用户名: 密码: 验证码:
北斗卫星导航系统性能评估理论与试验验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卫星系统性能评估是卫星系统初期设计、研发和部署以及系统升级扩展的主要依据之一,也是卫星系统连续运营重要保障。我国的北斗卫星导航系统采取“先试验、后区域、再全球”的三步走战略,各个阶段的卫星星座设计、性能指标、服务范围等既有承前启后、平稳过渡的作用又有各自特色。因此研究适合于北斗系统的性能评估理论与方法对现阶段的区域系统和将来覆盖全球的北斗卫星系统发展具有重要的现实意义。
     本文以建立北斗卫星导航系统性能评估体系为目标,系统研究卫星导航系统的基本理论、模型、方法,并自主设计进而研制了以北斗系统为主、兼顾GPS、GLONASS、Galileo的性能评估软件系统,实现了从空间信号层到服务层性能综合评估的较为完善的体系。在此基础上,通过分析处理北斗系统试运行以来的海量实测数据,按系统星座结构变化分阶段对比分析了北斗区域系统基本的性能提升过程,进一步验证了北斗系统性能评估理论、方法和软件系统的正确性。从影响高精度定位的载波观测值的数据质量入手,对比分析相同环境下北斗系统与GPS的载噪比、多路径和噪声水平;开展了短基线相对定位和精密单点定位试验,分析了北斗高精度定位的性能水平。本文主要研究工作及贡献如下:
     1、分析总结了GPS、GLONASS和Galileo导航卫星系统性能评估国内外研究现状。从完善现有导航系统的评估理论和方法以及我国北斗卫星系统发展的需求出发,阐述了北斗卫星系统性能评估的理论方法研究和软件研制的必要性。
     2、系统研究了以GPS为代表的GNSS卫星系统性能评估基本理论与方法。重点论述了GNSS卫星导航的必备性能指标,包括可用性、精度、完好性和连续性指标定义及相关计算方法。
     3、提出了适用于北斗系统空间信号精度的计算方法。北斗区域卫星系统的最大特点是卫星星座主要以GEO和IGSO地球同步轨道组成,其轨道高度的不同导致已有的空间信号误差URE精度计算方法失效。本文对北斗URE精度的统计公式进行了详细推导,同时详细分析论证了北斗用户距离率误差URRE和用户测距加速度的计算方法。然后对实测数据进行了评估,分析得出URE优于1.5米:URRE优于3.00mm/s; URAE优于2.00mm/s2。
     4、基于武汉大学“北斗试验跟踪网”观测数据,利用PANDA精密定轨软件获取的精密钟差数据在轨评估了北斗导航星时钟频率稳定度。卫星钟作为导航系统的星上时间基准,是卫星导航系统的核心部分,其性能将直接影响系统的服务精度。本文依靠有限的数据资源利用北斗精密钟差数据综合评估了北斗频率稳定度。北斗在轨卫星大部分原子钟分钟稳定度分钟稳定度达到1-2×10--2,千秒稳达3-4×10-13,万秒稳定度达1-2×10-13量级,天稳定度可达1-2×10-1‘量级。北斗铷钟稳定度水平与GPSBlock Ⅱ A的铷原子钟、GLONASS-M卫星和日本的QZSS星载原子钟性能水平相当,优于GPS Block ⅡA的铯钟,而略差于Block ⅡR铷钟和Galileo铷钟。
     5、首次系统分析了北斗空间信号误差的统计特性。利用统计学中的峰度和偏度系数以及Q-Q图对北斗空间信号误差进行正态假设的验证,同时对不同卫星之间的误差相关性进行了假设检验。结果表明北斗空间信号误差分布并不严格服从零均值正态分布,而更接近于学生分布。同时,统计结果表明不同卫星之间的误差相关性很弱。
     6、统计分析了自2011年北斗系统试运行以来的PNT性能。本文基于“北斗实验网”对分布在亚太地区的典型监测站的PNT性能进行了分析计算(2012年1月-2013年6月).评估结果表明这些监测站附近北斗系统单频伪距单点定位服务精度已满足北斗服务区内的服务指标。
     7、利用本文提出的PNT性能预测方法对北斗当前为区域系统的情况下对服务区内的PNT进行预测,并用实测监测站的数据进行了复核。推算的结果表明,当前北斗系统在中国地区的PDOP值分布大部分达到3~5,三维定位精度优于10米;但范围扩大到整个亚太地区时,在精度处于东经80。和140。开外的大部分地区达不到10米的定位水平;然后针对将来的北斗全球导航系统(3G+3I+27M)星座下的DOP值分布和可能达到的PNT性能进行简单预测,结果表明HDOP将优于1,而VDOP将优于2.0,水平精度优于3米,高程可达4-5米。这一结果表明,2020年建成的北斗系统的PNT性能将与当前GPS相当。
     8、首次实现了北斗室外绝对天线相位中心算法并评估了北斗高精度定位性能。本文深入研究了基于机器人的绝对天线相位中心校正理论与方法,并通过实测数据分析与GPS已知天线相位中心进行比较,取得了优于lmm的外符合精度。基于该技术估算的北斗天线相位变化消除了其对北斗高精度定位性能评估的影响。基于该项成果,本文对比分析相同环境下北斗系统与GPS观测数据质量,然后开展了短基线相对定位和精密单点定位的性能测试。结果表明,北斗系统的短基线相对定位可到mm级,精密单点PPP可达到cm级的定位水平,定位性能与GPS基本接近。
     9、以北斗性能评估为主,兼顾GPS和Galileo系统,自主设计并研制了卫星导航系统性能评估软件系统,主要研究内容包括:软件总体框架、功能模块、算法流程等。
The assessment of the satellite system performance is not only one of the main basis for the satellite system initial design, research and development, deployment and system upgrade extensions, but an important guarantee for the satellite system continuous operation. In China, BeiDou Navigation Satellite System (BDS) adopts the three-step strategy of "first test, then the area, and last the world". The design of satellite constellation, the performance index, the scope of services of the various stages have the function of connecting the past and future and smoothing transition, which also have its own characteristics. So researching on the theory and method for the evaluation of the BeiDou system performance has an important practical significance for the development of the regional system at the present stage and the future global coverage of the BeiDou satellite system.
