1-脱氧野尻霉素合成路线设计及工艺优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以甲基-α-D-吡喃葡糖苷(methyl a-D-glucopyranoside)为起始反应原料,设计了一条合成1-脱氧野尻霉素(1-deoxynoj irimycin, DNJ)的工艺路线,然后根据这条工艺路线,以适应工业化大生产为标准,对其进行了优化,并在实验室条件下进行小试实验对优化工艺的可行性进行验证。而后,在实验室小试实验取得成功的基础上,对该优化工艺进行了中试放大试验,探索其工业化生产的可行性,结果如下:
     1、通过调研文献,研究反应,设计了一条合成1-脱氧野尻霉素的工艺路线。这条工艺路线以甲基-α-D-吡喃葡糖苷为起始反应原料,经过苄基保护,脱甲基反应,开环形成双醇,通过Pfitzner-Moffatt氧化反应形成双羰基后再进行醛酮还原胺化反应关环,脱苄基保护等五步反应最后制得目标产物。然后通过实验室小试来对该设计路线的可行性进行实验验证,并取得了成功。小试投料77.6g,经过五步反应,最后得到6.79g目标产物DNJ,总收率为29.4%,各步收率分别为75%,65%,98.5%,72%和85%。
     2、通过实验室小试实验,验证了该反应路线的可行性之后,本研究以能够进行工业化生产为标准对该条路线进行了工艺优化。优化内容有:验证了工艺中第一步反应生成的苄基醚副产对于第二步的反应没有影响,因而可以简化反应的后处理步骤;优化了原工艺中第二,四,五步反应的溶剂体系;将原工艺里的催化剂LiAlH4改变为NaBH4;将原工艺里第五步反应在工业化生产中操作比较困难的使用液氨和金属锂的反应条件,改变为使用Pd(OH)2和H2进行脱苄基保护。然后对优化后的工艺路线可行性进行了实验室小试验证,并取得了成功。小试投料195g,经过五步反应,最后得到7.4g目标产物DNJ,总收率为7.98%,各步收率分别为65%,52%,90.2%,35%和74.8%。
     3、根据优化后的工艺路线进行了两批中试放大试验,进一步验证该优化路线的工业化生产可行性。两批中试试验均投料20kg,经过反应,分别得到目标产物0.67kg和1.63kg,总收率分别为8.03%和7.95%,平均收率为7.99%,与实验室小试收率相似。同时,两批中试试验所得到的产品能够达到100%的纯度,验证了优化工艺的可行性与稳定性。通过两批中试放大试验的结果可以看出,这条优化后的工艺,实验设计合理,反应条件适合,具备工业化生产的条件。
In this paper, we designed a route of synthesis of 1-deoxynojirimycin (DNJ) with methyl a-D-glucopyranoside as the start materials. Based on this route, we optimized it and carried out small scale experiments under laboratory conditions to verify the feasibility of the optimal procedure to meet the standards of industrialized production. Then on the basis of the success of small scale experiments in the laboratory, we did pilot scale of this optimized route to explore the feasibility of industrial production. Results are as follows:
     1. We designed a route to synthesize 1-deoxynojirimycin after the literature review and reaction research. This route is taking methylα-D-glucopyranoside as the start materials, and the desired product has been gotten after five steps reactions. Each steps of the route were benzyl protected reaction, demethylation reaction, ring-opening reaction, the reaction of Pftizner-Moffat oxidation followed stereocontrolled intramolecular reductive aminaton, debenzylation reaction. Then we carried out small scale laboratory experiments with this route and got success finally. We used 77.6 gram reactant and got 6.79 gram desired product DNJ ultimately after five steps reactions. The general yield was 29.4% and the yields of each steps were:75%,65%,98.5%,72% and 85%.
     2. After verifying the feasibility of the reaction route through small scale experiments in laboratory, this study optimized this procedure to the capable of industrial production as standard. The optimization contents:Verify the by-product benzyl ether of step 1 reaction in the procedure don't affect step 2 reaction, and so the processing steps after the reaction can be simplified; Optimize the solvent in step 2,4 and 5 reactions of original procedure; Change the catalyst LiAlH4 in original procedure to NaBH4; Change using lq. ammonia and lithium metal as reaction conditions in original procedure which is a bit difficult to be operated in industrial production to use Pd(OH)2 and H2 doing benzyl protection. Then we carried out small scale laboratory experiments with optimized procedure and got success finally. We used 195 gram reactant and got 7.4 gram desired product DNJ ultimately after five steps reactions. The general yield was 7.98% and the yields of each steps were:65%, 52%,90.2%,35% and 74.8%.
