遥操作交会对接概念与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交会对接是实现航天器在轨组装、后勤补给,及载人航天器人员访问等空间操作的前提。空间站对交会对接的可靠性要求很高,一般需要两种互为备份的交会对接手段。目前我国具备自动交会对接和载人飞船的手动交会对接两种手段,但设计中的货运飞船等无人追踪器不能采用手动方式,需要发展新的交会对接手段。论文系统研究了遥操作交会对接概念、大时延条件下遥操作交会对接的预显示技术、共享控制技术,及遥操作交会对接地面原理验证系统等。主要研究工作如下:
     阐述了遥操作交会对接的概念,并开展了概念研究。立足于我国载人航天工程的实际需求,阐述了遥操作交会对接概念,将遥操作交会对接划分为站-船遥操作交会对接和地-船遥操作交会对接两大类。基于SAPB (Systematic Approach of Pahl and Beitz)理论,开展了遥操作交会对接的任务分析和概念模型研究。建立了时延条件下遥操作交会对接的人控能力模型和逼近走廊模型,并结合任务需求、通信带宽约束和测控覆盖约束,对提出的概念模型进行了初步的分析与评价。结果显示,两种概念模型具有较好的工程可行性。
     设计和研制了遥操作交会对接半实物原理验证系统,开展了系统的仿真试验研究。基于提出的遥操作交会对接概念模型,进行了地面原理验证系统设计,研制了遥操作交会对接的动力学与控制仿真软件、遥操作交会对接运动模拟平台等软硬件设备,并集成为半实物原理验证系统。利用该系统,开展了1600余次操作试验,对概念模型进行了定量的分析和验证。试验结果表明,两种概念模型可以较好地支持时延约6s以内的遥操作交会对接任务;操作者难以完成10s左右或更大时延的遥操作交会对接任务,概念模型对大时延的适应性不够,需要对概念模型进行改进。
     基于交会对接动力学与控制模型,研究了遥操作交会对接预显示方法。为提升大时延条件下的控制能力,本文进一步引入了预显示方法。预显示方法可以提高操作员的遥现场感知能力,辅助其提高控制能力。基于C-W方程建立了预显示的仿真预测模型、预测误差传递模型和预测结果校正模型,并利用预显示对遥操作交会对接概念模型做了相应改进。基于半实物原理验证系统,开展了200余次的遥操作交会对接预显示试验。试验结果显示,预显示方法可以有效地提高大时延条件下的人控能力,有助于提高遥操作交会对接任务的成功率和安全性。
     系统给出了遥操作交会对接共享控制的控制结构、模型和算法。针对概念模型对大时延的适应性不够问题,研究和利用共享控制技术改进遥操作交会对接的控制算法,增强遥操作交会对接的控制能力。提出了基于共享控制的遥操作交会对接控制结构,建立了共享控制权重模型等共享控制的相关模型。研究了综合考虑人控能力、时延因素、测量误差等的遥操作交会对接共享控制算法,并利用共享控制算法对遥操作交会对接概念模型进行了改进。基于半实物原理验证系统,开展了300余次操作试验。试验结果表明,共享控制方法可以提高大时延条件下遥操作交会对接的控制能力,降低操作员的操作负荷,且共享控制方法具有较好的变时延适应性。
     论文对遥操作交会对接的概念和关键技术进行了较系统的研究,取得了一些有益的研究成果,给出的概念模型、共享控制算法、地面操作试验结果等,对分析遥操作交会对接特性等具有较好的参考价值,可作为未来遥操作交会对接进一步研究和工程应用的基础。
Rendezvous and docking (RVD) is the foundation of the space mission such as on-orbit assembly and the access of the astronaut to the manned spacecraft. There is only manual control approach available for the backup of the manned chaser's autonomous RVD currently. However, the unmanned chaser has no backup for its autonomous RVD as there is astronaut absence on board. The concepts of teleoperation RVD, which can be used as the backup of the autonomous RVD for the unmanned chaser, are proposed and studied in this dissertation. Also, the studies on the key techniques such as the predictive display approach and the shared control approach are presented too. The main results achieved are summarized as follows.
     The concepts of teleoperation RVD are proposed and studied. The teleoperation RVD is divided into two modes according to the proposed concepts, i.e. the space station based teleoperation mode and the ground console based teleoperation mode. The conceptual models are designed based on the systematic approach of Pahl and Beitz (SAPB). In order to evaluate the designed models preliminarily, the models of the pilot handling quality and the approaching corridor with time delay are established. In addition, the constraints on the communication band width and communication time are analyzed. The evaluation results show that the proposed conceptual models would be practical and feasible.
     The semi-physical validation system for teleoepration RVD is designed and developed, and systemic experiments are carried out upon this system for validation. The semi-physical validation system is designed according to the conceptual models firstly. Then, the elements of the system such as the dynamic simulator are developed and integrated together. Finally, more than1600experiments are carried out. The experimental results show that the conceptual models work well when the time delay is less than6s, and the control performance of them would be unsatisfactory when the time delay is larger than approximate10s.
