煤矿乏风瓦斯催化氧化高效催化剂的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矿乏风中含有大量极低浓度甲烷,开发利用乏风中甲烷是世界性重要研究课题,催化氧化法是最具开发潜力的技术。本文研究制备新型催化剂,进行相关理论与实验研究,为煤矿通风瓦斯利用催化剂的开发和应用提供了必要的理论指导和实验基础。本文采用溶胶-凝胶法合成具有丰富表面积和特定形貌及结构的新型多孔氧化铝材料,并以其为载体,选取Ce、 Zr、La为助剂,采用热吸附法和浸渍法,制备得到新型的同时具有介孔和微米级大孔的贵金属Pd/Al2O3和非贵金属复合物Cu-Mn/Al2O3整体式催化剂,利用XRD、SEM、氮气吸附-脱附等手段进行物化性质表征,模拟煤矿乏风,通过探针实验评价催化剂催化氧化活性。通过物化性质表征分析研究助剂和活性组分的生长规律,经过优化分析,制备得到不同活性组分、助剂负载量的新型催化剂,研究得出载体、助剂和活性组分对所合成催化剂的甲烷催化氧化活性的影响规律和作用机理。当CH4体积百分数为1%,反应气体空速为6000h-1时,所合成贵金属2%Pd/Al2O3和非贵金属复合物0.5MCu-Mn/Al2O3整体式催化剂的起燃温度分别只有227C和314℃。
Ventilation Air Methane (VAM) has plenty of methane in lean concentration. Catalytic combustion is more potential technology for use of VAM. This paper studies the preparation of new type catalysts, carries on the correlation theory and experimental study for VAM using catalyst development. Novel porous alumina with extensive surface area and specific morphology and structure was synthesized by sol-gel method. Preparation of a new type of precious metals of Pd/Al2O3and non-precious metal compound, Cu-Mn/Al2O3monolithic catalysts with both mesoporores and micrometer-scale macropores by thermal adsorption method and dipping method was realized using the as-synthesized porous alumina as the carrier and Ce, Zr and La as the additives. The probe experiment evaluation of the catalyst catalytic oxidation activity carried out. And its physicochemical properties as well as methane combustion catalytic activity was characterized. Growth rule was researched through the physicochemical properties characterization of co-catalytic and active components. Methane catalytic oxidation active influence law and mechanism of this carrier, co-catalytic and active component was concluded. When the CH4volume fraction was1%, the reaction gas space velocity was6000h-1, the ignition temperatures of2%Pd/Al2O3and0.5MCu-Mn/Al2O3monolithic catalyst were227℃and314℃respectively.
引文
1. 刘文革,韩甲业,赵国泉.我国通风瓦斯(VAM)利用潜力及经济性分析[P].2009第九届国际煤层气论坛,北京,2009
    2. 周波.煤矿瓦斯事故原因分析及其主要对策[J].科技信息,2009, (01)
    3. 刘文革,张斌川,刘馨,等.中国煤矿区甲烷零排放[J].中国煤层气,2005,2(2):6-10
    4. 李宏军,胡予红.中国煤矿甲烷对温室气体贡献量的初步评估[J].中国煤层气,2008,5(2):15-17
    5. 徐振刚,张振勇.甲烷排放源及减排对策[J].洁净煤技术,1999,5(03):10-12
    6. 李景明,王红岩,赵群.中国新能源资源潜力及前景展望[J].天然气工业,2008,28(01):149-153
    7. 张洪涛;中国能源结构调整-少用煤,发展气.百度文库,2010.6
    8. 张玉娟.Ce0.6Zr0.4-xYxO2(x=0.05,0.1)纳微米粒子及其负载的MOy(M=Pd,Ag,Au)催化剂的制备、表征及甲烷催化氧化性能研究[D].北京化工大学.2008
    9. 贾超.纳米铜锡氧化物的制备及催化性能的表征[D].北京化工大学.2005
    10.周娴.煤矿乏风低浓度甲烷氧化处理实验研究[D].中国科学研究院工程热物理研究所.2009
    11.王鑫阳,杜金.浓度低于1%的矿井瓦斯氧化技术现状及前景[J].煤炭技术,2008, (09)
    12. Technical and Economic Assessment:Mitigation of Methane Emissions from Coal Mine Ventilation Air[P], Coalbed Methane Outreach Program Climate Protection Division U.S. EPA.2001
    hultz, Ventilation Air Methane:An Emerging Resource[P], The Australian Coal Seam and Mine Methane Conference, Sydney,26 June 2002
    14. Karl H. Schultz, H. Lee Schultz, F. Peter Carothers, Robert A. Watts, Ventilation Air Methane:An Analysis of the Global Market for Methane Oxidation[P], International Coalbed Methane Symposium, Tuscaloosa, Alabama,16 May,2001
    15.哈瑞斯多,J.吉利斯.催化逆流反应器(CH4MIN)技术及其在中国的应用潜力[J].中国煤层气,2004,1(1):35-38
