高韧度Mg-Al-Zn合金的强化及显微组织和力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Mg-Al-Zn镁合金是目前使用最广泛的镁合金系列之一,但阻碍该系合金进一步应用的主要问题有:①铸造镁合金(如AZ91D等)的高温抗蠕变性能差,长期工作温度不能超过120℃,无法用于制造对高温蠕变性能要求高的零部件;②变形镁合金(如AZ31等)的常温塑性加工性能差,无法满足不同场合的使用要求。为了解决Mg-Al-Zn镁合金目前存在的问题,人们正从合金化、晶粒细化、热处理和熔体处理等方面对该系合金展开研究,以期开发出高性能的新型Mg-Al-Zn镁合金。由于合金组织决定性能,因此研究Mg-Al-Zn镁合金在不同条件下合金相的形成和转变规律对于高性能新型Mg-Al-Zn镁合金的开发意义重大。
     本文采用金相分析、扫描电镜(SEM)、能谱(EDS)分析、X-衍射分析(XRD)等实验手段,研究了不同Al、Zn含量的Mg-Al-Zn合金组织中合金相种类、形态、数量和分布的变化规律,选定一种韧度较高,综合性能较好的合金(Mg-5%Al-4%Zn(wt%))作为研究的基础,同时研究了Mg-Zn-Y-Mn球形准晶对选定的Mg-5%Al-4%Zn(wt%)合金组织和性能的影响,以期为高性能新型Mg-Al-Zn基镁合金开发过程中合金相的控制以及化学成分和工艺的优化设计提供组织控制依据。
     本文研究结果表明:
     Mg-Al-Zn镁合金的铸态组织由初生相α-Mg和第二相组成,其中第二相的形态主要有骨骼状、块状、颗粒状和片层状等形态,其大多分布在晶界处,少量分布在晶内;Al、Zn含量变化对Mg-Al-Zn基镁合金中化合物的数量和分布有非常明显的影响,当Al或Zn含量增加时,初生相α-Mg减少,而化合物的数量明显增多,并变得连续;在Mg-5%Al-X%Zn(X≥3)合金中,随着Zn含量的提高,τ(Mg_(32)(Al,Zn)_(49))相逐渐增多,φ(Al_2Mg_5Zn_2)相逐渐减少。Mg-5%Al-4%Zn(wt%)铸态综合性能较高:韧度14.3J/cm~2,强度155.7MPa,布氏硬度65.53。
     通过设计正交回归实验,得出了Y和Mn含量与单位面积内准晶尺寸以及数量的二次回归关系式,绘出直观的三维图,综合金相组织形貌,结果显示:在Mn含量确定的情况下,准晶的数量随着Y含量的增加而增加;Mn的含量对准晶的数量影响较小,但较少的Mn可以从一定程度上促进准晶的生成,反之Mn的含量过高则抑制准晶的形成;Mn、Y含量二者的交互作用对准晶尺寸影响较大,Mn的含量如果相对较低,那么Mn作为准晶生长核心的作用比较突出,但球化效果不足,准晶数量多,但尺寸大,当Mn元素相对含量较高时,造成界面不稳定,又促使准晶向花瓣状生长,尺寸也大。当Y添加量3.9%~4.0%,Mn 4.0%~4.3%(wt%)时,获得的准晶较好。
     Mg-5%Al-4%Zn(wt%)合金中加入Mg-Zn-Y-Mn中间合金之后,合金凝固后的铸态组织由α-Mg相+τ(Mg_(32)(Al,Zn)_(49))相+φ(Al_2Mg_5Zn_2)相+i(Mg_(45)Zn_(47)Y_3Mn_5)相组成;镁基准晶中间合金的加入不仅使基体组织细化,而且使τ(Mg_(32)(Al,Zn)_(49))相由网状分布变为断网分布,甚至颗粒化;合金的室温和高温(200℃)力学性能得到了大幅度的提高,当加入2.5%的MZYM后,合金的冲击韧度提高了28.2%,达到18.3J/cm~2;加入3.5%的MZYM后,合金的抗拉强度提高了16.4%,达到了181.2MPa;加入5.5%的MZYM后,合金的高温(200℃)抗拉强度较AZ54母合金提高了18.1%,达到了166.5 MPa。
     对添加准晶中间合金后的AZ54合金热处理研究结果表明:经T4处理后,τ(Mg_(32)(Al,Zn)_(49))相和φ(Al_2Mg_5Zn_2)相部分固溶于α-Mg基体中,准晶颗粒相在形貌上没有太大变化;经T6热处理后,合金组织中重新析出τ(Mg_(32)(Al,Zn)_(49))相,但其数量、尺寸与形貌有所不同,准晶中间合金的加入延长了τ(Mg_(32)(Al,Zn)_(49))相的析出时间,而且抑制了τ(Mg_(32)(Al,Zn)_(49))相的非连续析出;经T6热处理后,合金的室高温力学性能明显提高,室高温(200℃)抗拉强度分别比铸态合金提高了30.96%,28.36%,达到了237.3MPa,199.6MPa;室温下布氏硬度达到97.5,比原来提高了44.4%;韧度有所下降。
Mg-Al-Zn based alloys are one of the most widely used magnesium alloy series currently,but at present what blocks it from further utilization is as follows:①Casting magnesium alloys(for example AZ91D)suffers from low creep resistance at temperatures above 120℃,which makes it unsuitable for many of components that requiring excellent creep resistance at high temperature;②Wrought magnesium alloys(for example AZ31)have poor plastic deformation property at room temperature,so they can not meet different needs in different situations.In order to solve the existing problems of Mg-Al-Zn based magnesium alloys,lots of research about alloying,grain refinement,melt treatment and heattreatment and so on,had been carried out to improve the properties.Because the properties of alloys are determined by their microstructures,it is of great importance to carry out investigation on the microstructure of Mg-Al-Zn based magnesium alloys,especially mechanism of forming and transforming of alloy phases in Mg-Al-Zn based magnesium alloys.