     Based on the dynamic models of the teleoperation RVD, the predictive display approach is studied. As the experimental results show that the control performance would be unsatisfactory with large time delay and the conceptual models need to be ameliorated. The predictive display approach is beneficial to improving the pilot's telepresence and handling quality. The predictive models and rectifying models are established first of all. The conceptual models are ameliorated according to the predictive display approach next that. Furthermore, more than200experiments are carried out for the validation of the approach and the improved conceptual models. The results demonstrate that the predictive display approach improves the pilot's handling quality, enhances the success rate and success safety of the teleoperation RVD tasks.
     The control structure, models and algorithm of the shared control for teleoperation RVD is proposed and studied systemically. Shared control is another approved approach that can be used to overcome the time delay and improve the control performance in the area of teleoperation. The shared control structure for teleoperation RVD is proposed. Then, the shared control models such as the models of shared weight are studied, as well as the shared control algorithm. Besides, the conceptual models of teleoepration RVD are ameliorated according to the shared control models. Based on the developed semi-physical validation system, more than200experiments are carried out for the validation of the proposed algorithm and the improved conceptual models. The results demonstrate the effectiveness of the proposed algorithm. The shared control algorithm does improve the teleoperation RVD's control performance and its robustness to time delay.
     This dissertation studies on the concept and key techniques of teleoepration RVD systemically. The achievements in this dissertation such as the conceptual models and the experimental results are valuable, and can be used as the reference for the advanced studies in the future.
引文
[1]陈宝东,郑云青,邵济明等.对接机构分系统研制[J].上海航天,2011.6(28):69-72.
    [2]Fehse W. Automated Rendezvous and Docking of Spacecraft[M]. Cambridge University Press,2003.
    [3]Polites M E. Technique of Automated Rendezvous and Capture in Space[J]. Journal of Spacecraft and Rockets,1999,36(2):280-290.
    [4]林来兴.空间交会对接技术[M].北京:国防工业出版社,1995.
    [5]王华.交会对接的控制与轨迹安全[D].长沙:国防科技大学研究生院,2007.
    [6]梁立波.近距离导引段交会轨迹安全性的定量评价和设计优化方法[D].长沙:国防科技大学研究生院,2011.
    [7]罗亚中.空间最优交会路径规划策略研究[D].长沙:国防科技大学研究生院,2007.
    [8]张柏楠.航天器交会对接任务分析与设计[M].北京:科学出版社,2011.
    [9]唐国金,周剑勇.张波等.遥操作交会对接技术综述[J].载人航天,2011,17(2):38-44.
    [10]Zhou J Y, Jiang Z C, Tang G J. A New Approach for Teleoperation Rendezvous and Docking with Time Delay[J]. Sci China-Phys Mech Astron,2012,55(2):339-346.
    [11]周剑勇,张波.蒋自成等.遥操作交会对接系统研究[J].国防科技大学学报,2012,34(3):24-28.
    [12]Jones S. Orbital Maneuvering Vehicle Teleoperation and Video Data Compression[J]. AIA A Journal,1989,28(9):99-117.
    [13]Cislaghi M. The ATV Rendezvous Pre-development Program (ARP)[C]//22nd AAS Guidance Control Conference. Breckenridge:ESA,1999.
    [14]Mitsushige O. Experiences and Lessons Learned from the ETS-VII Robot Satellite[C]//IEEE internal conference on robotics and autonomous. San Francisco:IEEE,2000:914-919.
    [15]Masaaki M, Isao K. Development of ETS-VII RVD System-Preliminary Design and EM Development Phase Engineering Test Satellite and Rendezvous Docking[C]//AIAA Guidance, Navigation, and Control Conference. Washington DC:AIAA,1995:1656-1664.
    [16]蒋自成.基于虚拟现实的航天器手控交会技术研究[D].长沙:国防 科技大学研究生院,2008.
    [17]唐国金,罗亚中,张进.空间交会对接任务规划[M].北京:科学出版社,2008.
    [18]Parten R P, Mayer J P. Development of the Gemini Operational Rendezvous Plan[J]. Journal of Spacecraft and Rockets,1968,5(9):1023-1026.
    [19]Young K A, James D A. Apollo Lunar Rendezvous[C]//AIAA8th Aerospace Science Meeting, New York:AIAA,1970.
    [20]David M R, Michael D S, Alan W W. The Apollo Lunar Orbit Rendezvous Architecture Decision Revisited[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Tucson:AIAA,2005.
    [21]Kassen A M, MacQuillan W F. Target Acquisition Dynamics with Application to the Rendezvous Radar of the Space Shuttle Orbiter[C]//41st AIAA/AAS Astrodynamics Conference, California:AIAA,1982.
    [22]Brown R B. A Fuzzy Logic Model of Human Pilots During Space Shuttle Rendezvous[J]. AIAA paper:AIAA-96-3848,1996.