    16. F.J. Weinberg. Combustions Temperatures:The Future? [J]. Nature,1971,6:10-12
    17. Shisu J A. Catalytic combustion of coal mine ventilation air methane[J]. Fuel,2006,85
    18. ShiSu A B, Hua Guo, Cliff Mallett. An assessment of mine methane mitigation and utilisation technologies[J]. Porgress in Energy and Combustion Science.2005,31:123-170
    19.刘东雨,张园锁.煤矿通风气燃气轮机系统控制试验仿真[J].能源技术,2009,30(3): 129-132
    20.尹娟,翁一武.煤矿通风瓦斯在燃气轮机中的催化燃烧特性[J].动力工程,2009,2
    21.郑斌,刘永启,刘瑞祥,等.煤矿乏风的蓄热逆流氧化[J].煤炭学报,2009,34(11):1475-1478
    22.王盈,朱吉钦,李成岳.低浓度甲烷流向变换催化燃烧取热技术[J].北京化工大学学报(自然科学版),2006, (05)
    23. Tian, T, Zhan M, Wang W, et al., Surface properties and catalytic performance in methane combustion of La0.7Sr0.3Fel-yGayO3-δperovskite-type oxides[J]. Catal. Commun.,2009,10 (5):513-517
    24. Li C, Wang W, Zhao N, et al., Structure properties and catalytic performance in methane combustion of double perovskites Sr2Mgl-xMnxMoO6-δ[J]. Appl. Catal. B:Environ.,2011,102 (1-2):78-84
    25. Zhu Y, Sun Y, Niu X, et al., Preparation of La-Mn-O perovskite catalyst by microwave irradiation method and its application to methane combustion[J]. Catal. Lett.,2010,135 (1-2):152-158
    26. Audrey J. Zarur, Jackie Y Ying, Reverse micromulsion synthesis of nanostructured complex oxides for catalytic combustion[J]. Nature,2000,403:65-67
    27. Jiang Z, Hao Z, Su J, et al., Water/Oil microemulsion for the preparation of robust La-hexaaluminates for methane catalytic combustion [J]. Chem. Commun.,2009,3225-3227
    28. Qiao D, Lu G, Mao D, et al., Effect of Ca doping on the catalytic performance of CuO-CeO2 catalysts for methane combustion[J]. Catal. Commun.,2010,11:858-861
    29. Zhang B, Li D, Wang X, Catalytic performance of La-Ce-O mixed oxide for combustion of methane[J]. Catal. Today,2010,158 (3-4):348-353
    30. M.J. Koponen, T.Venalainen, MN.Suvanto, et al., Methane conversion and SO2 resistance of LaMnl-xFexO3 perovskite catalysts promoted with palladium[J]. J. Mol. Catal. A,2006,258(1-2):246-250
    31. Paloma H, Salvador O, Herminio S, et al., Combustion of methane over palladium catalyst in the presence of inorganic compounds:inhibition and deactivation phenomena[J]. Appl. Catal. B:Environ.,2004,47(2):85-93
    32. Pan Y, Liu C, Shi P, The cleavage of the methane C-H bond over PdO/H-BEA:A density functional theory study [J]. Appl. Surf. Sci.,2008,254 (17):5587-5593
    33. Thevenin P O, Pocoroba E, Pettersson L J, et al., Characterization and activity of supported palladium combustion catalysts[J]. J. Catal.,2002,207:139-149
    34. Stasinska B, Machocki A, Antoniak K, et al., Importance of palladium dispersion in Pd/A12O3 catalysts for complete oxidation of humid low-methane-air mixtures[J]. Catal. Today,2008,137 (2-4):329-334
    35. Choudhary T V, Banerjee S, Choudhary V R. Catalysts for combustion of methane and lower alkanes [J]. Appl Catal A,2002,234(1-2):1-23
    36.郭玉华.含镁复合氧化物催化剂催化甲烷燃烧性能的研究[D].宁夏大学,2005
    37.袁强,杨乐夫,史春开,等.改性氧化铝为载体的钯催化剂对甲烷催化氧化作用的研究[J].厦门大学学报(自然科学版),2002,41(2):199-202
    38. Yang S, Maroto-Valiente A, Benito-Gonzalez M, et al., Methane combustion over supported palladium catalysts-I. Rectivity and active phase[J]. Appl. Catal. B:Environ.,2000,28 (3):223-233
