基于扩展通信节点的智能公交预报系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过分析国内外智能公交的发展现状,根据目前国内公交预报系统存在的问题与不足,结合海信公共交通事业部新型车载机的研发,进行了智能公交预报系统的研究工作。
     智能公交系统是一个实时大信息量工作环境,要实现公交的智能化运营,必须对大量的公交运行数据进行采集分析。利用这些数据的有机结合,通过先进的控制算法,完善智能公交系统。
     本文首先介绍车载终端的系统概况,分析目前车载终端功能缺陷,设计了一款具有数据采集功能、通信功能的装置——扩展通信节点。该节点不仅可以使车载终端获取更多的车辆运行数据,而且可以实现车辆的DSRC通信。这对提高公交智能预报准确性,改善整个智能公交系统运行现状具有重要意义。
     扩展通信节点处理器采用飞利浦公司的ARM芯片LPC2364作为处理器。LPC2364片上不使用操作系统。硬件设计包括模拟量、数字量、脉冲量数据采集模块、CAN智能通信模块、DSRC2.4GHz通信模块、RS232、RS422通信模块以及片外存储器扩展模块等部分。设计完成后,编写了硬件功能模块测试程序进行检测,保证扩展通信节点各模块能够工作。
     在此硬件基础上设计并调试了数据采集通信程序。文中给出了CAN协议的部分简要介绍(包括第三方公司提供的应用层协议),以及公司内部自定义的DSRC通信协议。扩展通信节点将采集到的数据按照协议要求转义,通过RS232实现与车载机间的数据传输,通过专用短程无线通信实现与场站机、信号机处扩展通信节点间的数据通信。同时,扩展通信节点也用于场站终端设备上,它们之间使用RS422连接。程序设计完成后,搭建环境模拟现场测试,解决了调试中遇到的软硬件问题,为现场测试打下坚实的基础。
     最后结合扩展通信节点的数据采集以及通信功能,改进原有控制方案,为解决系统的不足与缺陷进行了理论探讨。本文采用双圈识别技术大大提升了车载机预报站点的准确度,利用DSRC功能解决GPS信号丢失时的报站盲区问题。在电子站牌上,采用多信息融合、基于卡尔曼滤波理论算法的时间预测模型,利用扩展通信节点上传的车速、时间、历史数据等信息提高下一班车到站时间预测的准确性。
     本文对利用这些数据提高智能公交预报系统工作性能进行了理论分析,改进了原有的控制方法,进行相应的比较判断。如何进一步完善控制方法,实现理论向实际应用的转换是下一步工作的重点。
This thesis analyzes the development of intelligent public transportation at home and abroad. According to the shortcomings in domestic vehicle bus system, the new research and development machine on bus by Public Transport Services Department of Hisense, the forecasting system in Advanced Public Transportation System, APTS in short, is researched.
     Public transport system is real time work environment with a large amount of information. Many data should be collected and analyzed in the operation of the public transportation. It is necessary to study the intelligent public transport operations. The data are organiced integration in order to realize the advanced control strategies, and improve the performance of APTS.
     This thesis introduces the profiles of the system terminal on bus firstly. The exist problems and the shortage of the terminal on bus are analyzed. In order to resolve those problems, a powerful data collection and transmission device is designed. It is the extended communication node. Not only does the device make the terminal on bus gain more inforamtion, but also realize the communication between vehicle equipment and bus-station. It can improve the ccuracy about the forecasting sytem. And it is important for improve the whole APTS.
     The ARM chip LPC2364 is used as the processor of the extended communication board. Operating system is not used on the ARM chip. In hardware design, data acquisition circuit schematic diagram of analog volume, digital volume and pulse volume were degined; Intelligent CAN communication module, DSRC 2.4GHz communication module, RS232 and RS422 communication module circuit were designed.
     After the completion of hardware design, communication and data acquisition programs were designed and debuged. In this thesis, part of the CAN protocol was briefly introduced (including the application-layer protocol provided by other companies), as well as the DSRC wireless communications protocol designed by Hisense. By combination of protocol and collection data, the extended communication board communicates with the machine on bus through the RS232, communicates with the extended communication board on the station machine through the DSRC short-range wireless.
     Finally, the present control scheme is improved with functional of the extended communication board base on the analysis of the inadequacy and the defect of the existing system. Local prediction accuracy of the bus-station was greatly enhanced by use of Dual-loop vehicle identification technology. The problem of loss GPS signal was resolved by using of DSRC. At E-Stop, the time prediction algorithm model based on the multi-information fusion and Kalman filter theory were used. The speed, time, historical data and other information uploaded by the extended communication board are used in the model to improve the accuracy of the forecast arrival time.
