合成气制低碳醇铑基催化剂的设计合成、性能及生态环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态环境的不断恶化、全球变暖的持续加剧及能源的日趋枯竭是现今人类面临和亟待解决的三大中心问题。从保护生态环境出发,寻求高效、清洁的替代能源和研究开发环保、低碳、可持续的绿色能源生产方式是解决这些问题和实现人类社会可持续发展的唯一途径。以CO、CO2气体作为碳源,通过催化加氢制取低碳醇,具有原料来源广泛、能源利用率高、制得的低碳醇燃料使用过程中有毒气体及温室气体排放量少等特点,被认为是最有应用前景的能源生产及利用的新途径之一。
     目前,CO、CO2催化加氢制低碳醇仍然面临着转化率较低、醇类产物产率及选择性偏低等问题,还没有形成产业化。高效催化剂的研制与开发是解决这些问题的根本途径。对CO、CO2催化加氢制低碳醇催化反应而言,加强催化剂中活性组分与助剂之间的相互作用以及有效控制活性组分在载体表面的分散状态是提高催化剂催化活性的关键。将异金属配位聚合物作为前驱物应用于上述非均相催化体系,可以实现有效增强活性组分与助剂之间的相互作用以及控制活性组分的分散,从而达到提高催化剂活性的目的。
     本论文首次选用CO、CO2催化加氢制低碳醇催化剂的活性组分金属元素(贵金属元素铑)及助剂金属元素(碱金属元素和稀土元素)与吡啶羧酸类有机配体共同构建了一系列具有不同组成、结构及功能的配位聚合物,将它们作为制备催化剂的前驱物,创造性地将配位聚合物应用于CO、CO2加氢制取低碳醇催化体系。综合评价了它们对CO、CO2催化加氢制低碳醇的催化活性,及整个催化过程中温室气体CO2的利用水平与温室气体CH4、CO2的排放水平。本文还对上述催化剂进行了CH4-CO2催化重整反应的催化活性评价,为实现CO、CO2催化加氢制低碳醇工艺与CH4-CO:催化重整工艺的有机耦合提供了理论与现实依据,同时也为尽可能消除CO、CO2催化加氢制低碳醇过程中温室气体的排放提供了可行的解决方案。
     主要工作如下
     1.设计并合成了八个新型配位聚合物,包括:五个Rh-M型双金属配位聚合物RhLi(PDA)2(H2O)2·2H2O (1)、RhNa(PDA)2(H2O)2(2)、RhK(PDA)2(3)、 RhCe(BPTA)(H2O)4Cl2(4)、RhEu(BPTA)(H2O)4Cl2(5);两个单一金属离子的超分子配位聚合物Rh(BPDA)(HBPDA)(6)、Co(BPDA)(HBPDA)(7)及一个具有新颖的一维锁链结构和优良的光致发光性能的稀土配位聚合物[Eu2(BPDA)3(H2O)]·6H2O (8)。对所有化合物进行了单晶结构及性质的表征。
     2.选用六个含铑配位聚合物作为前驱物,制备了新型铑基催化剂,并应用于CO加氢制取低碳醇催化过程。研究了前驱物的组成及结构对催化性能的影响。选用以一维配位聚合物RhLi(PDA)2(H2O)2·2H2O(1)为前驱物的催化剂1-SiO2催化CO-CO2混合气加氢制低碳醇反应,研究了反应条件对催化性能的影响。
     4.评估了CO-CO2混合气催化加氢制低碳醇过程对温室气体CO2的利用水平,及CO、CO2催化加氢制低碳醇催化过程中温室气体CH4、CO:的排放水平。结果表明,所使用的6个CO、CO2加氢制低碳醇催化剂的温室气体排放量均处在较低的水平,均为是绿色环保型催化剂。
     5.进行了CH4-CO2催化重整制合成气的实验,并模拟了CO、CO2催化加氢制低碳醇工艺与CH4-CO2催化重整工艺耦合的生产模式。提出CO、CO2加氢制低碳醇催化过程实现温室气体进一步减排的策略,为实现CO、CO2催化加氢制低碳醇工艺与CH4-CO2重整制合成气工艺的耦合摸索经验并提供了有利的数据支撑。
The ecological environment deterioration, global warming and energy depletion are the most important problems that must be resolved urgently in the world. The only way to solve these problems is to explore efficient clean alternative energy with sustainable and environment-friendly production mode. The alcohol fuel is often regarded as a potential renewable clean alternative fuel to gasoline. The synthesis of mixed alcohols through the hydrogeneration of CO or CO2is widely considered to be one of the most prospective energy production modes because it has many advantages, such as the various choices of raw materials, the high energy efficiency and the less emissions of toxic and greenhouse gas during the consumption of the alcohol fuels. However, the industrialization of alcohol fuel synthesis through the hydrogenation of CO or CO2is still immature due to the low CO conversion and the low alcohol selectivity. The research and exploitation of more efficient catalysts are the most effective way to deal with these problems. For the synthesis of alcohol fuel through the hydrogenation of CO or CO2, the critical factor to improve the catalytic activity is to strengthen the interaction between active components and promoted metals as well as to control their dispersion states on the supports effectively. And these could be solved by introducing heterometallic coordination polymers as catalytic precursors into the above-mentioned system of alcohol production.
     Based on the above considerations, in this thesis, a series of heterometallic coordination polymers with different compositions, structures and functions were firstly constructed by rhodium ions, alkali-metal ions, lanthanide ions and pyridine carboxylic ligands. It should be noted that the alkali-metal ions and the lanthanide ions are always used as promoters in rhodium-based catalysts for the hydrogenation of CO or CO2. The synthesized Rh-M heterometallic coordination polymers as catalytic precursors were creatively introduced into the above-mentioned hydrogenation system to prepare corresponding catalysts. During the exploration of the catalytic performances for the hydrogenation of CO or CO2, the CO2utilization level and the greenhouse gases (CH4and CO2) emission level were evaluated as well. Moreover, the catalytic performances of these new-type rhodium-based catalysts for CH4and CO2reforming to syngas were explored, which provides the theoretical and practical basis for the combination of CO or CO2hydrogenation technology and CH4and CO2reforming technology. The study also provides a feasible solution for eliminating greenhouse gas emissions as much as possible during the hydrogenation process of CO or CO2.