    39. Lara S E, Salvador O, Aurelio V, et al., Sulphur poisoning of palladium catalysts used for methane combustion: Effect of the support[J]. J. Hazard. Mater.,2008,153 (1):742-750
    40. Shi C, Yang L, Cai J, Cerium promoted Pd/HZSM-5 catalyst for methane combustion [J]. Fuel,2007,86: 106-112
    41. Klingstedt F, Neyestanaki A K, Bygguingsbacka R, et al. Palladium based catalysts for exhaust aftertreatment of natural gas powered vehicles and biofuel combustion[J]. Appl. Catal. A,2001,209 (1-2):301-316
    42. Yang Z X, Chen X Y, Niu G X, et al. Comparision of La-modification on the thermostalilities of alumina and alumina-supported Pd catalysts prepared from different alumina sources[J]. Appl. Catal. B,2001,29:185-194
    43.潘燕飞,刘建良,徐秀峰.用于甲烷燃烧的MnOx/La-Al2O3催化剂的研究[J].洁净煤技术,2007,13(5):31-34
    44. Guo X N, Zhi G J, Yan X Y, et al. Methane combustion over Pd/ZrO2/SiC, Pd/CeO2/SiC, and Pd/Zr0.5Ce0.5O2/SiC catalysts[J]. Catal Commun,2011,12(10):870-874
    45. M.C. Marion, et al., J. Chem. Soc., Faraday Trans,1990,86:3027
    46.郑明军,王海花,陈军伟,三元催化反应器的作用原理及其检测,内燃机,2004,(1):34-35
    47.蔡俊修,陈笃慧.控制大气污染用的蜂窝陶瓷材料[J],硅酸盐学报,1994,22(5):458-469
    48.崔淑华,王同岩.催化燃烧用金属载体催化剂的多元分析[J].交通标准化,2010,(1):126-129
    49. Liu H, Zhao J, Li C, et al., Conceptual design and CFD simulation of a novel metal-based monolithic reactor with enhanced mass transfer[J]. Catal. Today,2005,105:401-406
    50. Mei H, Li C, Liu H, Simulation of heat transfer and hydro-dynamics for metal structured packed bed[J]. Catal. Today,2005,105 (3-4):689-696
    51. Wang W, Ji S, Yin F, et al., J. Molecular Catal.,2006,20:525-529
    52. Kucharczyk B, Tylus W, Kepinski L., Pd-based monolithic catalysts on metal supports for catalytic combustion of methane[J]. Appl. Catal.B:Environ.,2004,49 (1):27-37
    53. Barbara K, Wlodzimierz T, Effect of washcoat modification with metal oxides on the activity of a monolithic Pd-based catalyst for methane combustion[J]. Catal. Today,2008,137 (2-4):324-328
    54. Yin F X, Ji S F, Wu P Y, et al. Preparation of Pd-based metal monolithic catalysts and a study of their performance in the catalytic combustion of methane[J]. ChemSusChem,2008,1(4):311-319
    55. Wang Z J, Liu Y, Shi P, et al. Al-MCM-41 supported palladium catalyst for methane combustion:Effect of the preparation methodologies[J]. Appl Catal B,2009,90(3-4):570-577
    56. Yang L, Shi C, He X, et al., Catalytic combustion of methane over PdO supported on Mg-modified alumina[J]. Appl. Catal. B,2002,38:117-125
    57. S. Rossingnol, C. Kappenstein, Effect of doping elements on the thermal stability of transition alumina[J]. Int. J. Inorg. Mater.2001,3:51-58
    58. G. Zhu, K.-i. Fujimoto, D.Y.Zemlyanov, et al., Coverage of palladium by silicon oxide during reduction in H2 and complete oxidation of methane[J]. J. Catal.2004,225(1):170-178
    59. T. Horiuchi, T. Osaki, T. Sujiyama, et al, Maintenace of large surface area of alumina at elevated temperatures above 1300℃ by preparing silica-containing pseudobohmite aerogel[J]. J. Chem. Soc., Faraday Trans.1994, 90:2573