     Theoretical analysis about how to improve the forecasting system is discussed in this thesis. The present control method is improved, and some comparison is made. How to improve the control algorithm further and achieve practical application of the theory will be the focus in the further work.
引文
[1]王旭.ITS在城市公交中的应用[D].南京:东南大学,2004
    [2]Feng Zhongxiang,Liu Jing,Dong Xianyuan.Research on the Establishment of Xian Advanced Public Transport System[J].DOI PELTS.2008,19:430-43
    [3]杨兆升,胡坚明.中国智能公共交通系统框架与实施方案研究[J].交通运输系统工程与信息.2001,2:39-43
    [4]郑周景,应艳杰.智能公交系统研究[J].安徽电子信息职业技术学院学报.2008(2):87-88
    [5]王丰元.智能公交系统技术及其功能[J].城市公共交通.2005,6:39-40
    [6]杨兆升,城市智能公共交通系统的理论与方法[M].北京:中国铁道出版社,2004
    [7]石友服.美国智能交通的发展现状及规划[J].交通世界.2002,10(8):34-36
    [8]陆化普.日本智能公共交通系统的开发与应用[J].国外城市规划.1999(1):5-8
    [9]邵媛媛.智能公交系统中的车在终端应用与研究[D].大连:大连理工大学,2007
    [10]陆化普.日本智能公共交通系统的开发应用现状及展望[J].国外城市规划.1997,9(3):34-37
    [11]卢泽润,赵犁丰,孙启荣.基于GPS和GPRS的公交自动报站系统[J].测控自动化.2007,23(8):216-217
    [12]曹凯.公交电子站牌问题与智能公交管理信息系统建设的系统性管控[J].科技信息.2007,29:50-51
    [13]王合银.智能公交站牌能否成就大交通[J].中国信息化.2007,11(5):74-75
    [14]杨兆升,胡坚明.中国智能公共交通系统框架与实施方案研究[J].交通运输系统工程与信息.2001(1):39-43
    [15]吕磊,韩印,范海雁.基于智能公交系统的公交优先发展战略研究[J].交通与运输.2007,12
    [16]杨兆升.智能交通概论[M].北京:人民交通出版社,2003
    [17]韩印.公共交通智能化调度系统基础理论和实施方法研究[D].吉林大学,2003
    [18]詹杰.基于zigbee的智能公交通信系统的设计与开发[D].长沙:湖南大学,2007,11
    [19]何明,肖利君.智能公交信息服务系统设计[J].山西科技.2008,3,20(2):36-38
    [20]方加宝,夏天,刘欣,梁晓成.智能公交系统中电子站牌的研究[J].中国仪器仪表.2006(10):73-75
    [21]詹浩(译),Mark Fishetti.全球定位系统[J].环球科学:84-85
    [22]郭梯云,邬国扬,李建东.移动通信[M].西安:西安电子科技大学出版社,2000
    [23]广州周立功单片机发展有限公司.深入浅出ARM7-LPC213X_214X [EB/OL].http://www.zlgmcu.com
    [24]Philips Semiconductors Product specification.LPC2364/66/68/78 User manual[Z].2007,7,Rev.01
    [25]郑玉婷,彭琦.基于ARM控制LPC2294的CAN/PCI职能通信卡设计[J].新特器件应用.2007,9(6):11-13
    [26]Philips Semiconductors Product specification.Data Sheet of TJA1040 High speed CAN transceiver[Z].2003,10
    [27]广州周立功单片机发展有限公司.完全替换PCA82C250的TJA1040高速CAN总线收发器[EB/OL].http://www.zlgmcu.com
    [28]Production Data documents of Texas Instruments.HCPL2630 Dual-Channel Optocoupler/Optoisolator[EB/OL].http://www.dzsc.com
    [29]李家绪,徐爱钧,万天军.基于LPC2119的CAN总线智能节点设计[J].设计应用.2006,7:52-54
    [30]Anasys Semiconductor,INC.DataSheet Rev.0.1 of MAX3222E/3232E High ESD Protected,Lower,3.0V to 5.5V,Single Supply RS-232 Transceivers [Z].2005,9
    [31]MAXIM Maxim Integrated Products.3.3V-POWERED,10Mbps and lew-Rate-Limited True RS-485/RS-422 Transceivers[Z].Rev 0:12/94
    [32]王仲文,薛荣华,巴雪静.精通串行通信[M].北京:电子工业出版社,1995,2
    [33]王静霞.一种与ZigBee/802.15.4协议兼容的RF模块XBee/XBee PRO及其应用[J].电子工程师.2007,3-33(3):24-27