     The main work is as follow.
     1. Eight new compounds were synthesized, including five Rh-M coordination polymers (RhLi(PDA)2(H2O)2-2H2O (1), RhNa(PDA)2(H2O)2(2), RhK(PDA)2(3), RhCe(BPTA)(H2O)4Cl2(4) and RhEu(BPTA)(H2O)4Cl2(5)), two novel supermolecules (Rh(BPDA)(HBPDA)(6) and Co(BPDA)(HBPDA)(7)) and a lanthanide coordination polymer (Eu2(BPDA)3(H2O)]·6H2O (8))(H2PDA=pyridine-2,6-dicarboxylic acid; H4BPTA=2,2'-bipyridine-3,3',6,6'-tetracarboxylic acid; H2BPDA=2,2'-bipyridine-6,6'-dicarboxylic acid). All the compounds were structurally characterized by single-crystal X-ray diffraction, and the properties of all compounds were examined.
     2. Six new-type rhodium-based catalysts were prepared using the six Rh-based coordination polymers as precursors, respectively, and their catalytic performances of CO hydrogenation were tested. The effects of the structures, the compositions of the precursors as well as the reaction conditions on catalytic performance were also explored. Furthermore, in order to explore the effects of the reaction conditions on catalytic performance, the catalyst1-SiO2derived from RhLi(PDA)2(H2O)2-2H2O (1) was used to synthesize alcohols through hydrogenation of CO and CO2.
     4. The CO2utilization level was evaluated during the synthesis of alcohols from the mixture of CO, CO2and H2, and the greenhouse gases (CH4and CO2) emission level was also evaluated during the synthesis of alcohols from the mixture of CO and H2and the mixture of CO, CO2and H2. The results show that all the catalysts gave the very low level of greenhouse gases emission, and they can be considered as green and environment-friendly.
     5. The experiment regarding CH4and CO2reforming to syngas was performed, and a production mode was simulated by coupling of the CO or CO2hydrogenation technology with CH4and CO2reforming process. The strategies of greenhouse gas emission reduction for the CO or CO2hydrogenation process were also proposed. The results provide experimental experiences and useful data to achieve the real combination of CO or CO2hydrogenation technology and CH4-CO2reforming technology.
引文
[1]苏海全,张晓红,丁宁,等.费托合成催化剂的研究进展[J].内蒙古大学学报(自然科学版).2009,4:499-513.
    [2]潘慧,白凤华,苏海全.合成气制乙醇铑基催化剂研究进展[J].化工进展.2010,29:157-161.
    [3]曾尚红,董慧,苏海全,等.柱撑蒙脱土负载的钴系催化剂的制备[J].内蒙古大学学报(自然科学版).2009,3:274-279.
    [4]Subramani V, Gangwal S K. A Review of Recent Literature to Search for an Efficient Catalytic Process for the Conversion of Syngas to Ethanol [J]. Energy Fuel.2008,22:814-839.
    [5]Eswaramoorthi I, Dalai A K. DRIFT Studies of Adsorbed CO Over Sulfided K-Rh-Mo/Al2O3 Catalysts:Detection of Rh-Mo-S Phase [J]. Catal. Lett.2009,131:203-212.
    [6]Spivey J J, Egbebi A. Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas [J]. Chem. Soc. Rev.2007,36:1514-1528.
    [7]Song C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing [J]. Catal. Today2006,115:2-32.
    [8]马晓建,李洪亮,刘利平.燃料乙醇生产与应用技术[M].化学工业出版社,2007.
    [9]Wu C W, Chen R H, Pu J Y, etc. The influence of air-fuel ratio on engine performance and pollutant emission of an SI engine using ethanol-gasoline-blended fuels [J]. Atmos. Environ. 2004,38:7093-7100.
    [10]胡志远,张成,浦耿强,等.木薯乙醇汽油生命周期能源、环境及经济性评价[J].内燃机工程,2004,25:13-16.
    [11]Ajav E A, Singh B, Bhattacharya T K. Experimental study of some performance parameters of a constant speed stationary diesel engine using ethanol-diesel blends as fuel [J]. Biomass Bioenergy,1999,17:357-365.
    [12]Hansen A C, Zhang Q, Lyne P W L. Ethanol-diesel fuel blends-a review [J]. Bioresource Technol.2005,96:277-285.
    [13]工业和信息化部:2020年中国汽车保有量将超2亿辆[EB/OL]. http: //www. gov. cn/jrzg/2010-09/05/content_1696112. htm,2010-9-5.
    [14]Xiao DingX, Doesburg E B M, Scholten J J F. Synthesis of higher alcohols from syngas: recently patented catalysts and tentative ideas on the mechanism [J]. Catal. Today 1987,2: 125.
    [15]Forzatti P, Tronconi E, Pasquon I. Higher Alcohol Synthesis [J]. Catal. Rev. Sci. Eng.1991, 33:109.
    [16]Verkerk K A N, Jaeger B, Finkeldei C, etc. Recent developments in isobutanol synthesis from synthesis gas [J]. Appl. Catal. A-Gen.1999,186:407.
    [17]Ellgen P C, Batley W J, Bhasin M M, ect. Rhodium-based catalysts for conversion of synthesis gas to two-carbon chemical [J]. Adv. Chem. Ser.1979,178:147-157
    [18]Kawai M, Uda M, Ichikawa M. The Electronlc State of Supported Rh Catalysts and the Selectivity for the Hydrogenation of Carbon Monoxide [J]. J. Phys. Chem.1985,89: 1654-1656.
    [19]Jiang D, Ding Y, Pan Z, etc. Roles of chlorine in the CO hydrogenation to C2-oxygenates over Rh-Mn-Li/SiO2 catalysts [J]. Appl. Catal. A-Gen.2007,331:70-77.