    60. T. Horiuchi, T. Osaki, T. Sujiyama, et al, Maintenance of large surface area of alumina heated above 1300℃ by preparing silica containing pseudobohmite aerogel[J].J. Non-Cryst. Solids,2001,291:187
    61. T. Horiuchi, L. Chen, T. Osaki, et al, A novel alumina catalyst support with high thermal stability derived from silica-modified alumina aerogel[J]. Catal. Lett.1999,58:89
    62. A.J. Zarur, H.H. Hwu, J.Y. Ying, Phase behavior, structure and applications of reverse microemulsions stabilized by non-ionic surfactants[J]. Langmuir,2000,16:3042-3049
    63. A.N. Shigapov, G.W. Graham, R.W. McCabe, et al, The preparation of high-surface area, thermally-stable, metal-oxide catalysts and supports by a cellulose templating apporoach[J]. Appl. Catal. A:Gen.2001,210 (1-2):287-300
    64. M. Inoue, H. Kominami, T. Inui, Thermal transformation of alumina formed by theral decpmposition of aluminum alkoxied in organic media[J]. J. Am. Ceram. Soc.1992,75:2597-2598
    65. M. Inoue, H. Tanino, Y. Kondo, et al, Formation of microcrystalline a-alumina by glycothermal treatment of gibbsite[J]. J. Am. Ceram. Soc.,1989,72:352-353
    66. Wang X, Guo Y, Lu G, et al. An excellent support of Pd catalyst for methane combustion:Thermal-stable Si-doped alumina[J]. Catal Today,2007,126(3-4):369-374
    67. M.Niwa, K. Awano, Y. Murakami, Activity of supported platinum catalysts for methane combustion[J]. Appl. Catal.,1983,7:317-325
    68. K. Muto, N. Katada, M. Niwa, Complete oxidation of methane on supported palladium catalyst:support effect[J]. Appl. Catal. A,1996,134:203-215
    69. K. Muto, N. Katada, M. Niwa, Thermally stable environmental catalysts:oxidation of methane over calcined palladium loaded on silica monlayer[J]. Catal Today,1997,35(1):145-151
    70. Sietsma J R A, Meeldijk J D, Versluijs-Helder M, et al., Ordered mesoporous silica to study the preparation of Ni/SiO2 ex nitrate catalysts:impregnation, drying, and thermal treatments[J], Chem. Mater.,2008,20: 2921-2931
    71.曾令可,王慧,罗民华等.多孔功能陶瓷制备与应用[M].北京:化学工业出版社,2006:30-35
    72. M. Shunsuke, F. Koji, N. Kazuki, et al. Morphology control of phase-separation-induced alumina-silica macroporous gels for rare-earth-doped scattering media[J]. Journal of physical chemistry B,2004,108(43): 16670-16676
    73. K. Nakanishi. Pore structure control of silica gels based on phase separation[J], Journal of Porous Materials, 1997,4:67-112
    74. Ryoji Takahashi, Satoshi Sato, Toshiaki Sodesawa, et al. Silica-alumina catalyst with bimodal pore structure prepared by phase separation in sol-gel process[J]. Journal of Catalysis,2001,200:197-202
    75. Miyuki Yabuki, Ryoji Takahashi, Satoshi Sato, et al. Silica-alumina catalysts prepared in sol-gel process of TEOS with organic additives[J]. Phys Chem Chem Phys,2002,4:4830-4837
    76. Sanchez, C, Livage, J, Henry, M, et al. Chemical modification of alkoxide precursors[J]. J. Non-Cryst. Solids, 1988,100:65
    77. Tadanaga K, Iwami T, Tohge N, et al. J. Sol-Gel Sci.Technol.1994,3:5
    78. Gash, A. E., Tillotson, T. M., Satcher, J. H., et al. Use of epoxide in the sol-gel synthesis of porous iron(III) oxide monoliths fro Fe(Ⅲ) salts. Chem. Mater.2001,13:999-1007