    [34]MaxStream.Quick Start Guide XBee/XBee-PRO OEM Development kits[EB/OL].2006,4,25.http://www.maxstream.net
    [35]MaxStream,Inc.XBee/XBee-PRO OEM RF Modules[Z].Product Manual v1.xAx - 802.15.4 Protocol.2006,10
    [36]ATMEL.2-Wire Serial EEPROMs AT24C128 and AT24C256[Z].Rev.0670C-08/98
    [37]陈桂友.单片机原理及应用[M].北京:机械工业出版社.2007
    [38]郭火平,朱文.利用CAN总线实现多台簇绒机互联的智能节点模块设计[J].机电一体化.2006,3:66-69
    [39]李正军.现场总线与工业以太网及其应用系统设计[M].北京:人民邮电出版社,2006
    [40]广州周立功单片机有限公司.CAN发展史[EB/OL].http://www.zlgmcu.com
    [41]刘新亮,张建武,陈兆能.汽车网络设计研究[J].汽车电器.1998,5:7-10
    [42]EmbherM.A cost-effective CAN mcu-solution[J].Electron Prod.Dec.1996,17(4):2-3
    [43]张天柱.基于CAN/LIN总线的车灯控制的故障诊断系统及研究[D].哈尔滨:哈尔滨理工大学,2007
    [44]饶云涛,邹继军,郑勇芸.现场总线CAN原理及应用技术[M].北京:北京航空航天大学出版社,2003
    [45]广州周立功单片机有限公司.CAN-bus V2.0版本[EB/OL].http://ww w.zlgrncu.com
    [46]Hans-Christian Reuss.Extended Frame Format-A New Option of the CAN Protocol[Z].1993,5,4
    [47]李军.DSRC技术原理及其应用[J].黑龙江交通科技.2008,7(12):161-166
    [48]何怡,郭爱煌.专用短程通信技术在智能交通系统中的应用[J].电信快 报,2007,1(5):31-33
    [49]海信网络科技股份有限公司.DSRC短程通信协议[Z].2008,7
    [50]IEEE Standard for Part 802.15.4:Wireless Medium Access Control(MAC)and Physical Layer(PHY) Specification for Low Rate Wireless Personal Area Network(LR-WPANs)[S],2003
    [51]詹杰,周仁龙,吴伶锡,基于ZigBee的公交自动报站系统设计[J].湘潭师范学院学报.2007,12(29):76-80
    [52]瞿雷,刘盛德,胡咸斌.ZigBee技术应用[M].北京:北京航空航天大学出版社,2007
    [53]Kluge.W,Poegel.F,Roller.H,Lange.M,Ferchlan.T,Dathe.L,Eggert.D.A Fully Intergrated 2.4-GHz IEEE 802.15.4-Compliant Transceiver for ZigBee Applications[J].Solid-State Circuits,2006,41(12):2760-2779
    [54]金纯,罗祖秋,罗凤,陈前斌.ZigBee技术基础及案例分析[M].北京:国防工业出版社,2008
    [55]S.Tilak,B.Abu-Ghazaleh,W.Heinzelman.A Taxonomy of wireless microsensor network models[J].Mobile Computing and Communications Review,2002,1(2):281-299
    [56]孙利民,李建中,陈渝等.无限传感器网络[M].北京:清华大学出版社,2005
    [57]广州致远电子有限公司工业通信网络事业部.CAN232MB/CAN485MB智能协议转化器UM010302数据手册[Z].Rev 2.20.2007,12
    [58]文雄军.基于GPS定位的智能公交服务系统研究与设计[D].长沙:中南大学,2007,5
    [59]Wang Fengyuan.An Active Platform Service for Mass Transit System [J].The 4th International Conference On Traffic and Transportation Studies.2004,8,3
    [60]宋坤,李胜利.运用GPS智能调度实现公交精细化管理[J].城市公共交通.2008,9:46-47
    [61]汪亚东.基于GPS的嵌入式公交自动报站系统的研究[D].西安:西安科技大学.2008,4
    [62]文成林,周东华.多尺度估计理论及其应用[M].北京:清华大学出版社,2002,9
    [63]蒋桂艳,江龙辉,王江锋,张晓东.信息融合技术在道路交通参数预测中的应用[J].情报科学.2004,4(22):435-436,440
    [64]周文霞,徐建闽,刘正东.基于卡尔曼滤波算法的公交车辆行程时间预测[J].交通与安全.2007(2/3):174-177
    [65]Lonnie C.Ludeman著,邱天爽,李婷,毕英伟等译.随机过程--滤波、估计与检测[M].北京:电子工业出版社,2005
    [66]江丽炜,韩印,卢伟.智能公交电子站牌显示时间预测方法研究[J].交通与计算机.2006(2):31-33
    [67]朱中,杨兆生.基于卡尔曼滤波理论的实时行程时间预测模型[J].系统工程理论与实践.1999(9):74-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700