     With the goal of establishing the BDS performance evaluation system, this paper systematically studies the basic theory, model and method of the satellite navigation system, and also designs and develops a software system mainly on the evaluation of the BeiDou system performance, which also contains the evaluation of the Galileo and GPS performance, achieving a relatively perfect performance evaluation system from the spatial signal aspects to the service aspects On this basis, this paper analyzes and processes the BeiDou system massive measured real data since the trial operation, compares and analyzes the basic properties of the ascension process of the BeiDou regional system according to the change of the system constellation structure, which further verified the theory, method and software system of the BeiDou system performance evaluation. Finally, starting with the impact of the data quality of the high-precision positioning carrier observation, this paper comparatively analyzes the carrier to noise ratio, multipath and noise levels of the BeiDou system and GPS under the same environment; and then carried out a short baseline relative positioning and precise point positioning testing to analyze the precision positioning performance levels of BDS. The main research work and contributions in this paper are as follows:
     1. The research status is analyzed and summarized about the performance evaluation of GPS, GLONASS and Galileo navigation satellite system. The necessity of the theory research and software development of the BeiDou satellite system performance evaluation is stated to improve the existing navigation system assessment theories and methods as well as the BeiDou satellite system development needs and expounds.
     2. Starting from the definition of performance, the basic theory and method are studied about the evaluation of GNSS satellite system performance with GPS as the representative. The essential performance index of GNSS satellite navigation is focused on, including availability, accuracy, integrity and the definition of indicators of continuity and related calculations.
     3. Using the theory and method of the performance evaluation in this research, a software system of the satellite navigation system performance evaluation is designed mainly to evaluate the BDS performance, also containing GPS and Galileo system, including the main research contents:general framework of the software, function module, algorithm flow etc..
