Epidermal cells can reverse from "old"differentiated state to the not fully differentiated "young" state, even "naive" state with thecharacteristics of epidermal stem cells. These dedifferentiated yong epidermal cells can beused for the severe wound mentioned above. How can we actively induce differentiatedmature cells into lower differentiated immature state with a regenerative ability or directlyinto dedifferentiated epidermal stem cells with a strong regenerative ability?
     The answer is obviously YES. It was reported that epidermal cell dedifferentiation hadbe induced by some specific factors. Therefore, it is important to establish a reliable andstable cell differentiation way to solve the stem cell shortage. Dedifferentiation isalternatively a moral and ethical way for disease therapy, with no genetic incompatibility ortissue rejection risk.
     Several signaling pathways have been implicated in dedifferentiation of mature cellssuch as the Wnt/β-catenin, p38, extracellular signal-regulated kinase (ERK) and Janus kinase(JAK)/signal transducer and activator of transcription (STAT) signaling pathways. However,the pathway that induces differentiated epidermal cells to reverse into an immature state with a regenerative ability has not been reported. There is increasing evidence that Wnt signaling isnecessary for normal skin development, and a key effector in the Wnt signaling pathway isβ-catenin that is involved in maintenance of the progenitor cell population in skin. Studieshave also shown that elevated β-catenin levels lead to proliferation of epidermal stem cellsand induce trans-differentiation into hair follicle stem cells.
     Based on our early epidermal stem cell research work, we continue to explore and try toestablish a stable skin stem cell culture system in the first part of the present study, which isimportant to further cell differentiation research. In the following part, the effect of β-cateninactivation on the characteristics of differentiated epidermal cells was investigated. First,β-catenin expression was induced by applying LiCl and a highly specific GSK-3β inhibitor.Then, the effects of β-catenin activation on morphological, phenotypic and growthcharacteristics of the dedifferentiated cells were observed. Finally, the ability ofdedifferentiated cells to regenerate a skin equivalent in vitro was investigated.
     Methods
     Differentiated human epidermal cells were isolated from epidermal sheets by differentialadhesion. Human foreskin specimens were digested at4℃with2mg/ml protease for10-12hand then the epidermis was isolated from the dermis. The isolated epidermis sheets were cutinto pieces, digested with0.25%trypsinase for20min at37℃and made into single-cellsuspensions. Then observe characteristics of epidermal stem cells under light and electronicmicroscopy, and immunohistochemical expression of epidermal stem cell series surfacemarkers.
     For the second part of the experiment, differentiated human epidermal cells, isolatedfrom epidermal sheets by differential adhesion, were plated into6-well plates and divided intothree groups. LiCl and a highly specific GSK-3β inhibitor were added to the desired wells,and sodium chloride was added to the control without inhibitors according to the experimentalconditions. First, β-catenin expression was induced by applying LiCl and a highly specificGSK-3β inhibitor. Then, the effects of β-catenin activation on morphological, phenotypic andgrowth characteristics of the dedifferentiated cells were observed. Finally, the ability ofdedifferentiated cells to regenerate a skin equivalent in vitro was investigated.
     Results
     The isolated epidermal cells exhibited the characteristics of epidermal stem cells, smallround pearl shape with a large nuclear-cytoplasmic ratio and gradually changing into squareslab shape. In addition, less organelles were observed under electronic microscope. Twoweeks later the original cultured cells covered the bottle bottom. Cells cultured in growthpromoting factor DMEM/F12stick to the bottom24h later and covered the bottom in3-4d.The original generation epidermal stem cells immunohistochemically expressed epidermalstem cell series surface markers except for CK10.
     Elevated expression of β-catenin in the nuclei of epidermal cells cultured with LiCl orGSK-3β inhibitor. β-catenin expression tested by Western Blot and measured by densitometricanalysis. There are striking differences in morphology between differentiated epidermal cellsand epidermal stem cells. The former are large flat-shaped cells with a smallnuclear-cytoplasmic ratio and the latter are small round shaped cells with a largenuclear-cytoplasmic ratio. These results demonstrated that the induced cells had morphologiccharacteristics of epidermal stem cells. The expression of CK10, CK19and β1integrin incultured epidermal cells in the presence of LiCl or GSK-3β inhibitor was studiedimmunohistochemically. LiCl or GSK-3β inhibitor significantly decreased the number andproportion of CK10positive cells. In contrast, CK19and β1integrin expression was enhancedby the addition of LiCl or GSK-3β inhibitor to the culture medium. Real-time PCR analysisrevealed that the induced cells were>4-6-fold enriched for both Oct4and Nanog comparedwith control. Cells in the control group grew dispersedly, but the cells treated with LiCl orGSK-3β inhibitor obviously formed colonies and the colonies gradually enlarged. However,there was no obvious difference in clonogenic capacity between LiCl or GSK-3βinhibitor-treated cells. In the induced groups, more cells were in the S and G2/M phase of thecell cycle compared with the control group. In the LiCl or GSK-3β inhibitor groups more cellswere in the proliferative phase. LiCl or GSK-3β inhibitor-induced cells have long-termgrowth potential. After11d, we found that differentiated epidermal cells could not form anepidermal monolayer, the induced epidermal cells and epidermal stem cells were capable ofregenerating a stratified epidermal layer on the dermal equivalent.