    79. Baumann, T. F., Gash, A. E., Chinn, S. C., et al, Synthesis of high surface area alumina aerogels without the use fo alkoxide precursors[J]. Chem. Mater.2005,17:395-401
    80. Tokudome Yasuaki, Fujita Koji, Nakanishi Kazuki, et al. Synthesis of Monolithic A12O3 with Well-Defined Macropores and Mesostructured Skeletons via the Sol-Gel Process Accompanied by Phase Separation[J]. Chemistry of Materials,2007,19(14):3393-3398
    81. Liott a L F, Deganel lo G. Thermal stability and structural properties of Pd catalysts supported on CeO2-BaO-Al2O3 mixed oxides prepared by sol-gel method[J]. J. Mol. Catal. A,2003, (204-205):763-770
    82. Colussi S, Leitenburg C D, Dolcett i G. The role of rare earth oxides as promoters and stabilizers in combustion catalysts[J]. J. Alloys Compd.,2004,374 (1-2):387-392
    83. Yue B H, Zhou R X, Wang Y J, et al. Study of the methane combustion and TOR/TPO properties of Pd/Ce-Zr-M/Al2O3 catalysts with M=Mg, Ca, Sr, Ba.[J] J Mol Catal A,2005,238(1/2):241-249
    84. Alegre V V, M A P da Silva, Schmal M. Catalytic combustion of methane over palladium alumina modified by niobia[J], Catal Commun,2006,7(5):314-322
    85. Lara S E, Salvador O, Aurelio V, et al. Oxidation of methane over palladium catalysts:effect of the support[J]. Chemosphere,2005,58:9-17
    86. Stasinska B, Gac W, Ioannides T, et al., J. Nat. Gas Chem.2007,16,342-348
    87.高利平,刘建周,吴杰,等.Pd-M/A12O3催化CH4燃烧反应性能及其活化能表征[J].中国矿业大学学报,2010,39(6):860-864
    88.章洁,四川大学硕士学位论文,2000
    89.唐晓兰,四川大学硕士学位论文,2000
    90. Philippe O T, Ana A, Lars J P, et al. Catalytic combustion of methane over cerium-doped palladium catalysts[J]. J Catal,2003,215:78-86
    91. Colussi S, Trovarelli A, Vesselli E, et al. Structure and morphology of Pd/A12O3 and Pd/CeO2/A12O3 combustion catalysts in Pd-PdO transformation hysteresis[J]. Appl Catal A,2010,390(1-2):1-10
    92. M. Machida, H. Haniguchi, T. Kijima, et al, Methane combustion activity of alumina supported Pt, Pd, and Rh catalysts modified by high-energy ion beam irradiation[J]. J. Mater. Chem.1998,8:781-785
    93. Guoqing Guan, Katsuki Kusakabe, Masatsugu Taneda, et al., Catalytic combustion of methane over Pd-based catalyst supported on a macroporous alumina layer in a microchannel reactor, Chemical Engineering Journal, 2008,144:270-276
    94. Sekizawa K, Widjaja H, Maesa S, et al., Low temperature oxidation of methane over Pd catalyst supported on metal oxides[J]. Catal. Today,2000,59:69-74
    95. Yang S, Maroto-Valiente A, Benito-Gonzalez M, et al., Methane combustion over supported palladium catalysts-I. Rectivity and active phase[J]. Appl. Catal. B:Environ.,2000,28 (3):223-233
    96. Lyubovsky M, Smith L L, Castaldi M, et al., Catalytic combustion over platinum group catalysts:fuel-lean versus fuel-rich operation[J].Catal. Today 2003,83:71-84
    97. Pecchi G, Reyes P, Orellana F, et al., Methane combustion on sol-gel Rh/ZrO2-SiO2 catalysts[J]. J Chem Technol Biotechnol B 1999,74:897-903
    98. Grisel R J H, Kooyman P J, Nieuwenhuys B E. Influence of the prepatation of Au/Al2O3 on CH4 oxidation activity[J]. J Catal.2000,191(2):430-437