     4. The calculation method is proposed suitable for the accuracy of the BeiDou System spatial signal. The obvious characteristic of the BeiDou system is a constellation of satellites mainly consisted of GEO and IGSO geosynchronous orbit. The different height orbit results in the failure of the existing calculation method of spatial signal error of URE precision. This paper deduces the statistical formula on the URE precision in detail, and demonstrates the calculating method of BeiDou user range rate error (URRE) and user range acceleration error (URAE). After the assessment of the measured data, results show that URE is better than1.5meter; URRE is superior to3.00mm/s; URAE is superior to2.00mm/s2.
     5. The clock frequency stability of the on-board BeiDou navigation satellite is assessed for the first time using the precise clock offset data from the BeiDou precise orbit determination. Satellite clocks as the time basis of navigation system onboard is a core part of the satellite navigation system, whose performance will directly affect the accuracy of the system services. This paper firstly uses the limited data and the precision clock difference data comprehensive assessment the frequency accuracy, frequency and frequency stability of the BeiDou clock, getting the stability of1-2×10-12per60s,1-2×10-13per10000s,and1-2×10-14per day, which is considerable with GPS Block IIA atomic clock performance levels.
     6. The statistical properties of the BeiDou spatial signal error are full analyzed for the first time. Using the coefficients Kurtosis and Q-Q plot in statistics test the normality assumption of the BeiDou spatial signal error, while testing correlation of the error between different satellites with hypothesis testing.
     7. The Positioning and Navigation and Timing(PNT) performance is statistically analyzed since2011the BeiDou system trial operation. In this paper, based on the "BeiDou network", the PNT performance of the typical monitoring station on the distribution in the Asia Pacific region is analyzed (January in2012-June in2013). The assessment results show that the accuracy of the BeiDou system single-frequency pseudo range point positioning near these monitoring stations has been met the BeiDou provided services index within the service level10meters in horizontal and10meters in elevation.
     8. The PNT performance in the service area is predicted using the method proposed in this paper on the current regional BeiDou system, checked using measured data at the monitoring stations. The calculated results show that most of the PDOP value is3to5and three-dimensional positioning accuracy is better than10meters on the current BeiDou system in China; while the scope expands to the entire Asia Pacific region, the longitude in the east longitude80°and140°most areas, the positioning level is not up to10meters. Then this paper simply predicts the DOP values and the PNT performance in view of the future BeiDou global navigation system (3G+3I+27M) constellation.
     9. The high-precision positioning performance of BDS is analyzed. In this paper, the observation data quality of BDS and GPS are analyzed under the same environment; and the performance of the short baseline positioning and precise point positioning are tested. Results show that the PPP positioning level of BDS can achieve cm level, which is close to the GPS performance level.
     10. It is the first time to achieve BDS absolute outdoor phase center variation technology. Phase center variation must be considered for high precision application. This article studies the theory and methods for the absolute robot-based phase center variation, and analyzes the measured data compared with the known GPS antenna phase center, which shows consistency better than1mm. This result indicates that China has initially mastered the key technology of outdoor absolute antenna phase center variation for high-precision BeiDou applications.
引文
[1]Administration F. A., G. P. Team.2013. Global Positioning System (GPS) Standard Positioning Service (SPS) Performance Analysis Report(Reporting Period:1 April-30 June 2013). Washington, DC.
    [2]Adrados C., I. Girard, J.-P. Gendner, G. Janeau.2002. Global Positioning System (GPS) location accuracy improvement due to Selective Availability removal Comptes Rendus Biologies 325:165-170.
    [3]Benedicto J., D. Ludwig.2001. Galileo system architecture and services. In V GNSS International Symposium (GNSS2001).
    [4]Blomenhofer H., W. Ehret, A. Leonard, E. Blomenhofer.2004. GNSS/Galileo global and regional integrity performance analysis. In Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004),2158-2168 Long Beach, CA Long Beach:The Institute of Navigation.