     Conclusions
     Epidermal stem cells can be effectively isolated by differential adhesion after early stageelectively digesting connections between dermis and epidermis. Low carbohydrate DMEM/F12(10%FBS) is a high-efficient medium for epidermal stem cells culture to keep theircharacteristics.
     Differentiated epidermal cells regain the characteristics of epidermal stem cells byincreasing β-catenin expression. LiCl and GSK-3β inhibitor treatments resulted in anaccumulation of β-catenin in the nuclei of differentiated epidermal cells. The dedifferentiatedcells exhibited morphological, phenotypic and growth features of epidermal stem cells. Inaddition, dedifferentiated cells regenerated a skin equivalent similar to that of epidermal stemcells. These data suggest that abundant epidermal stem cells can be generated with an efficientdedifferentiation process by manipulating the expression of β-catenin. The Wnt/β-cateninsignaling pathway plays an important role in skin wound repair and regeneration
引文
1. Aguilar-Arnal L, Sassone-Corsi P. Stem cells: The clock within. Nature,2011,480(7376):185-187
    2. Wallace DC. Mitochondrial diseases in man and mouse. Science,1999,283(5407):1482
    3. Chen M, Przyborowski M, Berthiaume F. Stem cells for skin tissue engineering andwound healing. Crit Rev Biomed Eng,2009,37:399-421
    4. Cotsarelis G, Kaur P, Dhouailly D, Hengge U, Bickenbach J. Epithelial stem cells in theskin: definition, markers, localization and functions. Exp Dermatol,1999,8:80-88
    5. Dunnwald M, Tomanek-Chalkley A, Alexandrunas D, et al. Isolating a pure population ofepidermal stem cells for use in tissue engineering. Experimental Dermatology,2001,10:1-45
    6. Fu X, Sun X, Li X, Sheng Z. Dedifferentiation of epidermal cells to stem cells in vivo.Lancet,2001,358:1067-1068
    7. Ischenko I, Seeliger H, Schaffer M, Jauch KW, Bruns CJ. Cancer stem cells: how can wetarget them? Curr Med Chem,.2008,15(30):3171-3184
    8. Jabari S, Meissnitzer M, Quint K, Gahr S, Wissniowski T, Hahn EG, Neureiter D, OckerM. Cellular plasticity of trans-and dedifferentiation markers in human hepatoma cells invitro and in vivo. Int J Oncol,2009,35(1):69-80
    9. Kurata S, Okuyama T, Osada M, et al. p51/p63Controls Subunit a3of the MajorEpidermis Integrin Achoring the Stem Cells to the Niche. J Biol Chem,2004,279(48):50069-50077
    10. Li H, Fu X, Zhang L, Sun T, Wang J. In vivo dedifferentiation of human epidermal cells.Cell Biol Int,2007,31:1436-1441
    11. Lin KK, Andersen B. Have hair follicle stem cells shed their tranquil image? Cell StemCell,200,3(6):581-582
    12. Liu Y, Zhou H, Gao F. Isolation and identification of stem cells from adult cashmere goatskin. Int J Dermatol,2008,47(6):551-556
    13. Michel M, Torok B, Godbout MJ, et al. Keratin19as a biochemical marker of skin stemcells in vivo and in vitro: keratin19expressing cells are differentially localized infunction of anatomic sites, and their number varies with donor age and culture stage. JCell Sci,1996,109(5):1017-1028
    14. Morgan BA. A glorious revolution in stem cell biology. Nat Genet.2008,40(11):1269-1270
    15. Regnier M, Patwardhan A, Scheynius A, Schmidt R. Reconstructed human epidermiscomposed of keratinocytes, melanocytes and Langerhans cells. Med Biol Eng Comput,1998,36:821-824
    16. Riva F, Casasco A, Nespoli E, Cornaglia AI, Casasco M, Faga A, Scevola S, Mazzini G,Calligaro A. Generation of human epidermal constructs on a collagen layer alone. TissueEng,2007,13:2769-2779
    17. Ryu JH, Kim SJ, Kim SH, Oh CD, Hwang SG, Chun CH, Oh SH, Seong JK, Huh TL,Chun JS. Regulation of the chondrocyte phenotype by beta-catenin. Development,2002,129(23):5541-5550
    18. Staniszewska M, S uczanowska-G bowska S, Druka a J. Stem cells and skinregeneration. Folia Histochem Cytobiol.2011,49(3):375-380
    19. Slam MS, Zhou H. Isolation and characterization of putative epidermal stem cells derivedfrom Cashmere goat fetus. Eur J Dermatol,2007,17:302-308
    20. Watt FM, Collins CA. Role of beta-catenin in epidermal stem cell expansion, lineageselection, and cancer. Cold Spring Harb Symp Quant Biol,2008,73:503-512
    21. Zhang CP, Fu XB, Chen P, Bao XX, Li F, Sun XY, Lei YH, Cai S, Sun TZ, Sheng ZY.Dedifferentiation-derived cells exhibit phenotypic and functional characteristics ofepidermal stem cells. J Cell Mol Med,2010,14(5):1135-1145