    [23]Young K A, Alexander J D. Apollo Lunar Rendezvous[J]. Journal of Spacecraft and Rockets,1970,7(9):1083-1086.
    [24]张进.空间交会远程导引变轨规划[D].长沙:国防科技大学研究生院,2008.
    [25]Zimpfer D, Sperhar P. STS-71Shuttle/Mir GNC Mission Overview[J]. Advances in the Astronautical Sciences,1996,(93):441-460.
    [26]Jose P R, Jeremy H. A Comparison Between Orion Automated and Space Shuttle Rendezvous Techniques[C]//AIAA Guidance, Navigation, and Control Conference. Toronto:AIAA,2010.
    [27]Christopher D S, Hanak F C, Pete S, et al. Orion Rendezvous, Proximity Operations, and Docking Design and Analysis[C]//AIAA Guidance, Navigation, and Control Conference. Hilton Head:AIAA, AIAA2007-6683,2007.
    [28]Eric M, Karl D B, Chad F. Dynamic Coupling and Control Response Effects on Spacecraft Handling Qualities during Docking[J]. Journal of Spacecraft and Rockets2009;46(6):1288-1297.
    [29]Belinda G M, Michael W W, Smith C W, et al. Onboard Autonomous Targeting for the Trans-Earth Phase of Orion[J]. Journal of Guidance, Control and Dynamics,2010,33(3):943-956.
    [30]John L G, Jack P B, David A C. Challenges of Orion Rendezvous Development[C]//AIAA Guidance, Navigation, and Control Conference. Hilton Head:AIAA, AIAA2007-6682,2007.
    [31]Rumford T., Demonstration of Autonomous Rendezvous Technology (DART) Project Summary[c]//2002Core Technologies for Space Systems Conference,2002.
    [32]NASA. Demonstration of Autonomous Rendezvous Technology[R]. Press Kit,2005.
    [33]闻新,王秀丽,刘宝忠.美国试验小卫星XSS-10系统[J].中国航天,2006,6:36-38.
    [34]Gottselig G. Orbital Express Advanced Technology Demonstration[C]//2002Core Technologies for Space Systems Conference,2002.
    [35]Joseph W E. Autonomous Rendezvous Guidance and Navigation for Orbital Express and Beyond[C]//16th AAS/AIAA Space Flight Mechanics Conference.
    [36]Jose P R, Jeremy H. A Comparison between Orion Automated and Space Shuttle Rendezvous Techniques[C]//AIAA Guidance, Navigation, and Control Conference, Toronto:AIAA, AIAA2010-8063,2010.
    [37]Dufour F, Garcia J M, Bernussou J, et al. Hermes-space Station Phasing Strategies Optimization[C]//42nd International Astronautical Congress, Montreal, IAF Paper91-345,1991.
    [38]Kawasaki O, Yamanake K, Imada T, et al. The On-Orbit Demonstration and Operations Plan of the H-II Transfer Vehicle (HTV)[R]. IAF-00-T.2.08,2000.
    [39]Matsumoto T. Development of the Proximity Communication System (PROX) on ISS for H-II Transfer Vehicle (HTV) Rendezvous and Proximity Operation[R]. AIAA2003-2282,2003.
    [40]Satoshi Ueda, Toru Kasai. HTV Rendezvous Technique And GN&C Design Evaluation Based on1st Flight On-orbit Operation Result[C]//AIAA Astrodynamics Specialist Conference, Toronto:AIAA, AIAA paper2010-7664,2010.
    [41]向开恒,肖业伦.空间交会中脉冲变轨燃料消耗研究[J].中国空间科学技术,1999,19(3):9-15.
    [42]王华,唐国金.用遗传算法求解双冲量最优交会问题[J].中国空间科学技术,2003,23(1):26-30.
    [43]朱仁璋,蒙薇,林彦.航天器交会对接发射时间的选择与确定[J].宇航学报,2005,26(4):425-430.
    [44]张丽艳,王忠贵.交会对接任务发射窗口相关问题研究[J].载人航天,2005,(1):18-23.
    [45]郭海林,曲广吉.航天器空间交会过程综合变轨策略研究[J].中国空间科学技术,2004,24(3):60-67.
    [46]刘鲁华,汤国建,余梦伦.圆轨道近程自主交会轨道设计[J].宇航 学报,2007,28(3):653-658.
    [47]解永春,陈长青.一类禁飞区后方安全撤离轨迹的设计方法研究[J].空间控制技术与应用,2009,35(3):1-5.
    [48]朱仁璋,汤溢.空间交会接近与绕飞设计[J].中国空间科学技术,2005,25(1):7-14.
    [49]张淑琴,王忠贵,冉隆燧.空间交会对接测量技术及工程应用[M].北京:中国宇航出版社,2005.
    [50]朱仁璋,汤溢,蒙薇.空间交会近程导引段控制方法与控制算法[J].中国空间科学技术,2005,25(5):17-23.