    [20]Takeuchi A, and Katzer J R, Ethanol formation mechanism from CO+H2 [J]. J. Phys. Chem. 1982,86:2438-2441.
    [21]Takeuchi A, and Katzer J R. Mechanism of methanol formation [J]. J. Phys. Chem.1981, 85:937-939.
    [22]Guglielminotti E, Giamello E, Pinna F, etc. Elementary steps in CO hydrogenation on Rh catalysts supported on ZrO2 and Mo/ZrO2 [J].J. Catal.1994,146:422-436.
    [23]Kohl, Linsmeier E, Taglauer and Knozinger H. Influence of support and promotor on the catalytic activity of Rh/VOx/SiO2 model catalysts [J]. Phys. Chem. Chem. Phys.2001,3: 4639-4643.
    [24]Lee G V D, Ponec R. On Some Problems of Selectivity in Syngas Reactions on the Group Vffl Metals [J]. Catal. Rev. Sci. Eng.1987,29:183.
    [25]Lee G V D, Bastein A G T M, Boogert J V D, etc. Manipulation of the Selectivity of Rhodium by the Use of Supports and Promoters [J]. J. Chem. Soc. Faraday Trans.1983,83:2103
    [26]Ojeda M, Lopez Granados M, Rojas S, etc. Influence of residual chloride ions in the CO hydrogenation over Rh/SiO2 catalysts [J]. J. Mol. Catal. A:Chem.2003,202:179-186.
    [27]Ye J, Su H, Bai F, etc. Synthesis, crystal structure and properties of a new lanthanide-transition metal carbonyl cluster [J]. Appl. Organomet. Chem.2009,23:86-90.
    [28]白凤华.费托合成反应的催化剂制备和性能研究及其对生态环境的影响[D].内蒙古大学,2008.
    [29]Kowalski J, LeeGVD, Ponec V. Vanadium oxide as a support and promoter of Rhodium in synthesis gas reactions [J]. Appl. Catal. A.1985,19:423-426.
    [30]Arakawa H, Fukushima T, Ichikawa M, etc. Selective synthesis of ethanol over Rh-Ti-Fe-Ir/SiO2 catalyst at high-pressure syngas conversion [J]. Chem. Lett.1985,7: 881-884.
    [31]Yin H M, Ding Y J, Luo H Y, etc. The performance of C2 oxygenates synthesis from syngas over Rh-Mn-Li/SiO2 catalysts with various Rh loading [J]. Energy & Fuels.2003,17: 1401-1410.
    [32]Vander Berg, Glezer J H E, Sachtler W M H. The role of promotion in CO/H2 reactions:effects of MnO and MoO2 in silica-supported Rhodium catalysts [J].J. Catal.1985,93:340-352.
    [33]Burch R, Petch M T. Investigation of the Synthesis of Oxygenates from Carbon Monoxide/ Hydrogen Mixtures on Supported Rhodium Catalysts [J]. Appl. Catal. A:General.1992, 88:39.
    [34]Ojeda M, Granados M L, Rojas S, etc. Manganese-promoted Rh/Al2O3 for C2-oxygenates synthesis from syngas:Effect of manganese loading [J]. Appl. Catal. A:General.2004,261: 41.
    [35]Bhasin M M, Bartley W J, Ellgen P C, etc. Synthesis Gas Conversion over Supported Rhodium and Rhodium-Iron Catalysts [J]. J. Catal.1978,54:120-128.
    [36]Hyaashi H, Chen L Z, Tgao T, etc. Catalytic properties of Fe/SiO2 catalysts prepared using microemulsion for CO hydrogenation [J]. Appl. Catal. A:General.2002,231:81
    [37]Luo H Y, Zhang W, Zhou H W, etc. A study of Rh-Sm-V/SiO2 catalysts for the preparation of C2-oxygenates from syngas [J]. Appl. Catal. A:General.2001,214:161-166.
    [38]Sachtler W M H, Ichikawa M. Catalytic site requirements for elementary steps in syngas conversion to oxygenates over promoted rhodium [J]. J. Phys. Chem.1986,90:4752-4758
    [39]Chen G C, Gao C Y, Huang Z J, etc. Synthesis of ethanol from syngas over iron-promoted Rh immobilized on modified SBA-15 molecular sieve:Effect of iron loading [J]. Chem. Eng. Res. Des.2011,89:249-253.
    [40]Mo X, Gao J, Goodwin Jr J G. Role of promoters on Rh/SiO2 in CO hydrogenation:A comparison using DRIFTS [J]. Catal. Today 2009,147:139-149.
    [41]Chuang S C, Goodwin J G, Wender JR I. The Effect of Alkali Promotion on CO Hydrogenation over Rh/TiO2[J]. J. Catal.1985,95:435-446.
    [42]Egbebi A, Schwartz V, Overbury S H, etc. Effect of Li Promoter on titania-supported Rh catalyst for ethanol formation from CO hydrogenation [J]. Catal. Today 2010,149:91-97.
    [43]Yin H, Ding Y, Luo H, etc. Influence of iron promoter on catalytic properties of Rh-Mn-Li/ SiO2 for CO hydrogenation [J]. Appl. Catal. A:General.2003,243:155-164.
    [44]陈明英.合成气制C2含氧化合物Rh-Mn/SiO2催化剂上Mn作用本质的研究[D].厦门大学.2011.
    [45]Chen G C, Zhang X H, Guo C Y, etc. Manganese-promoted Rh supported on a modified SBA-15 molecular sieve for ethanol synthesis from syngas:Effect of manganese loading [J]. C. R. Chimie.2010,13:1384-1390.
    [46]Chen G C, Guo C Y, Zhang X H, etc. Direct conversion of syngas to ethanol over Rh/Mn-supported on modified SBA-15 molecular sieves:Effect of supports [J]. Fuel Process. Technol.2011,92:456-461.
    [47]Pan X, Fan Z, Chen W, etc. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles [J]. Nat. Mater.2007,6:507-511.