    [5]Bossche M. v. d., C. Bourga, B. Lobert.2004. Galileo Integrity Monitoring Network:Simulation and Optimization. In Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004),654-659.
    [6]Brown R. G.1992. A baseline GPS RAIM scheme and a note on the equivalence of three RAIM methods NAVIGATION 39:301-316.
    [7]Chang X.-W., X. Yang, T. Zhou.2005. MLAMBDA:a modified LAMBDA method for integer least-squares estimation Journal of Geodesy 79:552-565.
    [8]Choi M., J. Blanch, D. Akos, L. Heng, G. X. Gao, T. Walter, and P. Enge.2011. Demonstrations of multi-constellation advanced RAIM for vertical guidance using GPS and GLONASS signals. In Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2011),3227-3234. Portland, OR.
    [9]Choi M., J. Blanch, T. Walter.2012. Evaluation of Multi-Constellation Advanced RAIM for Vertical Guidance using GPS and GLONASS Signals with Multiple Faults. In Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2012). Nashville, TN.
    [10]Clifford W., Kelley.1999. GPS Constellation State Probabilities, Historical & Projected In Proceedings of the 1999 National Technical Meeting of The Institute of Navigation,265-270 San Diego, CA
    [11]Clinton B.2000. Statement by the President Regarding the United States' Decision to Stop Degrading Global Positioning System Accuracy Office the the Press Secretary, The White House.
    [12]Corporation S. A. I.2010a. INTERFACE SPECIFICATION IS-GPS-200, Revision E.
    [13]———.2010b. INTERFACE SPECIFICATION IS-GPS-705, Revision A.
    [14]Corrigan T. M., J. F. Hartranft, L. J. Levy, K. E. Parker, J. E. Pritchett, A. J. Pue, S. Pullen, and T. Thompson.1999. GPS Risk Assessment Study Final Report:Johns Hopkins University.
    [15]Crum J. D., S. T. Hutsell, R. T. Smetek Jr.1997. The 2 SOPS Ephemeris Enhancement Endeavor (EEE): DTIC Document.
    [16]CSNO (China Satellite Navigation Office).2012a. BeiDou Navigation Satellite System Signal In Space Interface Control Document(Open Service Signal B1I (Version 1.0)), ed. C.S.N. Office. Beijing.
    [17]———.2012b. Report on the Development of BeiDou Navigation Satellite System, ed. C.S.N. Office. Beijing.
    [18]Feng S., W. Ochieng, D. Walsh, R. loannides.2006a. A measurement domain receiver autonomous integrity monitoring algorithm GPS Solutions 10:85-96.
    [19]Feng S., W. Y. Ochieng, D. Walsh, R. loannides.2006b. A measurement domain receiver autonomous integrity monitoring algorithm GPS Solutions 10:85-96.
    [20]Gao G. X., H. Tang, J. Blanch, J. Lee, T. Walter, and P. Enge.2009. Methodology and case studies of signal-inspace error calculation top-down meets bottom-up. In Proceedings of the 22nd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS2009),2824-2831. Savannah, GA.
    [21]Glotov V.2009. Global Navigation Satellite System (GLONASS). Metsovo,Greece:Central Research Institute of Machine Building.
    [22]Grimes J. G.2007. GLOBAL POSITIONING SYSTEM PRECISE POSITIONING SERVICE PERFORMANCE STANDARD. GPS, Positioning and Navigation.
    [23]Hauschild A., O. Montenbruck, P. Steigenberger.2013. Short-term analysis of GNSS clocks GPS Solutions 17:295-307.
    [24]Heng L. 2012. Safe satellite navigation with multiple constellations:global monitoring of GPS and GLONASS signal-in-space anomalies[Doctor of Philosophy]. The department of electrical engineeing.
    [25]Heng L., G. X. Gao, T. Walter, P. Enge.2010. GPS signal-in-space anomalies in the last decade:Data mining of 400,000,000 GPS navigation messages. In Proceedings of the 23rd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2010), 3115-3122. Portland.