    [51]刘鲁华.航天器自主交会制导与控制方法研究[D].长沙:国防科技大学研究生院,2007.
    [52]陈统,徐世杰.非合作式目标自主交会对接的终端接近模糊控制[J].宇航学报,2006,27(3):416-421.
    [53]赵阳,曹喜滨,王兴贵等.空间对接机构差动式缓冲阻尼及传动系统力学特性研究[J].空间科学学报,1999,19(2):173-180.
    [54]王兴贵,赵阳,曹喜滨等.周边式对接机构航天器的对接动力学仿真[J].系统仿真学报,2001,13(3):512-516.
    [55]全厚德,闫守成,张洪才.用于交会测量的摄像机标定系统设计[J].测控技术,2006,25(3):37-39.
    [56]王华.交会对接仿真系统[D].长沙:国防科技大学研究生院,2002.
    [57]张宜静,马治家,姜国华.基于虚拟现实的空间人控交会对接仿真试验系统[J].计算机仿真,2002,19(6):33-36.
    [58]周前祥,曲战胜,王春慧等.最后接近段交会对接飞行器人机联合控制的仿真研究[J].系统仿真学报,2006,18(5):1379-1383.
    [59]尤超蓝,洪嘉振.空间交会对接过程的动力学模型与仿真[J].动力学与控制学报,2004,2(2):23-28.
    [60]W. R. Ferrell. Remote Manipulation with Transmission Delay[J]. IEEE,1965.
    [61]Anderson R J, Spong M W. Bilateral Control of Teleoperators with Time Delay[J]. IEEE Transactions on Automatic Control,1989,34(5):494-501.
    [62]Yokokohji Y, Yoshikawa T. Bilateral Control of Master-slave Manipulators for Ideal Kinesthetic Coupling:Formulation and Experiment[C]//IEEE International Conference on Robotics and Automation,1992:849-858.
    [63]Wang X G, Liu P X, Chebbi B, et al. Design of Bilateral Teleoperators for Soft Environments with Adaptive Environmental Impedance Estimation[C]// 2005:1139-1144.
    [64]Tanner N A, Niemeyer G. Practical Limitations of Wave Variable Controllers in Teleoperation[C]//IEEE International Conference on Robotics, Automation, and Mechatronics,2004.
    [65]Munir S. Internet Based Teleoperation[D]. Dissertation for Ph.D, Georgia Institute of Technology,2000.
    [66]Yuichi T, Mami Y. Predictive Motion Display for Acceleration Based Teleoperation[C]//IEEE International Conference on Robotics and Automation, Orlando:IEEE,2006:2927-2932.
    [67]Funda J, Paul R P. Teleprogramming:Overcoming Communication Delays in Remote Manipulation[C]//IEEE International Conference on Systems, Man, Cybernetics and Manipulation, Orlando:IEEE,1990:873-875.
    [68]Sheridan T B. Space Teleoperation through Time Delay:Review and Prognosis [J]. IEEE Transaction on Robotics and Automation,1993,9(6):592-606.
    [69]Ando N, Lee J H, Hashimoto H. A Study on Influence of Time Delay in Teleoperation[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta:IEEE,1999:317-322.
    [70]G. Hirzinger, B. Brunner, et al. ROTEX-The First Remotely Controlled Robot in Space[C]//IEEE International Conference on Robotics and Automation,1994:2604-2611.
    [71]陈小前,袁建平,姚雯等.航天器在轨服务技术[M].北京:中国宇航出版社,2009.
    [72]曾理智,王珏,孙增圻.基于视觉反馈和预测仿真的Internet机器人遥操作[J].计算机工程与设计,2007,28(9):2103-2106.
    [73]庄骏,邱平,孙增圻.大时延环境下的分布式遥操作系统[J].清华大学学报(自然科学版),2010,40(1):80-83.
    [74]李滋堤,孙富春,刘华平等.基于人工势场的空间遥操作共享控制[J].清华大学学报(自然科学版),2010,10:1728-1732.
    [75]王裕基,孙富春,刘华平等.无环境力反馈的四通道双边控制[J].控制理论与应用,2011,28(3):315-320.
    [76]王裕基,孙富春,刘华平等.基于距离传感器的双边遥操作[J].机器人,2010,32(6):705-710.
    [77]田小峰,宋爱国,黄惟一.空间机器人自适应无源控制技术研究[J].东南大学学报(自然科学版),2000.30(5):51-55.
    [78]曾庆军,宋爱国,黄惟一.时延下空间遥操作机器人系统工作模式研究[J].宇航学报,2003,24(2):180-184.
    [79]李会军.空间遥操作机器人虚拟预测环境建模技术研究[D].南京:东南大学研究生院,2005.
    [80]邓启文.空间机器人遥操作双边控制技术研究[D].长沙:国防科技大学研究生院,2006.
    [81]李焱.大时延遥操作技术及虚拟现实技术研究[D].长沙:国防科技大学研究生院,2004.