     The morphology,category,amount and distribution of alloy phases in the Mg-Al-Zn magnesium alloys with different amount of Al and Zn were investigated.Choosing AZ54 alloy with better property as the based alloy and the effects of the addition of spherical Mg-Zn-Y-Mn quasicrystal on the microstructure and mechanical properties of Mg-5%Al-4%Zn(AZ54)were investigated by metallurgical phase analysis,scanning electron microscopy (SEM)analysis,XRD analysis and energy diffraction(EDS)analysis in this paper.The research results that can be used to guide the alloy phases controlling and the optimization of composition and processing parameters that expected to obtain.
     The research results indicate that:
     The microstructure of the casting Mg-Al-Zn magnesium alloys consists of the matrix(α-phase)and the second phases whose morphology are bone-like, lump-like,particle-like and layer-like,they mainly distribute at grain boundaries and only a few are inside the grains;The change of Al and Zn content has very obvious effect on the amount and distribution of alloy phases,With the increase of Al or Zn content,the amount of primaryα-phase decrease,the amount of compounds increases and their distribution become more continuous;In Mg-5%Al-X%Zn(X≥3)alloy,the amount ofτ(Mg_(32)(Al,Zn)_(49))phases increase with the increase of Zn addition,while theφ(Al_2Mg_5Zn_2)phases decrease.The mechanical properties of Mg-5%Al-4%Zn cast alloy at room temperature is:The impact toughness is 14.3J/cm~2,impact tensile strength is 155.7MPa and brinell hardness is 65.53.
     By orthogonal design,we acquire a relationship between the addition of Mn,Y and the size&amount of quasicrystals.According with the microstructure, the result indicate:In the circumstances that Mn is confined,the amount of quasicrystals increase with the increase of amount of Y,to a certain extent,less Mn can promote the quasi-crystal formation,though the effect of Mn on the number of quasicrystal is little.On the contrary the Mn High it will inhibit the formation of quasicrystals.Mn,Y and the interaction of the two make a great impact on the size of quasicrystals.If the addition of Mn is relatively low,Mn plays a core role in the process of spherical Quasicrystals' growth,as a result, the size of Quasicrystals is large.On the contrary,relatively high amount of Mn can cause an instable interface and lead the quasicrystals to grow like a petal, and its size become larger.When the addition of Y is 3.9%~4.0%and Mn 4.0%~4.3%,we can acquire better quasicrystals.