    22. Zhu AJ, Watt FM. Beta-catenin signalling modulates proliferative potential of humanepidermal keratinocytes independently of intercellular adhesion. Developmen,1999,126(10):2285-2298
    23.赵志力,付小兵.修复细胞分化的调控机制与鉴别.中国危重病急救医学,2002,14(2):120-122
    24.赵志力,付小兵,孙同柱等.不同发育阶段人皮肤表皮干细胞增殖分化特征及其与创面修复结局关系的研究.解放军医学杂志,2002,27(5):388-389
    25.赵志力,付小兵,孙同柱等.成人正常皮肤和瘢痕组织表皮干细胞定位与表达特征的比较研究.中华烧伤杂志,2003,19(1):12-14
    26.赵志力,杨蓉娅,谷廷敏,王驰,隋志甫,常冬青.血管内皮细胞氧化应激损伤对骨髓间质干细胞趋化作用的体外观察.中华医学杂志,2009,89(22):1577-1581
    27.蔡飒,付小兵,雷永红等.在体诱导表皮细胞去分化的初步实验研究.第三军医大学学报,2008,30(21):1998-2002
    28.雷永红,付小兵,盛志勇.成体干细胞生物学的研究进展.感染.炎症.修复,2005,6(3):165-169
    29.蔡飒,孙同柱,付小兵.人表皮角质细胞系培养过程中细胞生物学行为和表型的变化,感染.炎症.修复,2007,8(4):199-201
    30.付小兵.从去分化途径来制造干细胞:新的机遇和挑战.感染.炎症.修复,2008,9(3):131-133
    1. Bonitsis N, Batistatou A, Karantima S, Charalabopoulos K. The role of cadherin/catenincomplex in malignant melanoma. Exp Oncol,2006,28:187-193
    2. Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A, Kirchner T.Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition,mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs,2005,179:56-65
    3. Chen M, Przyborowski M, Berthiaume F. Stem cells for skin tissue engineering andwound healing. Crit Rev Biomed Eng,2009,37:399-421
    4. Cotsarelis G, Kaur P, Dhouailly D, Hengge U, Bickenbach J. Epithelial stem cells in theskin: definition, markers, localization and functions. Exp Dermatol,1999,8:80-88
    5. Eggan K, Baldwin K, Tackett M, Osborne J, Gogos J, Chess A, Axel R, Jaenisch R. Micecloned from olfactory sensory neurons. Nature,2004,428:44-49
    6. Eya T, Clevers H: Wnt signalling in stem cells and cancer. Nature,2005,434(7035):843-850
    7. Fu X, Sun X, Li X, Sheng Z. Dedifferentiation of epidermal cells to stem cells in vivo.Lancet,2001,358:1067-1068
    8. Gat, U., DasGupta, R., Degenstein, L. and Fuchs E. De novo hair follicle morphogenesisand hair tumors in mice expressing a truncated β-catenin in skin. Cell,1998,95:605-614
    9. Godoy P, Hengstler JG, Ilkavets I, Meyer C, Bachmann A, Müller A, Tuschl G, Mueller SO,Dooley S. Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoiddedifferentiation and transforming growth factor beta-induced apoptosis. Hepatology,2009,49(6):2031-2043
    10. Gustafson B, Smith U. Activation of canonical wingless-type MMTV integration sitefamily (Wnt) signaling in mature adipocytes increases beta-catenin levels and leads tocell dedifferentiation and insulin resistance. J Biol Chem,2010,285(18):14031-1441
    11. Harrisingh MC, Perez-Nadales E, Parkinson DB, Malcolm DS, Mudge AW, Lloyd AC.The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation. EMBO J,2004,23(15):3061-3071
    12. Hernon CA, Harrison CA, Thornton DJ, MacNeil S. Enhancement of keratinocyteperformance in the production of tissue-engineered skin using a low-calcium medium.Wound Repair Regen,2007,15:718-726
    13. Islam MS, Zhou H. Isolation and characterization of putative epidermal stem cellsderived from Cashmere goat fetus. Eur J Dermatol,2007,17:302-308
    14. Jabari S, Meissnitzer M, Quint K, Gahr S, Wissniowski T, Hahn EG, Neureiter D, OckerM. Cellular plasticity of trans-and dedifferentiation markers in human hepatoma cells invitro and in vivo. Int J Oncol,2009,35(1):69-80
    15. Kiesslich T, Alinger B, Wolkersd rfer GW, Ocker M, Neureiter D, Berr F. Active Wntsignalling is associated with low differentiation and high proliferation in human biliarytract cancer in vitro and in vivo and is sensitive to pharmacological inhibition. Int J Oncol,2010,36(1):49-58
    16. Kim SJ, Kim HG, Oh CD, Hwang SG, Song WK, Yoo YJ, Kang SS, Chun JS. p38kinase-dependent and-independent Inhibition of protein kinase C zeta and-alpharegulates nitric oxide-induced apoptosis and dedifferentiation of articular chondrocytes. JBiol Chem,2002,277(33):30375-30381
    17. Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development.Proc Natl Acad Sci USA,1996,93(16):8455-8459
    18. Larouche D, Hayward C, Cuffley K, Germain L. Keratin19as a stem cell marker in vivoand in vitro. Methods Mol Biol,2005,289:103-110
    19. Latella L, Sacco A, Pajalunga D, Tiainen M, Macera D, D'Angelo M, Felici A, Sacchi A,Crescenzi M. Reconstitution of cyclin D1-associated kinase activity drives terminallydifferentiated cells into the cell cycle. Mol Cell Biol,2001,21:5631-5643