    [82]段红,李焱,黄柯棣等.遥科学试验虚拟现实仿真技术[J].系统仿真学报,2001,16(增刊):388-391.
    [83]朱广超,王田苗,丑武胜等.基于增强现实的机器人遥操作系统研究[J].系统仿真学报,2004,16(5):943-946.
    [84]丑武胜,王田苗.基于多通道增强现实的机器人遥操作技术研究[J].高技术通讯,2004,(10):49-52-946.
    [85]熊友军.基于增强现实的遥操作关键技术研究[D].武汉:华中科技大学研究生院,2005.
    [86]赵迪,付艳,李世其等.遥操作系统中力反馈研究与实现[J].自动化与仪表,2008,(9):1-4.
    [87]赵迪,李世其,李明富等.基于波变量的力反馈遥操作研究[J].华中科技大学学报(自然科学版),2011,39(4):5-9.
    [88]蒋再男,赵京东,刘宏.力反馈柔性虚拟夹具辅助遥操作[J].机器人,2011,33(6):685-690.
    [89]Jiang Z N, Liu H, Wang J, et al. Virtual Reality-Based Teleoperation with Robustness Against Modeling Errors[J]. Chinese Journal of Aeronautics,2009,(3):325-333.
    [90]胡海鹰,李家炜,刘宏等.虚拟现实技术在机器人臂/灵巧手遥操作中的应用[J].系统仿真学报,2004,16(10):2305-2308.
    [91]赵猛,张珩.不确定大时延下遥操作对象模型的在线修正方法[J].系统仿真学报,2007,19(19):4473-4476.
    [92]赵猛,张珩,陈靖波.灵境遥操作技术及其发展[J].系统仿真学报,2007,19(14):3248-3252.
    [93]刘凤晶,许滨,潘力均等.多用户遥科学系统的研究[J].计算机仿真,2003,20(4):105-107.
    [94]陈丹,席宁,王越超等.网络遥操作系统中基于事件的预测控制策略[J].控制理论与应用,2010,27(5):623-626.
    [95]化建宁,崔玉洁,李洪谊等.具有虚拟力觉导引功能的机器人网络遥操作系统[J].机器人,2010,32(4):522-528.
    [96]Heimbold G, Prins J J M, Feshe W. EPOS:European Proximity Operations Simulation[C]//First European In-orbit Operations Technology Symposium, Darmstadt,1987:273-279.
    [97]Yokota K, Yamannaka K, Shirasaka S, et al. Evaluation of Contact Dynamics Simulation Fidelity of RDOTS-Rendezvous and Docking Operation Test System[J], AIAA Paper, A1999-41573,1999.
    [98]林琪,来嘉哲.空间交会对接仿真技术研究[J].装备指挥技术学院学报,2008,19(5):53-57.
    [99]Keith E C. OMV Mission Simulator[R]. NASA, N90-20669,1990:129-134.
    [100]于家源,胡维多,杨保华等.日本卫星控制系统仿真技术[J].控制工程,1995,(2):17-22.
    [101]孙承启.西欧载人空间运输计划及交会对接逼近段半物理仿真试验室[R],1996.
    [102]Argiiello L, MiroJ. Distributed Interactive Simulation for Space Projects[C]//Distributed Interactive Simulation,2000.
    [103]林来兴,张兴邦.空间交会对接多自由度仿真器[J].计算机仿真,1997,14(1):12-15.
    [104]张世杰,曹喜滨.基于MicroSim仿真平台的航天器交会对接物理仿真系统[J].航天控制,2006,24(2):63-67.
    [105]吴云洁,师帅.交会对接模拟器控制系统设计[J].系统仿真学报,2006,18(2):710-716.
    [106]周赟,尹文生,李世其.遥操作机器人预测显示的研究和实现[J].自动化与仪表,2007,(4):4-9.
    [107]Ganjefar S, Najibi S, Momeni H R. A Novel Structure for the Optimal Control of Bilateral Teleoperation Systems with Variable Time Delay[J]. Journal of the Franklin Institute,2010, doi:10.1016/j.jfranklin.2010.05.011
    [108]Emmanuel N, Romeo O, Spong M W. Position Tracking for Non-linear Teleoperators with Variable Time Delay [J]. The International Journal of Robotics Research,2009,28(7):895-910.
    [109]Behzad K, Key van H Z. Dual-User Teleoperation Systems:New Multilateral Shared Control Architecture and Kinesthetic Performance Measures[J]. IEEE Transactions on Mechatronics,2012,17(5):895-906.
    [110]Yoon W K, Toshihiko G, Kawabe H, et al. Model-Based Space Robot Teleoperation of ETS-VII Manipulator[J]. IEEE Transactions on Robotics and Automatic,2004,20(3):602-612.
    [111]www.nasa.org\nternational Space Station Resupply.htm.