    99. Grisel R J H, Nieuwenhuys B E. A comparative study of the oxidtation of CO and CH4 over Au/MOx/Al2O3 catalysts[J]. Catal. Today 2001,64(1):69-81
    100. Pieck C L, Vera C R, Peirotti E M, et al., Effect of water vapor on the activity of Pt-Pd/Al2O3 catalysts for methane combustion[J]. Appl Catal A 2002,226(1-2) 281-291
    101. Ersson A, Kusar H, Carroni R, et al. Catalytic combustion of methane over bimetallic catalysts-a comparison between a novel annular and a high-pressure reactor[J]. Catal. Today 2003,83:265-277
    102. Persson K, Ersson A, Jansson K,et al. Influence of co-metals on bimetallic palladium catalysts for methane combustion[J]. J. Catal.2005,231(1):139-150
    103. Persson K, Ersson A, Colussi S, et al., Catalytic combustion of methane over bimetallic Pd-Pt catalysts:The influence of support materials[J]. Appl. Catal. B,2006,66(3/4):175-185
    104. Cullis C F, Willatt B M, The inhibition of hydrocarbon oxidation over supported precious metal-catalysts[J]. J. Catal.1984,86:187-200
    105. Trovarelli A, Leitenburg C, Boaro M. et al., The utilization fo ceria in industrial catalysis[J]. Catal. Today 1999, 50(2):353-367
    106. Boaro M, Vicario M, Leitenburg C, et al., The use of temperature-programmed and dynamic/transient methods in catalysis:Characterization of ceria-based, model three-way catalysts[J]. Catal. Today,2003,77:407-417
    107. G6lin P, Primet M, Complete oxidation of methane at low temperature over noble metal based catalysts:a review[J]. Appl. Catal. B 2002,39(1):1-37
    108. Yang L F, Shi C K, He X E, et al. Catalytic combustion of methane over PdO supported on Mg-modified alumina[J]. Appl Catal B,2002,38(2):117-125
    109.卢泽湘,吴平易,季生福,等.Pt/SBA-15, Pt/SBA-16催化剂的合成、表征及甲烷催化燃烧性能[J].分子催化,2008,22(4):368-373
    110. Laugel G, Arichi J, Moliere M, et al. Metal oxides nanoparticles on SBA-15:Efficient catalyst for methane combustion[J]. Catal Today,2008,138(1-2):38-42
    Ⅲ. Yin F X, Ji S F, Wu P Y, et al. Preparation of Pd-based metal monolithic catalysts and a study of their performance in the catalytic combustion of methane[J]. ChemSusChem,2008,1(4):311-319
    112. Colussi S, Trovarelli A, Vesselli E, et al. Structure and morphology of Pd/A12O3 and Pd/CeO2/A12O3 combustion catalysts in Pd-PdO transformation hysteresis[J]. Appl Catal A,2010,390(1-2):1-10
    113. Simplicio L M T, Brandao S T, Domingos D, et al. Catalytic combustion of methane at high temperatures: Cerium effect on PdO/A12O3 catalysts[J]. Appl Catal A,2009,360(1):2-7
    114. Colussi S, Trovarelli A, Groppi G, et al. The effect of CeO2 on the dynamics of Pd-PdO transformation over Pd/A12O3 combustion catalysts[J]. Catal Commun,2007,8(8):1263-1266
    115. Meriaudeau P, Ellestad O H, Dufauxm, et al. Metal-support interaction:catalytic properties of TiO2-supported platinum, indium and rhodium[J]. J Catal,1982,75(2):243-250
    116.Guo X N, Zhi G J, Yan X Y, et al. Methane combustion over Pd/ZrO2/SiC, Pd/CeO2/SiC, and Pd/Zr0.5Ce0.5O2/SiC catalysts[J]. Catal Commun,2011,12(10):870-874
    117. Arai H, Yamada T. Eguchi K. Catalytic combustion of methane over various perovskite-type oxides[J]. Appl. Catal.,1986,26:265-276