     After Mg-Zn-Y-Mn master alloy being added into Mg-5%Al-4%Zn alloy, the microstructure of AZ54 cast alloy are consisted of matrixα-Mg phases,τ(Mg_(32)(Al,Zn)_(49))phases,φ(Al_2Mg_5Zn_2)phases and i(Mg_(45)Zn_(47)Y_3Mn_5)phase. The matrix microstructure of AZ54 alloy can be refined obviously by the addition of quasicrystal master alloy,and the morphology ofτ(Mg_(32)(Al,Zn)_(49)) phases andφ(Al_2Mg_5Zn_2)phases on the grain boundaries changes from continuous net shape to discontinuous shape,even to particles.When 2.5% MZYM master alloy being added,the impact toughness enhanced by 28.2%, reach to 18.3J/cm~2;after 3.5%MZYM being added,the tensile strength at room temperature enhanced by 16.4%,reach to 181.2MPa;when the addition of MZYM reached to 5.5%,the ultimate strength at temperature of 200℃of AZ54 alloy respectively increase by 18.1%,reach to 166.5MPa.
     The results of heattreatment on AZ54 alloy with addition of Mg-Zn-Y-Mn master alloy show that:after solution treatment,part of theτ(Mg_(32)(Al,Zn)_(49)) phases andφ(Al_2Mg_5Zn_2)phases dissolve into the matrix,and the morphology of quasicrystal phase didn't obviously change.After aging treatment,theτ(Mg_(32)(Al,Zn)_(49))phases were precipitated again,but the amount,size and morphology changed.The addition of quasicrystal master alloy to AZ54 alloy prolongs precipitation time of theτ(Mg_(32)(Al,Zn)_(49))phases,and suppressed the discontinuous precipition.In aging temper,the mechanical properties of alloys promote obviously at room temperature and elevated temperature are significantly improved.Compared with AZ54 alloy,the ultimate strength at room temperature and elevated temperature of 200℃of AZ54+3.5%MZYM alloy,increase by 30.96%and 28.36%,reach to 237.3MPa and 199.6MPa respectively.Macrohardness at room temperature increase by 44.4%,reach to 97.5.But impact toughness decreases.
引文
[1]祁庆琚,刘勇兵,杨晓红等.镁合金的研究及其在汽车工业中的应用与展望[J].汽车工程,2002,24(2):94-100,125.
    [2]刘正,王越,镁基轻质材料的研究与应用[J].材料研究学报,2000,14(5):449-456.
    [3]张永忠,张奎,樊建中等,压铸镁合金及其在汽车工业中的应用[J].特种铸造及有色合金,1999,(3):54-56.
    [4]刘英,李元元,张卫文等,镁合金的研究进展和应用前景[J].轻合金,2002,(8):56-61.
    [5]耿浩然,崔红卫,赵鹏,镁合金的应用与发展动态[J].铸造技术,2002,(4):200-202.
    [6]何良菊,李培杰,中国镁合金工业现状与镁合金开发技术[J].铸造技术,2003,(3):161-162.
    [7]Ma Qian,StJohn L D H,Frost M T,Characteristic Zirconnium-rich Coring Structures in Mg-Zr Alloys[J],Scripta Materialia 2002,(46):649-654
    [8]闵学刚,孙扬善,杜温文等,Ca,Si和RE对AZ91合金的组织和性能的影响[J],东南大学学报,2002,32(3):409-414.
    [9]Powell Bob R,Vadim Rezhets,Balogh MP,etc.The relationship between microstructure and creep behavior in AE42 magnesium die casting alloy[A].Magnesium Technology 2001[C].New York:TMS,2001,175-180.
    [10]M.S.Dargusch,A.L.Bowles,K.Pettersen,etc.,The effect of silicon content on the microstructure and creep behavior in die-cast magnesium AS alloys[J].Metallurgical and Materials Transactions,2004,35A(6):1905-1909.
    [11]Du Wenwen,Sun Yangshan,Min Xuegang,etc.Microstructure and mechanical properties of Mg-Al based alloy with calcium and rare earth additions[J].Materials Science and Engineering,2003,A356:1-7.