    [112]Tewell J R, Spencer R A. Advanced Teleoperator Spacecraft[C]//AIAA Conference on Large Space Platforms:Future Needs and Capablities, Los Angeles:AIAA, AIAA78-1665,1976.
    [113]Turner J R, French R J, Agan W E. Teleoperator Maneuvering System[J]. AIAA,1982.
    [114]William T. OMV-A Simplified Mathematical Model of the Orbital Maneuvering Vehicle[R]. NASA, NASA CR-171123,1984.
    [115]William L S, Walker J D. OMV Multiple Deployments of Lightsats[C]//A1AA Space Programs and Technologies Conference, Houston: AIAA, AIAA-88-35181988.
    [116]Keith E. Cok. OMV Mission Simulator[J]. AIAA,1990.
    [117]Brody A R. Remote Operation of an Orbital Maneuvering Vehicle in Simulated Docking Maneuvers[C]//AIAA27th Aerospace Science Meeting, Washington:AIAA,1990:471-475.
    [118]Cutri A D. Satellite Servicing Using the Orbital Maneuvering Vehicle in Low Earth Orbit[D]. Dissertation for the degree of Master, Monterey:Naval Postgraduate School,1990.
    [119]General Accounting Office. Space Transportation:Nasa Has No Firm Need for Increasingly Costly Orbital Maneuvering Vehicle[R]. NASA,1990.
    [120]林来兴.美国“轨道快车”计划中的自主空间交会对接技术[J].国际太空,2005,(2):23-27.
    [121]Frank T. Orbital Express Program Summary and Mission Overview[J]. Sensors and Systems for Space Applications, SPIE Vol.6958,2008.
    [122]孙富春,吴凤鸽,刘华平.面向在轨服务遥操作技术的研究与展望[J].空间控制技术与应用,2007,34(1):33-37.
    [123]吴勤.轨道快车计划及其军事应用[J].太空探索,2007,(5):20-23.
    [124]Isao K, Masaaki M, Toru K, et al. Result and Evaluation of Autonomous Rendezvous Docking Experiment of ETS-VII[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, Portland:AIAA, AL1AA-99-4073,1999.
    [125]Isao K, Masaaki M, Horiguchi H, et al. In-orbit Demonstration of An Unmanned Automatic Rendezvous and Docking System by the Japanese Engineering Test Satellite ETS-VII[C]//AIAA Guidance, Navigation, and Control Conference. Washington:AIAA,1994:950-960.
    [126]Yasufuni W, Isao K, Hiroyuki S. Guidance Navigation and Control Strategy in a Proximity Range for Autonomous RVD Mission[C]//The First ESA International Conference on Spacecraft Guidance, Navigation and Control system. Netherlands:ESA,1992:55-60.
    [127]Guillermo O, Luis J A. GOAS:A Cybertool for Spacecraft Rendezvous[J]. IEEE,1998.
    [128]Mace G V. Ground and Operations Breakthroughs Imposed by the ATV Rendezvous Mission.
    [129]Zhou J Y, Jiang Z C, Tang G J. Conceive of the Conception and Investigation of Teleoperator Spacecraft[C]//61st International Astronautical Congress, Prague:IAF,2010:5893-5897.
    [130]Zhou J Y, Zhou J P, Jiang Z C, et al. Investigation Into Pilot Handling Qualities in Teleoperation Rendezvous and Docking with Time Delay[J]. Chinese Journal of Aeronautics,2012,25(4):622-630.
    [131]www.nasa.org\Expedition-7\HSF-International Space Station.mht.
    [132]Chang S, Kim J, Kim I, et al. Time Delay Analysis in Teleoperation System[C]//IEEE International Workshop on Robot and Human Interaction, Pisa: IEEE,1999:86-91.
    [133]景兴建,王越超,谈大龙.遥操作机器人系统时延控制方法综述[J].自动化学报,2004,30(2):214-223.
    [134]陈俊杰,黄惟一.遥操作机器人系统克服时延影响的关键技术[J].华中科技大学学报(自然科学版),2004,32(增刊):187-190.
    [135]Miguel H, Ernesto G. A Robot Teleprogramming Architecture[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2003,1113-1118.
    [136]Yuichi T, Mami Y. Predictive Motion Display for Acceleration Based Teleoperation[J]. Proceedings of the2006IEEE International Conference on Robotics and Automation, Orlando:IEEE,2006,2927-2932.
    [137]Hokayem P F, Spong M W. Bilateral Teleoperation:An Historical Survey[J]. Automatica,2006,42(12):2035-2057.
    [138]Carolina P, Angelika P, Martin B. A Survey of Environment-, Operator-, and Task-adapted Controllers for Teleoperation Systems[J]. Mechatronics,2010,(20):787-801.
    [139]Daniel D S, Victor L B, Felix D L P. A Client-Server Architecture for Remotely Controlling A Robot Using A Closed-loop System with A Biological Neuroprocessor[J]. Robotics and Autonomous Systems,2010,(58):1223-1230.