    [26]———.2011a. Statistical characterization of GLONASS broadcast ephemeris errors. In Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2011),3109-3117 Portland, OR.
    [27]———.2011b. Statistical characterization of GPS signal-in-space errors. In Proceedings of the 2011 International Technical Meeting of the Institute of Navigation (ION ITM 2011),312-319. San Diego, CA.
    [28]———.2011c. Statistical characterization of GPS signal-in-space errors. In Proceedings of the 2011 International Technical Meeting of the Institute of Navigation (ION ITM 2011), San Diego, CA, 312-319:Citeseer.
    [29]———.2012. Statistical characterization of GLONASS broadcast clock errors and signal-in-space errors. In Proceedings of the 2012 International Technical Meeting of the Institute of Navigation (ION ITM 2012),1697-1707. Newport Beach, CA.
    [30]Hewitson S., J. Wang.2006. GNSS receiver autonomous integrity monitoring (RAIM) performance analysis GPS Solutions 10:155-170.
    [31]Hofmann W., Lichtenegger, Walse.2009全球卫星导航系统-GPS, GLONASS, Galileo,及其他系统(英文标题:GNSS-Global Navigation Satellite Systems GPS, GLONASS, Galileo & more), trans. by程鹏飞,蔡艳辉,文汉江,王解先,姚宜斌,et al.
    [32]ICAO.1999. Manual on Required Navigation Performance. International Civil Aviation Organisation: International Civil Aviation Organisation.
    [33]———.2000. Validated ICAO GNSS Standards and Recommended Practices (SARPS):International Civil Aviation Organisation.
    [34]ICD-GLONASS R. I. o. S. D. E.2008. INTERFACE CONTROL DOCUMENT. MOSCOW.
    [35]Jefferson D., Y. Bar-Sever.2000. Accuracy and consistency of broadcast GPS ephemeris data. In ION GNSS 2000.
    [36]Kaplan E. D., C. J. Hegarty.2012. GPS原理与应用(第二版),trans. by寇艳红.北京:电子工业出版社.
    [37]Kovach K. L., K. L. V. Dyke.1997. GPS in Ten Years. In The proceedings of the 10th International Technical Meeting of The Satellite Division of The Institute of Navigation(ION-GPS-97),1251-1260. Kansas City,USA.
    [38]Lee Y.1995. New techniques relating fault detection and exclusion performance to GPS primary means integrity requirements. In Proceedings of the 8th international technical meeting of the satellite division of the institute of navigation (ION GPS 1995),1929-1939.
    [39]Liu Z.2010. A New Automated Cycle Slip Detection and Repair Method for a Single Dual-frequency GPS Receiver Journal of Geodesy.
    [40]Malla R., J.-T. Wu.1998. The Service Volume Model Its Philosophy and Implementation. In The proceedings of the 11th international technical meeting of The Satellite Division of The Institute of Navigation(ION-GPS-98),131-141. Nashville,Tennessee.
    [41]Malys S., M. Larezos, S. Gottschalk, S. Mobbs, B. Winn, W. Feess, M. Menn, E. Swift, M. Merrigan, and W. Mathon.1997. The GPS accuracy improvement initiative. In Proceedings of the 10th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1997),375-384.
    [42]Medel C. H., C. C. Catalan, M. A. Fernandez Vidou, E. Sardon Perez.2008. The Galileo ground segment integrity algorithms:Design and performance International Journal of Navigation and Observation 2008.
    [43]Merino M. M. R., A. J. G. Alarcon, I. J. Villares, E. H. Monseco.2001. An integrated GNSS concept, Galileo & GPS, benefits in terms of Accuracy, Integrity, Availability and Continuity. In Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001),2114-2124.
    [44]Montenbruck O., A. Hauschild, P. Steigenberger, U. Hugentobler, P. Teunissen, and S. Nakamura. 2012. Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system GPS Solutions:1-12..