    20. Lebeau A, Unholzer A, Amann G, Kronawitter M, Bauerfeind I, Sendelhofert A, Iff A,L hrs U. EGFR, HER-2/neu, cyclin D1, p21and p53in correlation to cell proliferationand steroid hormone receptor status in ductal carcinoma in situ of the breast. BreastCancer Res Treat,2003,79(2):187-198
    21. Li H, Fu X, Zhang L, Sun T, Wang J. In vivo dedifferentiation of human epidermal cells.Cell Biol Int,2007,31:1436-1441
    22. Li J, Ishii T, Feinstein P, Mombaerts P. Odorant receptor gene choice is reset by nucleartransfer from mouse olfactory sensory neurons. Nature,2004,428:393-399
    23. Liu Y, Zhou H, Gao F. Isolation and identification of stem cells from adult cashmere goatskin. Int J Dermatol,2008,47(6):551-556
    24. Lluis F, Pedone E, Pepe S, Cosma MP. Periodic activation of Wnt/beta-catenin signalingenhances somatic cell reprogramming mediated by cell fusion. Cell Stem Cell,2008,3(5):493-507
    25. Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K.Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc NatlAcad Sci USA,2008,105:2883-2888
    26. Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. JCancer Res Clin Oncol,2003,129:199-221
    27. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M,Maeda M, Yamanaka S. The homeoprotein Nanog is required for maintenance ofpluripotency in mouse epiblast and ES cells. Cell,2003,113:631-642
    28. Morgan BA. A glorious revolution in stem cell biology. Nat Genet.2008,40(11):1269-1270
    29. Myers SR, Leigh IM, Navsaria H. Epidermal repair results from activation of follicularand epidermal progenitor keratinocytes mediated by a growth factor cascade. WoundRepair Regen,2007,15:693-701
    30. Nusse R. Wnt signaling and stem cell control. Cell Res,2008,18:523-527
    31. Papini S, Cecchetti D, Campani D, Fitzgerald W, Grivel JC, Chen S, Margolis L,Revoltella RP. Isolation and clonal analysis of human epidermal keratinocyte stem cellsin long-term culture. Stem Cells,2003,21:481-494
    32. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, DaleyGQ. Reprogramming of human somatic cells to pluripotency with defined factors. Nature.2008,451(7175):141-146
    33. Pesce M, Scholer HR. Oct-4: gatekeeper in the beginnings of mammalian development.Stem Cells,2001,19:271-278
    34. Redvers RP, Li A, Kaur P. Side population in adult murine epidermis exhibitsphenotypic and functional characteristics of keratinocyte stem cells. Proc Natl Acad SciUSA,2006,103:13168-13173
    35. Regnier M, Patwardhan A, Scheynius A, Schmidt R. Reconstructed human epidermiscomposed of keratinocytes, melanocytes and Langerhans cells. Med Biol Eng Comput,1998,36:821-824
    36. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature,2005,434:843-850
    37. Riva F, Casasco A, Nespoli E, Cornaglia AI, Casasco M, Faga A, Scevola S, Mazzini G,Calligaro A. Generation of human epidermal constructs on a collagen layer alone. TissueEng,2007,13:2769-2779
    38. Ryu JH, Kim SJ, Kim SH, Oh CD, Hwang SG, Chun CH, Oh SH, Seong JK, Huh TL,Chun JS. Regulation of the chondrocyte phenotype by beta-catenin. Development,2002,129(23):5541-5550
    39. Sheng XR, Brawley CM, Matunis EL. Dedifferentiating spermatogonia outcompetesomatic stem cells for niche occupancy in the Drosophila testis. Cell Stem Cell,2009,5(2):191-203
    40. Slam MS, Zhou H. Isolation and characterization of putative epidermal stem cells derivedfrom Cashmere goat fetus. Eur J Dermatol,2007,17:302-308
    41. Tai MH, Chang CC, Kiupel M, Webster JD, Olson LK, Trosko JE. Oct4expression inadult human stem cells: evidence in support of the stem cell theory of carcinogenesis.Carcinogenesis,2005,26:495-502
    42. Watt FM, Collins CA. Role of beta-catenin in epidermal stem cell expansion, lineageselection, and cancer. Cold Spring Harb Symp Quant Biol,2008,73:503-512
    43. Watt FM. Role of integrins in regulating epidermal adhesion, growth and differentiation.EMBO,2002,21(15):3919-3926
    44. Xie JL, Li TZ, Qi SH, Huang B, Chen XG, Chen JD. A study of using tissue-engineeredskin reconstructed by candidate epidermal stem cells to cover the nude mice withfull-thickness skin defect. J Plast Reconstr Aesthet Surg,2007,60:983-990
    45. Yamamoto H, Ochiya T, Takeshita F, Toriyama-Baba H, Hirai K, Sasaki H, Sasaki H,Sakamoto H, Yoshida T, Saito I, Terada M. Enhanced skin carcinogenesis in cyclinD1-conditional transgenic mice: cyclin D1alters keratinocyte response to calcium-induced terminal differentiation. Cancer Res,2002,62(6):1641-1647