    118. Choudhary V R, Uphade B S, Pataskar S G Appl. Catal. A:Low temperature complete combustion of dilute toluene and methyl ethyl ketone over transition metal-doped ZrO2 (cubic) catalysts.2002,227:29
    119. Zaki M L, Hasan M A, Pasupulety L, et al., Promotion of the hydrogen peroxide decomposition activity of manganese oxide catalysts[J]. J. Appl. Catal. A,1999,181:171-179
    120. Barbero B P, Costa-Almeida L, Sanz O, et al. Washcoating of metallic monoliths with a MnCu catalyst for catalytic combustion of volatile organic compounds[J]. Chem Eng J,2008,139(20):430-435
    121. Radwan R E, Shobaky G A, Fahmy Y M. Cordierite as catalyst support for cobalt and manganese oxides in oxidation-reduction reactions[J]. Appl Catal A,2004,274(1-2):87-99
    122.王翔,段连运,谢有畅.添加剂铜和银离子对Mn02催化燃烧CH4的影响[J].分子催化,1998,12:312
    123.马静萌,王辉,汪哲明等.CuO-ZnO-MnOx/Al2O3催化剂上α.,a二甲基苄醇氢解制备异丙苯[J],石油化工,2010,39(4):382-386
    124. Yang W, Li D, Xu D, et al. Effect of CeO2 preparation method and Cu loading on CuO/CeO2 catalysts for methane combustion [J]. Journal of natural gas chemistry,2009,18:458-466
    125.杜小春,陈耀强,陈清泉,等.Ce-Zr-Mn-O固溶体作为甲烷燃烧过渡金属催化剂载体的研究,功能材料,2005,36(3):454-457
    126.刘智云,宋永吉.水热合成甲烷催化燃烧催化剂条件探讨及优化.石油化工高等学校学报,2007,20(1):42-45
    127.张佳瑾,李建伟,朱吉钦,等.助剂对Cu-Mn复合氧化物整体式催化剂催化低浓度甲烷燃烧反应性能的影响[J].催化学报,2011,32(8):1380-1386
    128.王胜,高典楠,张纯希,等.贵金属甲烷燃烧催化剂[J].化学进展,2008,20(6):789-797
    129. Yazawa Y, Yoshida H, Takagi N, et al. Acid strength of support materials as a factor controlling oxidation state of palladium catalyst for propane combustion[J]. J Catal,1999,187(1):15-23
    130. Lapisardi G, Urfels L, Gelin P, et al. Superior catalytic behaviour of Pt-doped Pd catalysts in the complete oxidation of methane at low temperature[J]. Catal Today,2006,117(4):564-568
    131. Kinnunen N M, Hirvi J T, Venalainen T, et al. Procedure to tailor activity of methane combustion catalyst: Relation between Pd/PdOx active sites and methane oxidation activity[J]. Appl Catal A,2011,397(1-2):54-61
    132. Colussi S, Trovarelli A, Vesselli E, et al. Structure and morphology of Pd/Al2O3 and Pd/CeO2/Al2O3 combustion catalysts in Pd-PdO transformation hysteresis [J]. Appl Catal A,2010,390(1-2):1-10
    133.严河清,张甜,王鄂凤,等.甲烷催化燃烧催化剂的研究进展[J].武汉大学学报(理学版),2005,51(2):161-166
    134. Patrick Gelin, Michel Primet, Complete oxidation of methane at low temperature over noble metal based catalysts:a review[J]. Applied Catalysis B:Environmental,2002(39):1-37
    135. R.J. Farrauto, M.C. Hobson, T. Kennelly, et al. Appl. Catal. A 81 (1992) 227.
    136. Specchia S, Conti F, Specchia V. Kinetic studies on Pd/CexZr1-xO2 catalyst for methane combustion[J]. Ind Eng Chem Res,2010,49(21):11101-11111
    137. Li Z, Xu G, Hoflund G B. In situ IR studies on the mechanism of methane oxidation over Pd/Al2O3 and Pd/Co3O4 catalysts[J]. Fuel ProcTech,2003,84(1-3):1-11
    138. Schmal M, Souza M M V M, Alegre V V. Methane oxidation-effect of support, precursor and pretreatment conditions-in situ reaction XPS and DRIFT[J]. Catal Today,2006,118(3-4):392-401

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700