    [12]高仑,镁合金成形技术的开发与应用[J],轻合金加工技术,2004,32(3),5-12.
    [13]周俊宏,台湾镁合金产业[J],金属工业(台湾),2002,36(3),74-76.
    [14]宁兴龙,镁合金在自行车上的应用[J],稀有金属快报,2003,(9),11-12.
    [15]李龙川,高家诚,王勇,医用镁合金的腐蚀行为与表面改性[J],材料导报,2003,17(10),29-32.
    [16]Humble P.Towards a cheap resistant magnesium alloy[J],Materials Forum,1997, 21,45-56.
    [17]Pekguleryuz M Z,Adedesian M M,Magnesium alloying,some potentials for alloy development[J],轻金属,1992,42(12),679-686.
    [18]Luo A,Pekguleryuz M Z,Review cast magnesium alloys for elevated temperature applications[J],Journal of Materials Science,1994,29,5259-5271.
    [19]Aghion E,Bronfin B.Magnesium alloys development towards the 21st century[J].Materials Science Forum,2000,350-351:19-28.
    [20]郭洪河,铈、钙和电磁搅拌对AZ91镁合金显微组织与力学性能的影响[学位论文],武汉理工大学,2004.
    [21]Yan Qi,Cao Neng,Yu Ningfeng.Research on the properties of laser welded joints of aluminum killed cold rolled steel[J].China Welding,2002,11(2):143-147.
    [22]罗承萍,肖晓玲,聂建峰.AZ91Mg-Al合金中γ-Mg_(17)Al_(12)析出相的多重位向关系及{112}γ伪孪晶关系[J].金属学报,2002,38(7):709-714.
    [23]Unsworth WM,King J F.A new magnesium system[J].Light Metal Age,1979,(8):29-32.
    [24]Suzuki M,Kimura T,Koike J,etc.,Effects of zinc on creep behavior and deformation substructures of Mg-Y alloy[A].Materials Science Forum[C].Switzerland:Trans Tech Publications,2003.473-478.
    [25]赵志远.稀土金属在铸造镁合金中的应用[J].材料工程,1993,(12):31-34.
    [26]Powell Bob R,Vadim Rezhets,Balogh MP,etc.,The relationship between microstructure and creep behavior in AE42 magnesium die casting alloy[A].Magnesium Technology 2001[C].New York:TMS,2001,175-180.
    [27]Smola B,StuikovaI,von Buch F,etc.,Structural aspects of high performance Mg alloys design[J].Materials Science andEngineeringA,2002,324:113-117.
    [28]Lee Sunhak,Lee Seung,KimDo Hyang.Effect of Y,Sr,and Nd addition on the micro -structure and microfracture mechanism of squeeze cast AZ91X magnesium alloys [J].Metallurgical and Materials Transaction A,1998,29A:1221-1235.
    [29]Wei L Y.Precipitation hardening of Mg-Zn and MgZnRE alloys[J].Metallurgical and Materials Transaction A.1995.(8):1947-1954.
    [30]徐光宪.稀土[M].北京:冶金工业出版社,1995.475-485.
    [31]Nie J F.Muddle B C.Precipition hardening of Mg-Ca(-Zn)alloys[J].Scripta Materialia,1997,37:1475-1481.
    [32]Yuan G Y,Liu ZL,Wang Q D,etc.,Microstructure refinement of Mg-Al-Zn-Si alloys[J].Materials Letters,2002,56:53-58.
    [33]Mihriban O,Pekguleryuz,Eric Baril.Development of creep resistant Mg-Al-Sr alloys [A].Magnesium Technology 2001[C].New York:TMS,2001,119-125.
    [34]陈占恒,稀土新材料及其在高技术领域的应用[J],稀土,2000,(2),53-57.
    [35]郭旭涛,李培杰,曾大本,稀土在耐热镁合金中的应用[J].稀土,2002,23(27),64-67.
    [36]杨遇春,金红,稀土有色金属材料及其发展前景[J],材料工程,1993,(6):45-48.