    [45]Nikiforov I., B. Roturier.2002. Statistical analysis of different RAIM schemes. In Proceedings of the 15th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS2002),1881-1892. Portland, OR
    [46]http://en.wikipedia.org/wiki/Percentile
    [47]Ober P.1999. Accuracy and integrity of nonlinear systems Nashville. Institute of Navigation. Proceedings of ION GPS-1999:1211-1216.
    [48]Oehler V, J. M. Krueger, T. Beck, M. Kirchner, H. L. Trautenberg, J. Hahn, and D. Blonski.2009. Galileo System Performance Status Report Proceedings of the ION GNSS 2009, September 22-25,2009, Savannah, GA, USA.
    [49]Oehler V., F. Luongo, J.-P. Boyero, R. Stalford, H. L. Trautenberg, J. Hahn, F. Amarillo, M. Crisci, B. Schlarmann, and J. Flamand.2004a. The Galileo integrity concept. In Proceedings of the 17th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2004),604-615. Long Beach, CA
    [50]Oehler V., F. Luongo, H. L. Trautenberg, J.-P. Boyero, J. Krueger, and T. Rang.2005. The Galileo integrity concept and performance. In The European Navigation Conference GNSS,13-16.
    [51]Oehler V., H. Trautenberg, J. Krueger, T. Rang, F. Luongo, J. Boyereo, J. Hahn, and D. Blonski.2006. Galileo system design & performance. In Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006),492-503.
    [52]OehlerV., H. L Trautenberg, F. Luongo, J.-P. Boyero, B. Lobert.2004b. User integrity risk calculation at the alert limit without fixed allocations. In Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004),1645-1652. Long Beach, CA
    [53]Parkinson B. W., P. Axelrad.1988. Autonomous GPS integrity monitoring using the pseudorange residual NAVIGATION 35:255-274.
    [54]Riley W. J.2007. Handbook of Frequency Stability Analysis. Beaufort, SC 29907 USA:Hamilton Technical Services.
    [55]Shi C., Q. Zhao, Z. Hu, J. Liu.2012a. Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites GPS Solutions 17:103-119.
    [56]Shi C., Q. Zhao, M. Li, W. Tang, Z. Hu, Y. Lou, H. Zhang, X. Niu, and J. Liu.2012b. Precise orbit determination of Beidou Satellites with precise positioning SCIENCE CHINA Earth Sciences 55:1079-1086.
    [57]Slattery R., K. Kovach.1999. New and Improved GPS Satellite Constellation Availability Model. In Proceedings of the 12th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1999),2103-2112. Nashville, TN.
    [58]Steigenberger P., U. Hugentobler, O. Montenbruck, A. Hauschild.2011. Precise orbit determination of GIOVE-B based on the CONGO network Journal of Geodesy 85:357-365.
    [59]Sturza M. A.1988. Navigation system integrity monitoring using redundant measurements NAVIGATION 35:1988-1989.
    [60]Transportation D. o.2009. GLOBAL POSITIONING SYSTEM (GPS) CIVIL MONITORING PERFORMANCE SPECIFICATION. El Segundo, CA.
    [61]US.DoD.1993. Global Positioning System (GPS) Standard Positioning Service (SPS) Signal Specification, ed. U.D.o. Defense. United States of America.
    [62]---.1995. Global Positioning System Standard Positioning Service Signal Specification, ed. U.D.o. Defense. United States of America.
    [63]---.2001a.2001 Federal Radionavigation System ed. U.D.o. Defense. United States of America.
    [64]---.2001b. Global Positioning System Standard Positioning Service Performance Standard, ed. U.D.o. Defense. United States of America.
    [65]---.2008. Global positioning system standard positioning service performance standard.
    [66]Walter T., J. Blanch, P. Enge.2010. Evaluation of signal in space error bounds to support aviation integrity NAVIGATION 57:101.
    [67]Warren D. L. M., J. F. Raquet.2003. Broadcast vs. precise GPS ephemerides:a historical perspective GPS Solutions 7:151-156.