    [48]Surisetty V R, Dalai A K, Kozinski J. Alcohols synthesis from synthesis gas:comparison of MWCNT and activated carbon supports [J]. Ind. Eng. Chem. Res.2010,49:6956-6963.
    [49]Hu J, Wang Y, Cao C, etc. Conversion of biomass-derived syngas to alcohols and C2 oxygenates using supported Rh catalysts in a microchannel reactor [J]. Catal. Today 2007, 120:90-95
    [50]尹红梅.铑基催化剂上CO加氢制备Cz含氧化合物的研究[D].中国科学院大连化学物理研究所,2003.
    [51]Subramanian N D, Gao J, Mo X, etc. La and/or V oxide promoted Rh/SiO2 catalysts:Effect of temperature, H2/CO ratio, space velocity, and pressure on ethanol selectivity from syngas [J]. J. Catal.2010,272:204-209.
    [52]Fujimoto K, Shikada T. Selective synthesis of C2-C5 hydrocarbons from carbon dioxide utilizing a hybrid catalyst composed of a methanol synthesis catalyst and zeolite [J]. Appl. Catal.1987,37:13-23.
    [53]Fujiwara M, Kieffer R, Ando H, etc. Development of composite catalysts made of Cu-Zn-Cr oxide/zeolite for the hydrogenation of carbon dioxide [J]. Appl. Catal. A:Gen.1995,121: 113-124.
    [54]Gallucci F, Paturzo L, Basile A. An experimental study of CO2 hydrogenation into methanol involving a zeolite membrane reactor [J]. Chem. Eng. Process:Process Intensification.2004, 43:1029-1036.
    [55]Sloczynski J, Grabowski R, Kozlowska A, etc. Catalytic activity of the M/(3ZnOZr02) system (M= Cu, Ag, Au) in the hydrogenation of CO2 to methanol [J]. Appl. Catal. A:Gen.2004, 278:11-23.
    [56]范宾,畅延青.CO2加氢生成乙醛的研究[J].华东理工大学学报.1997,23:521-525.
    [57]任庆生.CO2催化加氢制取甲醛的方法[J].甲醛与甲醇.2002,3:13-15.
    [58]Jessop P G, Hsiao Y, Ikariya T, etc. Homogeneous catalysis in supercritical fluids: hydrogenation of supercritical carbon dioxide to formic acid, alkyl formates, and formamides [J]. J. Am. Chem. Soc.1996,118:344-355.
    [59]朱锡峰.生物质气化制备合成气的研究[J].可再生能源.2002,6:7-10.
    [60]黄进,夏涛,郑化.生物质化工与生物质材料[M].化学工业出版社.2009.
    [61]齐共新.CO2催化加氢合成醇、醚等含氧化合物的Cu基催化剂及其机理研究[D].浙江大学.2001.
    [62]Kusama H, Okabe K, Sayama K, etc. CO2 hydrogenation to ethanol over promoted Rh/SiCh catalysts [J]. Catal. Today 1996,28:261-266.
    [63]Song C, Gaffhey A F, Fujimoto K. CO2 Conversion and Utilization [M]. ACS,2002.
    [64]Iizuka T, Tanaka Y, Tanabe K. Hydrogenation of CO and CO2 over rhodium catalysts supported on various metal oxides [J]./. Catal.1982,76:1-8.
    [65]Bando K K, Soga K, Kunimori K, etc. Effect of Li additive on CO2 hydrogenation reactivity of zeolite supported Rh catalysts [J]. Appl. Catal. A:Gen.1998,175:67-81.
    [66]Iizuka T, Tanaka Y. Dissociative adsorption of CO2 on supported rhodium catalyst:Comment on surface interaction between H2 and CO2 on Rh/Al2O3 [J]. J. Catal.1981,70:449-450.
    [67]Erdohelyi A, Pasztor M, Solymosi F. Catalytic hydrogenation of CO2 over supported palladium [J]. J. Catal.1986,98:166-177.
    [68]KusamaH, Bando K K, Okabe K, etc. CO2 hydrogenation reactivity and structure of Rh/SiO2 catalysts prepared from acetate, chloride and nitrate precursors [J]. Appl. Catal. A:Gen.2001, 205:285-294.
    [69]Kusama H, Bando K K, Okabe K, etc. Effect of metal loading on CO2 hydrogenation reactivity over Rh/SiO2 catalysts [J]. Appl. Catal. A:Gen.2000,197:255-268.
    [70]Bando K K. Characterization of Rh particles and Li-promoted Rh particles in Y zeolite during CO2 hydrogenation—a new mechanism for catalysis controlled by the dynamic structure of Rh particles and the Li additive effect [J]. J. Catal.2000,194:91-104.
    [71]Guo X, Mao D, Lu G, etc. Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation [J]. J. Catal.2010,271:178-185.
    [72]Kusama H, Okabe K, Sayama K, etc. Ethanol synthesis by catalytic hydrogenation of CO2 over Rh-FeSiO2 catalysts [J]. Energ.1997,22:343-348.
    [73]Inui T, Yamamoto T, Inoue M, etc. Highly effective synthesis of ethanol by CO2-hydrogenation on well balanced multi-functional FT-type composite catalysts [J]. Appl. Catal. A:Gen.1999, 186:395-406.
    [74]Kusama H, Okabe K, Sayama K, etc. Alcohol synthesis by catalytic hydrogenation of CO2 over Rh-Co/SiO2 [J]. Appl. Organomet. Chem.2000,14:836-840.
    [75]Gogate M R, Davis R J. Comparative study of CO and CO2 hydrogenation over supported Rh-Fe catalysts [J]. Catal. Commun.2010,11:901-906.
    [76]卢振举,林培滋,冯喜云,等.CO2+H2制含氧化合物的研究[J].分子催化.1993,7(2):156-159.
    [77]Novak E, Fodor K, Szailer T, etc. CO2 Hydrogenation on Rh/TiO2 Previously Reduced at Different Temperatures [J]. Top. Catal.2002,20:107-117.