    [140]Aziminejad A, Tavakoli M, Patel R V, et al. Stability and Performance in Delayed Bilateral Teleoperation:Theory and Experiments [J]. Control Engineering Practice,2008,(16):1329-1343.
    [141]Wang Y J, Sun F C, Hu L H, et al. Space Teleoperation with Large Time Delay Based on Vision Feedback and Virtual Reality[C]//2009IEEE International Conference on Advanced Intelligent Mechatronics, Singapore:IEEE, 2009:1200-1205.
    [142]Shahdi A, Shahin S. Model-based Decentralized Control of Time-delay Teleoperation Systems[J]. The International Journal of Robotics Research,2009,(28):376-394.
    [143]Soheil G, Somayeh N, Momeni H R. A Novel Structure for the Optimal Control of Bilateral Teleoperation Systems with Variable Time Delay[J]. Journal of the Franklin Institute,2010.
    [144]Farrokh J S, Iraj H. Experimental Analysis of Mobile-Robot Teleoperation via Shared Impedance Control [J]. IEEE Transaction on Systems, Man and Cybernetics-Part B:Cybernetics,2011,41(2):591-606.
    [145]Henri B, David A A, Cock J M H. Haptic Shared Control Improves Tele-Operated Task Performance Towards Performance in Direct Control[C]//IEEE World Haptics Conference, Istanbul:IEEE,2011:433-438.
    [146]Parikh S P. A Framework for Shared Motion Control-human-robot Augmentation with Applications to Assistive Technology(D). Dissertation for Ph.D, University of Pennsylvania,2005.
    [147]Pettey G, Bracken C C, Rubenking B, et al. Telepresence, Soundscapes and Technological Expectation:Putting the Observer Into the Equation[J]. Virtual Reality,2010,(14):15-25.
    [148]Russell P P. Satellite Collision Probability for Nonlinear Relative Motion[J]. Journal of Guidance, Control and Dynamics,2003,26(5):728-733.
    [149]Russell P P. Calculating Collision Probability for Arbitrary Space-Vehicle Shapes via Numerical Quadrature [J]. Journal of Guidance, Control and Dynamics,2005,28(6):1326-1328.
    [150]王华,唐国金.飞行器碰撞概率计算的一般方法[J].国防科技大学学报,2007,28(4):27-31.
    [151]王华,唐国金.非线性相对运动的飞行器碰撞概率研究[J].宇航学报,2007,28(增刊):160-165.
    [152]Louis B, Jonathan P H. Safe Trajectories for Autonomous Rendezvous of Spacecraft[C]//AIAA Guidance, Navigation, and Control Conference. Hilton Head:AIAA, AIAA2006-6584,2007.
    [153]Yang H I, Zhao Y J. Trajectory Planning for Autonomous Aerospace Vehicles amid Known Obstacles and Conflicts[J]. Journal of Guidance, Control and Dynamics,2004,27(6):997-1008.
    [154]Liang L B, Luo Y Z, Wang H, et al. Quantitative Performance for Spacecraft Rendezvous Trajectory Safety [J]. Journal of Guidance, Control and Dynamics,2011,34(4):1264-1269.
    [155]Vasile M, Minisci E. Analysis of Some Global Optimization Algorithms for Space Trajectory Design[J]. Journal of Guidance, Control and Dynamics,2010,33(2):334-344.
    [156]王华,李海阳,唐国金.基于碰撞概率的交会对接最优碰撞规避机动[J].宇航学报,2008,29(1):220-223.
    [157]Richard E. Fuel Optimization for Continuous-Thrust Orbital Rendezvous with Collision Avoidance Constraint[J]. Journal of Guidance, Control and Dynamics,2011,34(2):793-503.
    [158]Richards A, Tom S, Jonathan P H. Spacecraft Trajectory Planning with Avoidance Constraints Using Mixed-Integer Linear Programming[J]. Journal of Guidance, Control and Dynamics,2002,25(4):755-764.
    [159]Wang S Q, Schaub H. Spacecraft Collision Avoidance Using Coulomb Forces with Separation Distance and Rate Feedback[J]. Journal of Guidance, Control and Dynamics,2008,31(3):740-750.
    [160]卢山,徐世杰.发动机失效状态下空间交会的主动防撞设计[J].宇航学报,2009,30(3):1265-1270.
    [161]周晓飞等译.联盟号飞船[M].北京:中国宇航出版社,2006.
    [162]陈小前.飞行器总体优化设计理论与应用研究[D].长沙:国防科技大学研究生院,2001.
    [163]Pahl G, Beitz W. Engineering Design[M]. Second Edition(third printing), London:Springer,2001.
    [164]Wynne H, Irene M, Woon Y. Current Research in the Conceptual Design of Mechanical Products[J]. Computer-Aided Design,1998,(30):85-96.
    [165]Tare D. ARoadmap for Decomposition:Activities, Theories, and Tools for System Design[D]. Dissertation for Ph D, Department of Mechanical Engineering, MIT,1999.