    46. Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, Cha SY, Ryu JK, Choi YJ, Kim J, FearonER, Weiss SJ. A Wnt-Axin2-GSK3beta cascade regulates Snail1activity in breast cancercells. Nat Cell Biol,2006,8:1398-1406
    47. Yoon EK, Lee WK, Lee JH, Yu SM, Hwang SG, Kim SJ. ERK-1/-2and p38kinaseoppositely regulate15-deoxy-delta(12,14)-prostaglandinJ(2)-Induced PPAR-gammaactivation that mediates dedifferentiation but not cyclooxygenase-2expression inarticular chondrocytes. J Korean Med Sci,2007,22(6):1015-1021
    48. Zangrossi S, Marabese M, Broggini M, Giordano R, D'Erasmo M, Montelatici E, Intini D,Neri A, Pesce M, Rebulla P, Lazzari L. Oct-4expression in adult human differentiatedcells challenges its role as a pure stem cell marker. Stem Cells,2007,25:1675-1680
    49. Zhang CP, Fu XB, Chen P, Bao XX, Li F, Sun XY, Lei YH, Cai S, Sun TZ, Sheng ZY.Dedifferentiation-derived cells exhibit phenotypic and functional characteristics ofepidermal stem cells. J Cell Mol Med,2010,14(5):1135-1145
    50. Zhang DL, Gu LJ, Liu L, Wang CY, Sun BS, Li Z, Sung CK. Effect of Wnt signalingpathway on wound healing. Biochem Biophys Res Commun,2009,378(2):149-151
    51. Zhu AJ, Watt FM. Beta-catenin signalling modulates proliferative potential of humanepidermal keratinocytes independently of intercellular adhesion. Developmen,1999,126(10):2285-2298
    52. Zhuang S, Yan Y, Han J, Schnellmann RG. p38kinase-mediated transactivation of theepidermal growth factor receptor is required for dedifferentiation of renal epithelial cellsafter oxidant injury. J Biol Chem,2005,280(22):21036-21042
    53. Zouboulis CC, Adjaye J, Akamatsu H, Moe-Behrens G, Niemann C. Human skin stemcells and the ageing process. Exp Gerontol,2008,43(11):986-097
    54. Sumer H, Liu J, Ortega LM, Verma PJ. Inducing pluripotency in ruminants. Reprod FertilDev,2011,24(1):285
    55. Miyanari Y, Torres-Padilla ME. Control of ground-state pluripotency by allelicregulation of Nanog. Nature,2012,483(7390):470-473
    56. Ball SG, Shuttleworth A, Kielty CM. Inhibition of platelet-derived growth factor receptorsignaling regulates Oct4and Nanog expression, cell shape, and mesenchymal stem cellpotency. Stem Cells,2012,30(3):548-560
    57. Sugimura S, Kobayashi S, Hashiyada Y, Ohtake M, Kaneda M, Yamanouchi T, MatsudaH, Aikawa Y, Watanabe S, Nagai T, Kobayashi E, Konishi K, Imai K. Follicular growth-stimulated cows provide favorable oocytes for producing cloned embryos. CellReprogram,2012,14(1):29-37
    58.赵志力,付小兵,孙同柱等.人胎儿不同发育时期皮肤β1整合素,角蛋白19,10表达特征及其与创面无瘢痕愈合关系的研究.中华创伤杂志,2002,18(7):404-406
    59.蔡飒,付小兵,孙同柱,王君,韩冰,韩兵,盛志勇.体外诱导表皮细胞去分化的初步实验研究.解放军医学杂志,2007,32(10):1023-1027
    60.孙晓艳,刘惠玲,付小兵. bFGF诱导表皮细胞去分化形成短暂扩充细胞,2010,30(9):2041-2046
    61.付小兵.从去分化途径来制造干细胞:新的机遇和挑战.感染.炎症.修复,2008,9(3):131-133
    62.雷永红,付小兵,盛志勇.成体干细胞生物学的研究进展.感染.炎症.修复,2005,6(3):165-169
    63.蔡世忠,李芳菲,王亚平.转录因子Oct4、Nanog及相关调控网络与多能干细胞特性的维持.解剖科学进展,2011,17(1):74-78
    64.赵志力,杨蓉娅,谷廷敏,王驰,隋志甫,常冬青.血管内皮细胞氧化应激损伤对骨髓间质干细胞趋化作用的体外观察.中华医学杂志,2009,89(22):1577-1581
    1. Aguilar-Arnal L, Sassone-Corsi P. Stem cells: The clock within. Nature,2011,480(7376):185-187
    2. Ball SG, Shuttleworth A, Kielty CM. Inhibition of platelet-derived growth factor receptorsignaling regulates Oct4and Nanog expression, cell shape, and mesenchymal stem cellpotency. Stem Cells,2012,30(3):548-560
    3. Bonitsis N, Batistatou A, Karantima S, Charalabopoulos K. The role of cadherin/catenincomplex in malignant melanoma. Exp Oncol,2006,28:187-193
    4. Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A, Kirchner T.Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition,mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs,2005,179:56-65
    5. Chen M, Przyborowski M, Berthiaume F. Stem cells for skin tissue engineering andwound healing. Crit Rev Biomed Eng,2009,37:399-421
    6. Cotsarelis G, Kaur P, Dhouailly D, Hengge U, Bickenbach J. Epithelial stem cells in theskin: definition, markers, localization and functions. Exp Dermatol,1999,8:80-88
    7. Dunnwald M, Tomanek-Chalkley A, Alexandrunas D, et al. Isolating a pure populationof epidermal stem cells for use in tissue engineering. Experimental Dermatology,2001,10:1-45