    [78]Fukui H, Kobayashi M, Yamaguchi T, etc. New preparation method of Cu/ZnO catalysts for methanol synthesis from carbon dioxide hydrogenation by mechanical alloying [J]. Stud. Surf. Sci. Catal.1998,114:529-532.
    [79]Mateos-Pedrero C, Carrazan S R G, Blanco R M, etc. Influence of H2, CO and CO2 co-feeding on the catalytic activity of Rh/Ti-SiO2 during the partial oxidation of methane [J]. Catal. Today 2010,149:254-259.
    [80]Kusama H, Okabe K, Arakawa H. Characterization of Rh-Co/SiO2 catalysts for CO2 hydrogenation with TEM, XPS and FT-IR[J]. Appl. Catal. A:Gen.2001,207:85-94.
    [81]Bando K K, Kusama H, Saito T, etc. Effect of precursors on structure of Rh nanoparticles on SiO2 support:in-situ EXAFS observation during CO2 hydrogenation [J]. Stud. Surf. Sci. Catal. 2001,132:737-740.
    [82]Kieffer R, Fujiwara M, Udron L, etc. Hydrogenation of CO and CO2 toward methanol, alcohols and hydrocarbons on promoted copper-rare earth oxides catalysts [J]. Catal. Today 1997,36: 15-24.
    [83]李尚贵,郭海军,熊莲,等.二氧化碳催化加氢合成低碳醇研究进展[J].化工进展.2011,30:799-804.
    [84]Inoue T, Iizuka T, Tanabe K. Hydrogenation of Carbon Dioxide and Carbon Monoxide over Supported Rhodium Catalysts under 10 bar Pressure [J]. Appl. Catal.1989,46:1-9.
    [85]Takagawa M, Okamoto A, Fujimura H, etc. Ethanol synthesis from carbon dioxide and hydrogen [J]. Stud. Surf. Sci. Catal.1998,114:525-528.
    [86]Nieskens D L S, Ferrari D, Liu Y, etc. The conversion of carbon dioxide and hydrogen into methanol and higher alcohols [J]. Catal. Commun.2011,14:111-113.
    [87]O'Keeffe M, Yaghi O M. Deconstructing the Crystal Structures of Metal-Organic Frameworks and Related Materials into Their Underlying Nets [J]. Chem. Rev.2012,112:675-702.
    [88]Cui Y, Yue Y, Qian G, etc. Luminescent Functional Metal-Organic Frameworks [J]. Chem. Rev.2012,112:1126—1162.
    [89]Tanabe K K and Cohen S M. Postsynthetic modification of metal-organic frameworks—a progress report [J]. Chem. Soc. Rev.2011,40:498-519.
    [90]Sanchez C, Belleville P, Popall M, etc. Applications of advanced hybrid organic—inorganic nanomaterials:from laboratory to market [J]. Chem. Soc. Rev.2011,40:696-753.
    [91]Adeline Y Robin, Katharina M. Fromm. Coordination polymer networks with O-and N-donors: What they are, why and how they are made Coord [J]. Chem. Rev.2006,250:2127-2157.
    [92]Biradha K, Su C Y, Vittal J J. Recent Developments in Crystal Engineering [J]. CRYST. GROWTHDES.2011,11:875-886.
    [93]Furukawa H, Ko N, Go Y B, etc. Ultrahigh Porosity in Metal-Organic Frameworks [J]. Science.2010,329:424-428.
    [94]Wang H, Su H, Xu J, etc. Bis(6'-carboxy-2,2'-bipyridine-6-carboxylato-K3N,N'N'6)nickel(Ⅱ) tetrahydrate[J]. Acta. Cryst.2009,65:352-353.
    [95]Wang C, Wang Z, Gu F, etc. Five novel metal-organic framework constructed by lanthanide metals and 2,2'-bipyridine-6,6'-dicarboxylate:Hydrothermal synthesis, crystal structure, and thermal properties [J]. J. Mol. Struct.2010,979:92-100.
    [96]Zhao Bin, Chen Xiao Yan, Cheng Peng, etc. Coordination Polymers Containing 1D Channels as Selective Luminescent Probes [J]. J. Am. Chem. Soc.2004,126:15394-15395.
    [97]Hu M, Li H F, Yao J Y, etc. Hydrothermal synthesis and characterization of two 2-D lanthanide-2,2'-bipyridine-3,3'-dicarboxylate coordination polymers based on zigzag chains [J]. Inorg. Chim. Acta.2010,363:368-374.
    [98]Zhao Z, He X, Zhao Y, etc. Coordination polymer based on Cu(Ⅱ), Co(Ⅱ) and 4,4'-bipyridine-2,6,2',6'-tetracarboxylate:synthesis, structure and adsorption properties [J]. Dalton T.2009,2802-2811.
    [99]Rath A, Aceves E, Mitome J, etc. Application of{(DMF)10Ln2[Pd(CN)4]3}∞ (Ln= Yb, Sm) as lanthanide-palladium catalyst precursors dispersed on sol-gel-TiO2 in the reduction of NO by methane in the presence of oxygen [J]. J. Mol. Catal. A:Chem.2001,165:103-111.
    [100]Gu X, Lu Z, Jiang H,etc. Synergistic Catalysis of Metal-Organic Framework-Immobilized Au-Pd Nanoparticles in Dehydrogenation of Formic Acid for Chemical Hydrogen Storage [J]. J. Am. Chem. Soc.2011,133:11822-11825.
    [101]Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks [J]. Chem. Soc. Rev.2009,38:1477-1504.
    [102]Lee J, Farha O K, Roberts J, etc. Metal-organic framework materials as catalysts [J]. Chem. Soc. Rev.2009,38:1450-1459.
    [103]Kurmoo M. Magnetic metal-organic frameworks [J]. Chem. Soc. Rev.2009,38: 1353-1379.
    [104]Allendorf M D, Bauer C A, Bhakta R K, etc. Luminescent metal-organic frameworks [J]. Chem. Soc. Rev.2009,38:1330-1352.
    [105]Murray L J, Dinca M, Long J R. Hydrogen storage in metal-organic frameworks [J]. Chem. Soc. Rev.2009,38:1294-1314.