    [68]Werner W, T. Zink, J. Hahn.2002. GALILEO:Integrity Performance Assessment Results And Recommendations. In ION GPS 2002:15 th International Technical Meeting of the Satellite Division of The Institute of Navigation.
    [69]Wu X., X. Hu, G. Wang, H. Zhong, C. Tang.2013. Evaluation of COMPASS ionospheric model in GNSS positioning Advances in Space Research 51:959-968.
    [70]Yang Y.2007. National 2000' GPS control network of China Progress in Natural Science:983-987.
    [71]---.2009. Chinese geodetic coordinate system 2000 Progress in Natural Science:983-987.
    [72]Zaidman S.2008. GLOBAL POSITIONING SYSTEM WIDE AREA AUGMENTATION SYSTEM (WAAS) PERFORMANCE STANDARD, ed. F.A.A. Technical Operations. United States of America.
    [73]Zhao Q., J. Guo, M. Li, L. Qu, Z. Hu, C. Shi, and J. Liu.2013. Initial results of precise orbit and clock determination for COMPASS navigation satellite system Journal of Geodesy 87:475-486.
    [74]Zumberge J., W. Bertiger.1996. Ephemeris and clock navigation message accuracy. In Global Positioning System:Theory and Applications, ed. B. Parkinson, J. Spilker, P. Axelrad, P. Enge, 585-699. Washington,DC:American Institute of Aeronautics and Astronautics.
    [75]陈国.2013.北斗系统下行导航电文定位性能评估[硕士].武汉大学.
    [76]陈金平.2001.GPS完善性增强研究[解放军信息工程大学.
    [77]陈刘成,唐波.2006.广播星历参数拟合精度的影响飞行器测控学报25(4):19-25.
    [78]陈永奇.1990.GPS相对定位中系统误差的影响武汉测绘科技大学学报15(2):1-9.
    [79]方荣新,施.闯,辜声峰.2009.基于PPP动态定位技术的同震地表形变分析武汉大学学报·信息科学版34(11):1340-1343.
    [80]郭海荣.2006.导航卫星原子钟时频特性分析理论与方法研究[
    [81]郭睿,韩春好,冯来平,杨振.2008.接收机自主完好性监测的算法分析测绘工程17(2):34-38.
    [82]郭英,赵春梅,党亚民,卢秀山.2007SISA完备性监测与WUL可靠性算法 测绘科学技术学报:353-356.
    [83]郝金明.1990.利用地面测轨资料拟合GPS广播星历 解放军测绘学院学报1:24-27.
    [84]胡锦伦.1991.GPS时间比对的长期频率稳定性 陕西天文台台刊14(2):74-76.
    [85]黄勇,胡小工,王小亚,黄碱,耿玉广.2006.中高轨卫星广播星历精度分析天文学进展24(1):81-88.
    [86]黄幼才.1990.数据探测与抗差估计.北京:测绘出版社.
    [87]贾小林,冯来平,毛悦,杨海彦.2010.GPS星载原子钟性能评估 时间频率学报33(2):115-120.
    [88]焦文海.2003.卫星导航系统坐标基准建立问题的研究[博士后].中国科学院研究生院(上海天文台).
    [89]——.2013. iGMAS最新进展.In第四届中国卫星导航学术年会论文集北京:中国卫星导航学术年会.
    [90]焦文海,丁群,李建文,卢晓春,冯来平,马家庆,and陈罡.2011GNSS开方服务的监测评估 中国科学:物旦学 力学 天文学41(5):521-527.
    [91]李恒年.2010.地球静止卫得轨道与共位控制技术.北京:国防工业出版社.
    [92]李敏.2011.多模GNSS融合精密定轨理论及其应用研究[博士].武汉大学
    [93]李跃,邱致和.2008.导航与定位.北京:国防工业出版社.
    [94]李作虎.2012.卫星导航系统性能监测及评估方法研究[博士].
    [95]刘涛.2007.应用精密单点定位技术进行1:10000基础测绘像控点测量的可行性分析测绘与空间信息30(4):116-120.