    [37]Koshikawa N,Yoda S,Edagawa K,etc.,Formation of an Icosahedral Quasicrystalin the Mg-Al-Pt System[J],Jpn J Appl Phys,2001,40,L628-L630.
    [38]Bourgeois L,Mendisc L,Muddleb C,etc.,Characterization of quasicrystalline primary intermetallic particles in Mg-8wt%Zn-4wt%Al casting alloy[J],Phil Magnesium Lett,2001,81,709-718.
    [39]Vogel M,Kraft O,Dehm G,etc.,Quasicrystalline grain-boundary phase in the magnesium die-cast alloy ZA85[J],Scr Mater,2001,45,517-524.
    [40]Baed H,Leem H,Kimk T,etc.,Application of quasicrystalline particles as a strengthening phase in Mg-Zn-Y alloys[J],J Alloys Compd,2002,342(1-2):445-450.
    [41]曹幸,彭立明,曾小勤,等,稀土及固溶处理对AM60B合金组织和力学性能的影响[J],机械工程材料,2003,27(2),21-24.
    [42]张诗昌,段汉桥,蔡启舟,等,主要合金元素对镁合金组织和性能的影响[J],铸造,2001,50(6),310-314.
    [43]曾容昌,柯伟,徐永波,等,Mg合金的最新发展及应用前景[J],金属学报,2001,37(7),673-685.
    [44]Petrov DV.TemaryAlloys:A comprehensive compendium of evaluated constitutional data and phase diagrams,Vol.7M,edited by Petzow Gand Effenberg G.Weinheim VCM,1993:57-71.
    [45]张世军,黎文献,Zr对Mg-Ce合金的晶粒大小及铸态组织性能的影响[J].轻合金加工技术,2003,31(2):16-18.
    [46]Celotto S,Bastow T J.Study of precipitation in aged binary Mg-Al and ternary Mg-Al-Zn alloys using 27Al NMR spectroscopy[J].Acta materialia,2001,49:41-45.
    [47]裴利霞,张金山,高义斌,等,稀土元素镧对AZ91镁合金显微组织及硬度的影响[J].铸造设备研究,2005,(1),20-22.
    [48]王业双,马春江,朱燕萍等,Zn对Mg-9AI合金凝固行为的影响[J],特种铸造及有色合金,2002,5:8-10.
    [49]陈晓,傅高升,钱匡武.Ca对原位自生Mg2Si/ZM5复合材料组织与性能的影响[J].中国 有色金属学报,2005,15(3):410-414.
    [50]曾小勤,丁文江,姚正裔等,Mg-Zn-Al系合金组织和力学性能[J].上海交通大学学报,2005,39(1):46-51.
    [51]T.Sumitomo,C.H.Caceres,M.Veidt,The elastic modulus of cast Mg-Al-Zn alloys[J].Journal of Light Metals 2(2002)49-56.
    [52]杨明波,潘复生,李忠盛等,Mg-Al系耐热镁合金中的合金元素及其作用[J].材料导报,2005,19(4):46-49.
    [53]李忠盛,Mg-Al-Zn基镁合金铸态组织研究(重庆大学硕士学位论文).2005年5月.
    [54]Celotto S,Bastow T J.Study of precipitation in aged binary Mg-Al and ternary Mg-Al-Zn alloys using 27Al NMR spectroscopy[J].Acta materialia,2001,49:41-45.
    [55]姚三九,高锌镁合金研究[J].特种铸造及有色合金,2001,5:18-19.
    [56]G.S.Foerster,in Proceeding of the IMA 33rd Annual Meeting,Montreal,Quebec,Canada,23-25,May 1976,p.35(1976).
    [57]Shechtman D,Blech I,Gratias D et al.Phys Rev Lett[J].1984,53:1951.
    [58]Dong Chuang(董闯).Quasicrystalline Materials(准晶材料)[M].Beijing:National Defence Industry Press.1998,28-32:71.
    [59]Tai A P,Sato T J,Guo J Q et al.Journal of Non Crystalline Solids[J].1999,250-25,2:833.
    [60]李波,试验设计与优化.中国皮革,2003,32(1),26-28.
    [61]李伟勇,最优化设计理论及应用[M].沈阳:辽宁人民出版社.1981.