    [106]Perry Iv J J, Perman J A, Zaworotko M J. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks [J]. Chem. Soc. Rev.2009,35:1400-1417.
    [1]Kusama H, Bando K K, Okabe K, etc. CO2 hydrogenation reactivity and structure of Rh/SiO2 catalysts prepared from acetate, chloride and nitrate precursors [J]. Appl. Catal. A:Gen.2001, 205:285-294.
    [2]Spivey J J, Egbebi A. Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas [J]. Chem. Soc. Rev.2007,36:1514-1528.
    [3]Subramani V, Gangwal S K. A Review of Recent Literature to Search for an Efficient Catalytic Process for the Conversion of Syngas to Ethanol [J]. Energy Fuel.2008,22:814-839.
    [4]Lee J, Farha O K, Roberts J, etc. Metal-organic framework materials as catalysts [J]. Chem. Soc. Rev.2009,38:1450-1459.
    [5]苏海全,张晓红,丁宁,等.费托合成催化剂的研究进展[J].内蒙古大学学报(自然科学版),2009,40:499-513.
    [6]Yaghi O M, O'Keeffe M, Ockwig N W, etc. Reticular synthesis and the design of new materials [J]. NATURE.2003,423:705-714.
    [7]Furukawa H, Ko N, Go Y B, etc. Ultrahigh Porosity in Metal-Organic Frameworks [J]. Science.2010,329:424-428.
    [8]O'Keeffe M, Yaghi O M. Deconstructing the Crystal Structures of Metal-Organic Frameworks and Related Materials into Their Underlying Nets [J]. Chem. Rev.2012.112:675-702.
    [9]Egbebi A, Schwartz V, Overbury S H, etc. Effect of Li Promoter on titania-supported Rh catalyst for ethanol formation from CO hydrogenation [J]. Catal. Today.2010,149:91-97.
    [10]Zhao B, Yi L, Dai Y, etc. Systematic Investigation of the Hydrothermal Syntheses of Pr(Ⅲ)-PDA (PDA) Pyridine-2,6-dicarboxylate Anion) Metal-Organic Frameworks [J]. Inorg. Chem.2005,44:911-920.
    [11]Yang L, Song S, Shao C, etc. Synthesis, structure and luminescent properties of two-dimensional lanthanum(III) porous coordination polymer based on pyridine-2,6-dicarboxylicacid[J]. Synthetic Met.2011,161:925-930.
    [12]Aghabozorg H, Motieiyan E, Salimi A R, etc. Piperazinediium, Zr(IV) and Ce(IV) pyridine-2,6-dicarboxylates:Syntheses, characterizations, crystal structures, ab initio HF, DFT calculations and solution studies [J]. Polyhedron.2010,29:1453-1464.
    [13]Sheldrick G M, SHELXL97. Program for the refinement of crystal structures [D]. In University of G ttingen, Germany,1997.
    [14]Sheldrick G M. A short history of SHELX [J]. Acta Cryst.2008, A64:112.
    [15]Mansouri G, Rezvani A R, Hadadzadeh H, etc. Cyclometalated rhodium(III) complex with phen-dione ligand [J]. Organomet. Chem.2007,692:3810.
    [16]Chapman C T, Ciurtin D M, Smith M D,etc.A new mixed-metal Mn-Rh coordination polymer assembled from Mn-containing molecular building blocks and Rh.2(OAc)4 dimers [J]. Solid State Sci.2002,4:1187.
    [17]Ovari L, Kiss J. Growth of Rh nanoclusters on TiO2(110):XPS and LEIS studies [J]. Appl. Surf. Sci.2006,252:8624.
    [18]Ojeda M, Granados M L, Rojas S, etc. Manganese-promoted Rh/Al2O3 for C2-oxygenates synthesis from syngas Effect of manganese loading [J]. Appl. Catal. A:Gen.2004,261: 47.
    [19]Kusama H, Okabe K, Arakawa H. Characterization of Rh-Co/SiO2 catalysts for CO2 hydrogenation with TEM, XPS and FT-IR[J]. Appl. Catal. A:Gen.2001,207:85.
    [20]Wang Y, Song Z, Ma D, etc. Characterization of Rh-based catalysts with EPR, TPR, IR and XPS. J. Mol[J]. Catal. A:Chem.1999,149:51.
    [21]Gao J, Mo X, Goodwin Jr J G. La, V, and Fe promotion of Rh/SiO2 for CO hydrogenation: Detailed analysis of kinetics and mechanism [J].J. Catal.2009,268:142-149.
    [22]Luo H, Zhang W, Zhou H, etc. A study of Rh-Sm-V/SiO2 catalysts for the preparation of C2-oxygenates from syngas [J]. Appl. Catal. A:Gen.2001,214:161-166.
    [23]Huang L, Chu W, Hong J, etc. Effect of Carbon Nanotubes on Activity of Rh-Ce-Mn/SiO2 Catalyst for CO Hydrogenation to Oxygenates [J]. Chinese J. Catal.2006,27:596-600.
    [24]Dawid U, Pruchnik F P, Starosta R. Structure and properties of 2,2'-bipyridine-3,3',6,6'-tetracarboxylic acid and its iron(Ⅱ) and cobalt(Ⅱ) complexes [J]. Dalton T.2009,3348.
    [25]Zhao Z, He X, Zhao Y, etc. Coordination polymer based on Cu(ii), Co(ii) and 4,4'-bipyridine-2,6,2',6'-tetracarboxylate:synthesis, structure and adsorption properties [J]. Dalton T.2009,2802.
    [26]Kelly N R, Goetz S, Batten S R, etc. Coordination behaviour and network formation with 4,4',6,6'-tetracarboxy-2,2'-bipyridine and 4,4'-dicarboxy-2,2'-bipyridine ligands with rare and alkaline earth metals [J]. CrystEngComm.2008,10:68.