    8. Eggan K, Baldwin K, Tackett M, Osborne J, Gogos J, Chess A, Axel R, Jaenisch R. Micecloned from olfactory sensory neurons. Nature,2004,428:44-49
    9. Eya T, Clevers H: Wnt signalling in stem cells and cancer. Nature,2005,434(7035):843-850
    10. Fu X, Sun X, Li X, Sheng Z. Dedifferentiation of epidermal cells to stem cells in vivo.Lancet,2001,358:1067-1068
    11. Gat, U., DasGupta, R., Degenstein, L. and Fuchs E. De novo hair follicle morphogenesisand hair tumors in mice expressing a truncated β-catenin in skin. Cell,1998,95:605-614
    12. Godoy P, Hengstler JG, Ilkavets I, Meyer C, Bachmann A, Müller A, Tuschl G, MuellerSO, Dooley S. Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoiddedifferentiation and transforming growth factor beta-induced apoptosis. Hepatology,2009,49(6):2031-2043
    13. Guasch G, Blanpain C. Defining the epithelial stem cell niche in skin. Med Sci,2004,20(3):265-267
    14. Gustafson B, Smith U. Activation of canonical wingless-type MMTV integration sitefamily (Wnt) signaling in mature adipocytes increases beta-catenin levels and leads tocell dedifferentiation and insulin resistance. J Biol Chem,2010,285(18):14031-1441
    15. Harrisingh MC, Perez-Nadales E, Parkinson DB, Malcolm DS, Mudge AW, Lloyd AC.The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation. EMBO J,2004,23(15):3061-3071
    16. Hernon CA, Harrison CA, Thornton DJ, MacNeil S. Enhancement of keratinocyteperformance in the production of tissue-engineered skin using a low-calcium medium.Wound Repair Regen,2007,15:718-726
    17. Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W. beta-catenin controls hairfollicle morphogenesis and stem cell differentiation in the skin. Cell,2001,105(4):533-545
    18. Islam MS, Zhou H. Isolation and characterization of putative epidermal stem cellsderived from Cashmere goat fetus. Eur J Dermatol,2007,17:302-308
    19. Jabari S, Meissnitzer M, Quint K, Gahr S, Wissniowski T, Hahn EG, Neureiter D, OckerM. Cellular plasticity of trans-and dedifferentiation markers in human hepatoma cells invitro and in vivo. Int J Oncol,2009,35(1):69-80
    20. Kiesslich T, Alinger B, Wolkersd rfer GW, Ocker M, Neureiter D, Berr F. Active Wntsignalling is associated with low differentiation and high proliferation in human biliarytract cancer in vitro and in vivo and is sensitive to pharmacological inhibition. Int J Oncol,2010,36(1):49-58
    21. Kim SJ, Kim HG, Oh CD, Hwang SG, Song WK, Yoo YJ, Kang SS, Chun JS. p38kinase-dependent and-independent Inhibition of protein kinase C zeta and-alpharegulates nitric oxide-induced apoptosis and dedifferentiation of articular chondrocytes. JBiol Chem,2002,277(33):30375-30381
    22. Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development.Proc Natl Acad Sci USA,1996,93(16):8455-8459
    23. Knoblich JA. Mechanisms of asymmetric stem cell division. Cell,2008,132(4):583-597
    24. Kurata S, Okuyama T, Osada M, et al. p51/p63Controls Subunit a3of the MajorEpidermis Integrin Achoring the Stem Cells to the Niche. J Biol Chem,2004,279(48):50069-50077
    25. Larouche D, Hayward C, Cuffley K, Germain L.Keratin19as a stem cell marker in vivoand in vitro. Methods Mol Biol,2005,289:103-110
    26. Latella L, Sacco A, Pajalunga D, Tiainen M, Macera D, D'Angelo M, Felici A, Sacchi A,Crescenzi M. Reconstitution of cyclin D1-associated kinase activity drives terminallydifferentiated cells into the cell cycle. Mol Cell Biol,2001,21:5631-5643
    27. Lebeau A, Unholzer A, Amann G, Kronawitter M, Bauerfeind I, Sendelhofert A, Iff A,L hrs U. EGFR, HER-2/neu, cyclin D1, p21and p53in correlation to cell proliferationand steroid hormone receptor status in ductal carcinoma in situ of the breast. BreastCancer Res Treat,2003,79(2):187-198
    28. Lechler T, Fuchs E. Asymmetric cell divisions promote stratification and differentiationof mammalian skin. Nature,2005,437(7056):275-280
    29. Lena AM, Shalom-Feuerstein R, Rivetti di Val Cervo P, Aberdam D, Knight RA, MelinoG, Candi E. miR-203represses ‘stemness’ by repressing DeltaNp63. Cell Death Differ,2008,15(7):1187-1195
    30. Li H, Fu X, Zhang L, Sun T, Wang J. In vivo dedifferentiation of human epidermal cells.Cell Biol Int,2007,31:1436-1441
    31. Li J, Ishii T, Feinstein P, Mombaerts P. Odorant receptor gene choice is reset by nucleartransfer from mouse olfactory sensory neurons. Nature,2004,428:393-399