    [96]刘扬,张华丽.1997.测量数据处理及误差理论.北京:原子能出版社.
    [97]楼益栋.2008.导航卫星实时精密轨道与钟差确定[博士].武汉大学.
    [98]吕志平,郝金明,丰春雷.2001.2000-2010年间的GPS改进测绘学院学报18(4):251-253.
    [99]孟泱,吴杰松,陈焕然.2010.GPS精密单点定位在城市工程测量中的应用城市勘测1:67-69.
    [100]秘金钟.2010GNSS完备性监测方法、技术与应用[博士].武汉大学.
    [101]牛飞.2008GNSS完好性增强理论与方法研究[博士].
    [102]阮仁桂,贾小林,吴显兵,冯来平.2011.关于坐标旋转法进行地球静止轨道导航卫星广播星历拟合的探讨测绘学报v.40:145-150.
    [103]宋自林.1994.C3l系统的功能、性能与效能刍议 军事通信技术51:23-30.
    [104]隋立芬,王威.2006.GPS技术在大气探测中的应用 测绘科学技术学报23(2).
    [105]谭述森.2010.卫星导航定位工程北京:国防工业出版社.
    [106]———.2011.广义RDSS全球定位报告系统北京:国防工业出版社.
    [107]王解先.1992.利用GPS相位观测值和重力场资料解算正高 中国科学院上海天文台年刊13:67-73.
    [108]魏子卿.1992.GPS点定位:软件与结果 测绘学报21(2):11-'122.
    [109]———.2008.2000中国大地坐标系 大地测量与地球动力学v.28:1-5.
    [110]魏子卿,葛茂荣.1998.GPS相对定位的数学模型.北京:测绘出版社.
    [111]武汉大学测绘学院测量平差学科组.2003.误差理论与测量平差基础武汉:武汉大学出版社.
    [112]谢钢.2009.GPS原理与接收机设计.北京:电子工业出版社.
    [113]熊超.2012.北斗卫星系统空间信号精度评估及原子钟性能评估研究[硕士].武汉大学.
    [114]杨元喜.1993.抗差估计理论及其应用.北京:八一出版社.
    [115]——.2010.北斗卫星导航系统的进展、贡献与挑战 测绘学报v.39:1-6.
    [116]杨元喜,李金龙,徐君毅,汤静,郭海荣,and何海波.2011.中国北斗卫星导航系统对全球PNT用户的贡献科学通报v.56:1734-1740.
    [117]叶世榕,张双成,刘经南.2008.精密单点定位方法估计对流层延迟精度分析武汉大学学报·信息科学版33(8):788-791.
    [118]张芳仁,张金通.1991.测量误差的统计分布和检验.北京:中国计量出版社.
    [119]张世箕.1979.测量误差及数据和理.北京:科学出版社.
    [120]张贤达.1996.时间序列分析-高阶统计量方法.北京:清华大学出版社.
    [121]张小红,刘经南,R. Forsberg.2006基于精密单点定位技术的航空测量应用实践武汉大学学报·信息科学版31(1):19-22.
    [122]张育林,范丽,张艳,项君华.2008.卫星星座理论与设计.北京:科学出版社.
    [123]周建华.1990.GPS相位测量轨道改进基线定位解放军测绘学院学报1:28-32.
    [124]周晓青,胡志刚,张新远.2010.低轨卫星星载GNSS精密定轨的精度检核方法武汉大学学报(信息科学版)35(11):1342-1345.
    [125]周星.2010.基于GAMITTRACK和Bernese PPP的地震监测比较 测绘信息与工程 35(2):19-20.
    [126]周忠谟,晁定波.1987.GPS空间基线向量网与地面控制网的联合平差模型 武汉测绘科技大学学报12(2):20-28.
    [127]周忠谟,易杰军,周琪.1997.GPS卫星测量原理与应用.北京:测绘出版社.
    [128]邹容.2010.地球参考框架建立和维持的关键技术研究[博士].武汉大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700