    [27]Jean-Claude G Biinzli, Loic J Charbonniere, Raymond F Ziessel. Structural and photophysical properties of LnⅢ complexes with 2,2'-bipyridine-6,6'-dicarboxylic acid: surprising formation of a H-bonded network of bimetallic entities [J]. Dalton T.2000,1917-1923.
    [28]Wang H, Gu X, Zhang B, etc. (2,2'-Bipyridine-6,6'-dicarboxylato-κ3N,N',O6)(6'-carboxy-2,2'-bipyridine-6-carboxylato-κ3N,N',O6)rhodium(Ⅲ)[J]. Acta Cryst.2012. E68:290-291.
    [29]James C Knight, Angelo J Amoroso, Peter G Edwards, etc. Catena-Poly[[[diaqua-cadmium(Ⅱ)]-μ-2,2'-bipyridine-6,6'-dicarboxylato] dihydrate] [J]. Acta Crystallogr. Sect. E. 2006,62:3306-3308.
    [30]Wang H, Su H, Xu J, etc. Bis (6'-carboxy-2,2'-bipyridine-6-carboxylato-K3N, N',06) nickel (Ⅱ)tetrahydrate[J]. Acta Cryst.2009, E65:352-353.
    [31]Wang C, Wang Z, Gu F, etc. Five novel metal-organic framework constructed by lanthanide metals and 2,2'-bipyridine-6,6'-dicarboxylate:Hydrothermal synthesis, crystal structure, and thermal properties [J]. J. Mol. Struct.2010,979:92-100.
    [32]Ghosh S, Ribas J, Bharadwaj P. Characterization of 3-D Metal-Organic Frameworks Formed through Hydrogen Bonding Interactions of 2-D Networks with Rectangular Voids by Coll-and NiII-Pyridine-2,6-dicarboxylate and 4,4'-Bipyridine or 1,2-Di(pyridyl)ethylene [J]. Cryst. Growth Des.2005,5:623-629.
    [33]Wang N, Yue S, Liu Y, etc. Hydrothermal Syntheses, Crystal Structure, and Magnetic Characterization of Two 3d-4f Heterometallic Coordination Polymers [J]. Cryst. Growth Des.2009,9:368-371.
    [1]张建国,宋昭峥,史德文,等.合成气合成低碳混合醇技术的研究[J].现代化工.2007,27:494-496.
    [2]潘慧,白凤华,苏海全.合成气制乙醇铑基催化剂研究进展[J].化工进展.2010,29:157-161.
    [3]史雪敏,杨绪壮,白凤华,瑙莫汗,苏海全.合成气制低碳醇钼基催化剂助剂的研究进展[J].化工进展.2010,29:2291-2297.
    [4]Spivey J J, Egbebi A. Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas [J]. Chem. Soc. Rev.2007,36:1514-1528.
    [5]Subramani V, Gangwal S K. A Review of Recent Literature to Search for an Efficient Catalytic Process for the Conversion of Syngas to Ethanol [J]. Energy Fuel.2008,22:814-839.
    [6]Lee G V D, Ponec R. On Some Problems of Selectivity in Syngas Reactions on the Group Ⅷ Metals [J]. Catal. Rev. Sci. Eng.1987,29:183.
    [7]Lee G V D, Bastein A G T M, Boogert J V D, etc. Manipulation of the Selectivity of Rhodium by the Use of Supports and Promoters [J]. J. Chem. Soc. Faraday Trans.1983,83:2103
    [8]Kusama H, Bando K K, Okabe K, etc. CO2 hydrogenation reactivity and structure of Rh/SiO2 catalysts prepared from acetate, chloride and nitrate precursors [J]. Appl. Catal. A:Gen.2001, 205:285-294.
    [9]Kusama H, Bando K K, Okabe K, etc. Effect of metal loading on CO2 hydrogenation reactivity over Rh/SiO2 catalysts [J]. Appl. Catal. A:Gen.2000,197:255-268.
    [10]何余生,李忠,奚红霞,等.气固吸附等温线的研究进展[J].离子交换与吸附.2004,20:376-384.
    [11]Egbebi A, Schwartz V, Overbury S H, etc. Effect of Li Promoter on titania-supported Rh catalyst for ethanol formation from CO hydrogenation [J]. Catal. Today.2010,149:91-97.
    [12]Luo H Y, Lin P Z, Xie S B, etc. The role of Mn and Li promoters in supported rhodium catalysts in the formation of acetic acid and acetaldehyde [J]. J. Mol. Catal. A.1997,122: 115-123.
    [13]Mo X, Gao J, Umnajkaseam N, etc. La, V, and Fe promotion of Rh/SiO2 for CO hydrogenation: Effect on adsorption and reaction [J]. J. Catal.2009,267:167-176.
    [14]Steen E, Sewell G, Makhothe R, etc. TPR Study on the Preparation of Impregnated CO/S1O2 Catalysts [J]. J. Catal.1996,162:220-229.
    [15]Ioannides T, Verykios X, Influence of the carrier on the interaction of H2 and CO with supported Rh[J]. J. Catal.1993,140:353-369.
    [16]黄利宏.合成气催化转化制低碳醇用新型催化剂研究[D].四川大学,2006.
    [17]Hamada H, Funaki R, Kuwahara Y, etc. Systematic preparation of supported Rh catalysts having desired metal particle size by using silica supports with controlled pore structure [J]. Appl. Catal.1987,30:177-180.
    [18]Hanaoka T, Arakawa H, Matsuzaki T, etc. Ethylene hydroformylation and carbon monoxide hydrogenation over modified and unmodified silica supported rhodium catalysts [J]. Catal. Today 2000,58:271-280.
    [19]Chen W M, Ding Y J, Jiang D H, etc. An effective method of controlling metal particle size on impregnated Rh-Mn-Li/SiO2 catalyst [J]. Chem. Lett.2005,104:177-180.
    [20]Chuang S C, Goodwin J G, Wender JR I. The Effect of Alkali Promotion on CO Hydrogenation over Rh/TiO2[J]. J. Catal.1985,95:435-446.