    32. Lin KK, Andersen B. Have hair follicle stem cells shed their tranquil image? Cell StemCell,200,3(6):581-582
    33. Liu Y, Zhou H, Gao F. Isolation and identification of stem cells from adult cashmere goatskin. Int J Dermatol,2008,47(6):551-556
    34. Lluis F, Pedone E, Pepe S, Cosma MP. Periodic activation of Wnt/beta-catenin signalingenhances somatic cell reprogramming mediated by cell fusion. Cell Stem Cell,2008,3(5):493-507
    35. Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K.Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc NatlAcad Sci USA,2008,105:2883-2888
    36. Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. JCancer Res Clin Oncol,2003,129:199-221
    37. Michel M, Torok B, Godbout MJ, et al. Keratin19as a biochemical marker of skin stemcells in vivo and in vitro: keratin19expressing cells are differentially localized infunction of anatomic sites, and their number varies with donor age and culture stage. JCell Sci,1996,109(5):1017-1028
    38. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M,Maeda M, Yamanaka S. The homeoprotein Nanog is required for maintenance ofpluripotency in mouse epiblast and ES cells. Cell,2003,113:631-642
    39. Miyanari Y, Torres-Padilla ME. Control of ground-state pluripotency by allelicregulation of Nanog. Nature,2012,483(7390):470-473
    40. Moore KA, Lemischka IR. Stem cells and their niches. Science,2006,311(5769):
    41. Morgan BA. A glorious revolution in stem cell biology. Nat Genet.2008,40(11):1269-1270
    42. Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin JS, Sawicki JA, Cotsarelis G.Capturing and profiling adult hair follicle stem cells. Nat Biotechnol,2004,22(4):411-417
    43. Myers SR, Leigh IM, Navsaria H. Epidermal repair results from activation of follicularand epidermal progenitor keratinocytes mediated by a growth factor cascade. WoundRepair Regen,2007,15:693-701
    44. Nguyen H, Merrill BJ, Polak L, Nikolova M, Rendl M, Shaver TM, Pasolli HA, Fuchs E.Tcf3and Tcf4are essential for long-term homeostasis of skin epithelia. Nat Genet,2009,41(10):1068-1075
    45. Nusse R. Wnt signaling and stem cell control. Cell Res,2008,18:523-527
    46. Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewalof hair follicles from adult multipotent stem cells. Cell,2001,104(2):233-245
    47. Papini S, Cecchetti D, Campani D, Fitzgerald W, Grivel JC, Chen S, Margolis L,Revoltella RP. Isolation and clonal analysis of human epidermal keratinocyte stem cellsin long-term culture. Stem Cells,2003,21:481-494
    48. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, DaleyGQ. Reprogramming of human somatic cells to pluripotency with defined factors. Nature.2008,451(7175):141-146
    49. Pesce M, Scholer HR. Oct-4: gatekeeper in the beginnings of mammalian development.Stem Cells,2001,19:271-278
    50. Plikus MV, Mayer JA, de la Cruz D, Baker RE, Maini PK, Maxson R, Chuong CM.Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration.Nature,2008,451(7176):340-344
    51. Redvers RP, Li A, Kaur P. Side population in adult murine epidermis exhibitsphenotypic and functional characteristics of keratinocyte stem cells. Proc Natl Acad SciUSA,2006,103:13168-13173
    52. Regnier M, Patwardhan A, Scheynius A, Schmidt R. Reconstructed human epidermiscomposed of keratinocytes, melanocytes and Langerhans cells. Med Biol Eng Comput,1998,36:821-824
    53. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature,2005,434:843-850
    54. Riva F, Casasco A, Nespoli E, Cornaglia AI, Casasco M, Faga A, Scevola S, Mazzini G,Calligaro A. Generation of human epidermal constructs on a collagen layer alone. TissueEng,2007,13:2769-2779
    55. Ryu JH, Kim SJ, Kim SH, Oh CD, Hwang SG, Chun CH, Oh SH, Seong JK, Huh TL,Chun JS. Regulation of the chondrocyte phenotype by beta-catenin. Development,2002,129(23):5541-5550
    56. Sheng XR, Brawley CM, Matunis EL. Dedifferentiating spermatogonia outcompetesomatic stem cells for niche occupancy in the Drosophila testis. Cell Stem Cell,2009,5(2):191-203
    57. Slam MS, Zhou H. Isolation and characterization of putative epidermal stem cells derivedfrom Cashmere goat fetus. Eur J Dermatol,2007,17:302-308
    58. Sugimura S, Kobayashi S, Hashiyada Y, Ohtake M, Kaneda M, Yamanouchi T, MatsudaH, Aikawa Y, Watanabe S, Nagai T, Kobayashi E, Konishi K, Imai K. Follicular growth-stimulated cows provide favorable oocytes for producing cloned embryos. CellReprogram,2012,14(1):29-37