    [166]Altshuller G. The Innovation Algorithm, TRIZ, Systematic Innovation and Technical Creativity[M]. Technical Innovation Center, INC, Worcester,1999.
    [167]李萌.基于TRIZ和DEA理论的产品概念设计方法研究[D].合肥:中国科学技术大学,2007.
    [168]James F K. Technology Forecasting Using TRIZ, Predicting Next-Generation Products&Processes Using AFTER-96(Algorithm for Forecasting Technology-Evolution Roadmaps)[J]. TRIZ Journal,1997.
    [169]丁明芳TRIZ解决创造性问题的理论[D].上海:复旦大学,2004.
    [170]檀润华,王庆禹,苑彩云等.发明问题解决理论TRIZ、 TRIZ过程、工具及发展趋势[J].机械设计,2001,(7):7-12.
    [171]Suh N P. The principle of design[M]. Oxford University Press,1990.
    [172]朱龙英.公理化设计理论及其应用研究[D].南京:南京航空航天大 学,2004.
    [173]陈德志.集成AD和TRIZ的SAPB设计方法研究[D].福建:福建农林大学,2010.
    [174]陈立.中国离建立自己的空间站越来越近[J].中国航天,2011,32-34.
    [175]闫岩.人类空间站进程[J].科学新闻,2011,(11):44-45.
    [176]Steve B, Luis V, Steven F. ISS MAC Radio Frequency Coverage Analysis Using iCAT Development Tool[C]//21st International Communication Satellite System Conference and Exhibit. Yokohama:AIAA,2003.
    [177]丁慎源.专家详解首次交会对接测控系统.人民网-人民日报,2011年11月03日.
    [178]Bilimoria K D. Effects of Control Power and Guidance Cues on Lunar Lander Handling Qualities [J]. Journal of Spacecraft and Rockets2009;46(6):1261-1271.
    [179]Bailey R E, Jackson E B, Goodrich K H. Investigation of Reaction Control System Design on Spacecraft Handling Qualities for Docking [J]. Journal of Guidance, Control, and Dynamics2009;32(6):1723-1735.
    [180]Bilimoria K D, Mueller E, Frost C. Handling Qualities Evaluation of Piloting Tools for Spacecraft Docking in Earth Orbit [J]. Journal of Spacecraft and Rockets2011;48(5):846-855.
    [181]Brown R. Fuzzy Logic Application for Modeling Man-in-the-Loop Space Shuttle Proximity Operations [D]. M.S. Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Inst. of Technology, Cambridge, MA, May1994.
    [182]Robert B B. Improved Pilot Model for Space Shuttle Rendezvous [J]. Journal of Guidance, Control, and Dynamics1997;20(4):833-836.
    [183]Pool D M, Zaal P M T, Paassen M M, et al. Identification of Multimodal Pilot Models Using Ramp Target and Multisine Disturbance Signals [J]. Journal of Guidance, Control, and Dynamics2011;34(1):86-96.
    [184]Pool D M, Valente A R, Vroome A M, et al. Identification of Nonlinear Motion Perception Dynamics Using Time-Domain Pilot Modeling [J]. Journal of Guidance, Control, and Dynamics2012;35(3):749-763.
    [185]Nicholas S, Frances P, Mark K, et al. Human Operator Performance of Remotely Controlled Task:A Summary of Teleoperator Research Conducted at NASA's Marshall Space Flight Center Between1971and1981[R]. NASA TN D-5153,1982.
    [186]张波,蒋自成,周剑勇等.交会对接平移靠拢段手控策略设计[J].载人航天,2010,16(2):21-25. Apollo Lunar-landing Spacecraft[J]. Journal of Spacecraft and Rockets,1966,3(5):632-638.
    [188]Anon. Lunar Landing Research Vehicle:Estimated Handling Qualities[R]. NASA CR-127487,1964.
    [189]朱仁璋,王晓光.空间交会逼近走廊与相对位置控制[J].载人航天,2007,(2):1-4.
    [190]Paul M, Paul H W. Model Analysis of Remotely Controlled Rendezvous and Docking with Display Prediction[J]. IEEE Transactions on Aerospace and Electronic Systems2004;20(3):499-511.
    [191]张国亮,刘宏,蒋再男等.视觉辅助遥操作在卫星在轨自维护中的应用[J].北京航空航天大学学报,2009,35(7):882-884.
    [192]李群智,宁远明,申振荣等.行星表面巡视探测器遥操作技术研究[J].航天器工程,2008,17(3):29-35.
    [193]Yoerger D R, Newman J B, Slotine J E. Supervisory Control System for the Jason Rov[J]. IEEE Journal of Oceanic Engineering,1986,11(3):392-400.
    [194]Sheridan T B. Telerobotics[J]. Automatica,1989,25(4):487-507.
    [195]Hansson A, Servin M. Semi-autonomous Shared Control of Large-scale Manipulator Arms [J]. Control Engineering Practice,2010,(18):1069-1076.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700