    [21]Burch R. Petch M I. Kinetic and transient kinetic investigations of the synthesis of oxides from carbon monoxide/hydrogen mixtures on supported Rhodium catalysts [J]. Appl. Catal.,2000, 191:77-99.
    [22]尹红梅.铑基催化剂上CO加氢制备C2含氧化合物的研究[D].中国科学院大连化学物理研究所,2003.
    [23]Subramanian N D, Balaji G, Kumar C S S R, etc. Development of cobalt-copper nanoparticles as catalysts for higher alcohol synthesis from syngas [J]. Catal. Today 2009,147:100-106.
    [24]Subramanian N D, Gao J, Mo X, etc. La and/or V oxide promoted Rh/SiO2 catalysts:Effect of temperature, H2/CO ratio, space velocity, and pressure on ethanol selectivity from syngas [J]. J. Catal.2010,272:204-209.
    [25]Mazzocchia C, Gronchi P, Kaddouri A, etc. Hydrogenation of CO over Rh/SiO2-CeO2 catalysts kinetic evidences [J].J. Mol. Catal. A:Chem.2001,165:219-230.
    [26]Atmospheric CO2 Mauna Loa Observatory (Scripps/NOAA/ESRL) Monthly Mean CO2 Concentrations (ppm) March 1958-Present. [EB/OL]. http: //co2now. org/Current-CO2/CO2-Now/noaa-mauna-loa-co2-data. html,2011-9-8.
    [27]朱锡峰.生物质气化制备合成气的研究[J].可再生能源.2002,6:7-10.
    [28]黄进,夏涛,郑化.生物质化工与生物质材料[M].化学工业出版社.2009.
    [29]齐共新.C02催化加氢合成醇、醚等含氧化合物的Cu基催化剂及其机理研究[D].浙江大学.2001.
    [30]卢振举,林培滋,冯喜云,等.C02+H2制含氧化合物的研究[J].分子催化.1993,7(2):156-159.
    [31]Gabriele C, Siglinda P. Heterogeneous Catalytic Reactions with CO2:Status and Perspectives [M]. Stud. Surf. Sci. Catal.2004,153:1-8.
    [32]Bando K K, Soga K, Kunimori K, etc. Effect of Li additive on CO2 hydrogenation reactivity of zeolite supported Rh catalysts [J]. Appl. Catal. A:Gen.1998,175:67-81.
    [33]Bando K K. Characterization of Rh particles and Li-promoted Rh particles in Y zeolite during CO2 hydrogenation—a new mechanism for catalysis controlled by the dynamic structure of Rh particles and the Li additive effect [J]. J. Catal.2000,194:91-104.
    [34]Kusama H, Okabe K, Sayama K, etc. CO2 hydrogenation to ethanol over promoted Rh/SiO2 catalysts [J]. Catal. Today 1996,28:261-266.
    [35]Takagawa M, Okamoto A, Fujimura H, etc. Ethanol synthesis from carbon dioxide and hydrogen [J]. Stud. Surf. Sci. Catal.1998,114:525-528.
    [1]Subramani V, Gangwal S K. A Review of Recent Literature to Search for an Efficient Catalytic Process for the Conversion of Syngas to Ethanol [J]. Energy Fuel.2008,22:814-839.
    [2]Spivey J J, Egbebi A. Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas [J]. Chem. Soc. Rev.2007,36:1514-1528.
    [3]Petrus L, Noordermeer M A. Biomass to biofuels, a chemical perspective [J]. Green Chem.2006,8:861-867.
    [4]计军平,马晓明.中国温室气体排放增长的结构分解分析[J].中国环境科学,2011,12:2076-2082.
    [5]Kan H, Chen R, Tong S. Ambient air pollution, climate change, and population health in China[J]. Environ. Int.2012,45:10-19.
    [6]Dore M H I. Climate change and changes in global precipitation patterns:What do we know? [J]. Environ. Int.2005,31:1167-1181.
    [7]Bellard C, Bertelsmeier C, Leadley P, etc. Impacts of climate change on the future of biodiversity [J]. Ecol. Lett.2012,15:365-377.
    [8]岳丽宏,陈宝智,王黎.温室气体的环境影响及控制技术的研究现状[J].环境保护,2001,12:13-14.
    [9]陈莎,杨孝光,任丽娟,等.生命周期评价应用于温室气体排放的研究进展[J].环境科学与技术,2011,34:164-168.
    [10]王雪臣,冯相昭.温室气体减排政策浅论[J].环境保护,2009,4:12-15.
    [11]Zhou C, Zhang L, Swiderski A, etc. Study and development of a high temperature process of multi-reformation of CH4 with CO2 for remediation of greenhouse gas [J]. Energy.2011,36: 5450-5459.
    [12]Richardson J T, Paripatyadar S A. Carbon dioxide reforming of methane with supported rhodium [J]. Appl. Catal.1990,61:293-309.
    [13]Donazzi A, Beretta A, Groppi G, etc. Catalytic partial oxidation of methane over a 4% Rh/α-Al2O3 catalyst Part Ⅱ:Role of CO2reforming [J].J. Catal.2008,255:259-268.
    [14]段宁.清洁生产、生态工业和循环经济[J].环境科学研究,2001,6:1-4.
    [15]邓群钊,贾仁安,梁英培.循环经济生态系统的系统基模分析[J].生态经济,2006,7:64-68.
    [16]Karnosky D F. Impacts of elevated atmospheric CO2 on forest trees and forest ecosystems: knowledge gaps [J]. Environ. Int.2003,29:161-169.
    [17]李尚贵,郭海军,熊莲,等.二氧化碳催化加氢合成低碳醇研究进展[J].化工进展,2011,30:799-804.
    [18]李德宝,马玉刚,齐会杰,等.CO加氢合成低碳混合醇催化体系研究新进展[J].化学进展,2004,16:584-592.
    [19]白凤华.费托合成反应的催化剂制备和性能研究及其对生态环境的影响[D].内蒙古大学,2008.
    [20]王锐.CH4/CO2重整反应中Rh基催化剂上Ce02的助剂作用研究[D].中国科学院大连化学物理研究所,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700