    59. Sumer H, Liu J, Ortega LM, Verma PJ. Inducing pluripotency in ruminants. Reprod FertilDev,2011,24(1):285
    60. Tai MH, Chang CC, Kiupel M, Webster JD, Olson LK, Trosko JE. Oct4expression inadult human stem cells: evidence in support of the stem cell theory of carcinogenesis.Carcinogenesis,2005,26:495-502
    61. Wallace DC. Mitochondrial diseases in man and mouse. Science,1999,283(5407):1482
    62. Watt FM, Collins CA. Role of beta-catenin in epidermal stem cell expansion, lineageselection, and cancer. Cold Spring Harb Symp Quant Biol,2008,73:503-512
    63. Watt FM. Role of integrins in regulating epidermal adhesion, growth and differentiation.EMBO,2002,21(15):3919-3926
    64. Xie JL, Li TZ, Qi SH, Huang B, Chen XG, Chen JD. A study of using tissue-engineeredskin reconstructed by candidate epidermal stem cells to cover the nude mice withfull-thickness skin defect. J Plast Reconstr Aesthet Surg,2007,60:983-990
    65. Yamamoto H, Ochiya T, Takeshita F, Toriyama-Baba H, Hirai K, Sasaki H, Sasaki H,Sakamoto H, Yoshida T, Saito I, Terada M. Enhanced skin carcinogenesis in cyclinD1-conditional transgenic mice: cyclin D1alters keratinocyte response tocalcium-induced terminal differentiation. Cancer Res,2002,62(6):1641-1647
    66. Yamashita YM, Fuller MT. Asymmetric centrosome behavior and the mechanisms ofstem cell division. J Cell Biol,2008,180(2):261-266
    67. Yang L, Wang L, Yang X. Disruption of Smad4in mouse epidermis leads to depletion offollicle stem cells. Mol Biol Cell,2009,20(3):882-890
    68. Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, Cha SY, Ryu JK, Choi YJ, Kim J,Fearon ER, Weiss SJ. A Wnt-Axin2-GSK3β cascade regulates Snail1activity in breastcancer cells. Nat Cell Biol,2006,8:1398-1406
    69. Yoon EK, Lee WK, Lee JH, Yu SM, Hwang SG, Kim SJ. ERK-1/-2and p38kinaseoppositely regulate15-deoxy-delta(12,14)-prostaglandinJ(2)-Induced PPAR-gammaactivation that mediates dedifferentiation but not cyclooxygenase-2expression inarticular chondrocytes. J Korean Med Sci,2007,22(6):1015-1021
    70. Zangrossi S, Marabese M, Broggini M, Giordano R, D'Erasmo M, Montelatici E, Intini D,Neri A, Pesce M, Rebulla P, Lazzari L. Oct-4expression in adult human differentiatedcells challenges its role as a pure stem cell marker. Stem Cells,2007,25:1675-1680
    71. Zhang CP, Fu XB, Chen P, Bao XX, Li F, Sun XY, Lei YH, Cai S, Sun TZ, Sheng ZY.Dedifferentiation-derived cells exhibit phenotypic and functional characteristics ofepidermal stem cells. J Cell Mol Med,2010,14(5):1135-1145
    72. Zhang DL, Gu LJ, Liu L, Wang CY, Sun BS, Li Z, Sung CK. Effect of Wnt signalingpathway on wound healing. Biochem Biophys Res Commun,2009,378(2):149-151
    73. Zhu AJ, Watt FM. Beta-catenin signalling modulates proliferative potential of humanepidermal keratinocytes independently of intercellular adhesion. Developmen,1999,126(10):2285-2298
    74. Zhuang S, Yan Y, Han J, Schnellmann RG. p38kinase-mediated transactivation of theepidermal growth factor receptor is required for dedifferentiation of renal epithelial cellsafter oxidant injury. J Biol Chem,2005,280(22):21036-21042
    75. Zouboulis CC, Adjaye J, Akamatsu H, Moe-Behrens G, Niemann C. Human skin stemcells and the ageing process. Exp Gerontol,2008,43(11):986-097
    76.蔡飒,付小兵,雷永红,韩冰,郭永峰,孙同柱,王君,李海红.在体诱导表皮细胞去分化的初步实验研究.第三军医大学学报,2008,30(21):1998-2002
    77.孙晓艳,刘惠玲,付小兵. bFGF诱导表皮细胞去分化形成短暂扩充细胞,2010,30(9):2041-2046
    78.张翠萍,付小兵,孙同柱. Wnt信号通路在表皮细胞去分化过程中的作用机制研究.中华创伤杂志,2009,25(9):774-778
    79.雷永红,付小兵,盛志勇.成体干细胞生物学的研究进展.感染.炎症.修复,2005,6(3):165-169
    80.赵志力,杨蓉娅,谷廷敏,王驰,隋志甫,常冬青.血管内皮细胞氧化应激损伤对骨髓间质干细胞趋化作用的体外观察.中华医学杂志,2009,89(22):1577-1581
    81.赵志力,付小兵,孙同柱等.不同发育阶段人皮肤表皮干细胞增殖分化特征及其与创面修复结局关系的研究.解放军医学杂志,2002,27(5):388-389
    82.赵志力,付小兵,孙同柱等.成人正常皮肤和瘢痕组织表皮干细胞定位与表达特征的比较研究.中华烧伤杂志,2003,19(1):12-14
    83.蔡世忠,李芳菲,王亚平.转录因子Oct4、Nanog及相关调控网络与多能干细胞特性的维持.解剖科学进展,2011,17(1):74-78
    84.赖天霞,苗静琨,左国伟,等.钙结合蛋白S100A2对Wnt/β-catenin信号途径活性的上调作用.第三军医大学学报,2008,30(16):1545-1548
    85.王丽娟,王友亮,杨晓.表皮干细胞研究进展.遗传,2010.32(3):198-204
    86.赵志力,付小兵,孙同柱等.人胎儿不同发育时期皮肤β1整合素,角蛋白19,10表达特征及其与创面无瘢痕愈合关系的研究.中华创伤杂志,2002,18(7):404-406
    87.付小兵.从去分化途径来制造干细胞:新的机遇和挑战.感染.炎症.修复,2008,9(3):131-133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700