    [62]邓勃,试验设计与优化方法[J].分析科学学报,1996,12(2):157-162.
    [63]吴海龙,梁逸曾,愈汝勤,等分析化学计量学[J].分析实验室,1999,18(6):94-102.
    [64]朱兆军,王宏伟.Al-Mg-Zn合金成分的正交优化分[J].材料科学与工艺,2003,11(2):168-171.
    [65]Luo Z P,Zhang S,Tang Y L,etc.,Themo dynamics of Mg-Zn-RE system solutions forming stable quasicrystals,Scr Metall Mater,1994,30,393-398.
    [66]杜宏伟,Mg-Zn-Y系准晶中间合金的制备与表征(太原理工大学硕士学位论文).2006年5月.
    [67]Kaloshkin SD,Tcherdyntsev VV,ect.,Structure and mechanical properties of mechanically alloyed Al/Al-Cu-Fe composites[J].Journal of Materials Science,2004,39,5399-5402.
    [68]Alok Singh,Watanable M,KateA,etc.,Microstructure and strength of quasicrystal containing extruded Mg-Zn-Y alloys for elevated temperature application[J].Materials Science and Engineering,2004,A385,382-396.
    [69]Paul DB,Baikerikar KG,Joshua UQ,etc.,Development of novel polymer quasicrystal composite materials[J],Materials Science and Engineering,2000,294-296,156-159.
    [70]Eiji Abe and An Pang Tsai Quasicrystal-crystail Transformation in Zn-Mg-Rare-Earth Alloys[J].Physical Review Letters,1999,83(4):753-756.
    [71]Alok Singh,M.Watanable,A.Kate,et al.Microstructure and strength of quasicrystal containing extruded Mg-Zn-Y alloys for elevated temperature application[J].Materials Science and Engineering,2004,A385:382-396.
    [72]陈晶阳,关绍康,林敦文,等,Al3Ti4B中间合金对Mg-7Al-0.4Zn-0.2Mn合金显微组织和性能的影响[J].国有色金属学报,2005,15(3),478-484.
    [73]张金山,裴利霞等,镁基准晶增强ZA85复合材料的组织与性能.第十四届全国复合材料会议.
    [74]孙茂才,金属力学性能[J].哈尔滨:哈尔滨工业大学出版社,2003.
    [75]AlokSingh,Nakamura M,Watanabe M,Kato A,etc.,Quasicrystal strengthened Mg-Zn-Y alloys by extrusion[J].Scripta Materialia,2003,49,417-422.
    [76]吕宜振,Mg-Al-Zn镁合金组织性能的研究[D].上海:上海交通大学,2001.
    [77]周海涛,曾小勤,刘文法,等,稀土铈对AZ61变形镁合金组织和力学性能的影响[J].中国有色金属学报,2004,14(1),99-104.
    [78]王建强,关绍康等,RE对Mg-8Zn-4Al-0.3Mn镁合金阻尼性能的影响[J].材料科学与工程学报,2002,22(2):281-283.
    [79]王迎新,关绍康,RE对Mg-8Zn-4Al-0.3Mn合金组织的影响[J].中国有色金属学报,2003,13(3),616-621.
    [80]Z.Zhang,R.Trembiay,and D.Dube.Microstructure and creep resistance of Mg-10Zn -4Al-0.15Ca permanent moulding alloy[J].Materials science and technology,2002,18(4):433-437.
    [81]Alok Singh,Watanabe M,KatoA,etc.,Microstructure and strength of quasicrystal containing extruded Mg-Zn-Y alloys For temperature application.Materials Science and Enginneering[J].2004.A385,382-396.
    [82]Alok Singh,Nakamura M,Watanabe M,A.Kato,etc.,Quasicrystal strengthened Mg-Zn-Y alloys by extrusion[J].Scripta Materialia,2003,49,417-422.
    [83]李松瑞,周善初[J].金属热处理.长沙:中南大学出版社,2003,249-250.
    [84]王连登,傅高升,陈晓,等,硅对原位反应自生Mg_2Si/ZM5复合材料热处理态的组织和性能的影响[J].福建工程学院学报,2003,1(3),16-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700