     3. We carried on two batches of pilot scale experiments to further verify the feasibility of industrial production with the optimized procedure. We used 20kg reactant in each batch of pilot scale experiments, got desired product 0.67kg and 1.63kg after reactions, the general yield were 8.03% and 7.95%, the average yield was 7.99% and it's similar with the yield in small scale experiments. In the meantime, all the product we got from two batches of pilot scale experiments could reach 100% purity which verified the feasibility and stability of the optimized procedure. We can see from the results of the two batches pilot scale experiments that the experiments are designed reasonable and the reaction conditions are accurate in the optimized procedure, it's qualified for industrial production.
引文
[1]黎红梅.2型糖尿病的临床药物治疗进展[J].中国医学研究与临床,2004,2(16):61.
    [2]杨贻清.糖尿病健康教育进展(综述).中国城乡企业卫生2009,6(3):85-87.
    [3]朱禧星,主编.现代糖尿病学.上海医科大学出版社,2000,5.380.
    [4]吴菁,谷卫.糖尿病诊治新进展——解读美国糖尿病学会《2010版糖尿病诊疗指南》.中华全科医师杂志.2010,10-9(10):668-671.
    [5]崔俊,王友群.治疗糖尿病药物研究进展.中国药房.2009,20(35):2785-2787.
    [6]周鹏,陈南衡,柏志松,等.阿卡波糖和格列吡嗪联合治疗2型糖尿病降糖效果和不良反应的临床观察[J]. 中华内科杂志,1999,16(6):315.
    [7]Levetan C. Oral antidiabetic agent in type 2 diabetes [J]. Curr Med Res Opin, 2007,23(4):945.
    [8]Triplitt C, McGill JB, Porte DJ, et al. The changing landscape of type 2 diabetes:the role of incretinbased therapies in managed care outcomes [J]. J Manag Care Pharm. 2007,13(9):S2.
    [9]陈岷,张伶俐,孙世明,等.糖尿病药物治疗新进展[J]中国药房,2006,17(19):1508.
    [10]Michael L, He Y, Wang ZZ, et al. Recent and emerging Anti diabetes Targets [J]. Med Res Rev,2009,29(1):125.
    [11]姜淼.三黄安消胶囊治疗2型糖尿病及改善胰岛素抵抗作用的临床研究.新中医,2006,38(1):28-30.
    [12]牛瑞云,袁成勇,周慧敏.中药三参二根汤与吡格列酮治疗2型糖尿病的疗效比较[J].职业与健康,2005,21(1):112-113.
    [13]李宏春.苦芪方治疗糖尿病肾病及对血糖血脂影响的临床研究.新中医,2006,38(2):36-38.
    [14]程凤银,叶盛英.桑叶抗糖尿病研究概况[J].药学实践杂志,2005,23(2):71-74.
    [15]刘培培,雍克岚,吕敬慈,等.龙血竭提取物对正常及四氧嘧啶糖尿病模型小鼠的影响[J].时珍国医国药,2006,17(10):1886-1888.
    [16]孙津舒.中药治疗糖尿病的研究近况[J].中国城乡企业卫生,2009,24(2):105.
    [17]王锋鹏.生物碱化学[M].北京:化学工业出版社.2008.1:71-90
    [18]郭玉娜,王仲孚,黄琳娟.植物来源的糖类似物——多羟基生物碱的研究进展[J].有机化学.2007,27(11):1337-1344.
    [19]Stiitz, A. E. Iminomgars as Glycosidase Inhibitors, Nojirimycin and Beyond, Wiley-VCH, Weinheim,New York,1999. p.8.
    [20]S.Inouye, T. Tsuruoka, T. Ito, et al. Structure and Synthesis of Nojirimycin. Tetrahedron.1968,2:2125-2144.
    [21]Welter, A., Jadot, J., Dardenne, G., et al. 2,5-Dihydroxymethyl 3,4-dihydroxypyrrolidine dans les feuilles de Derris elliptica. Phytochemistry.1976,15: 747-750.
    [22]Shibano M., Tsukamoto D., Masuda A., et al. Two New Pyrolidine Alkaloids, Radicamines A and B, as Inhibititors of α-Glucosidase from Lobelia chinensis LOUR. Chem. Pharm. Bull.2001,49,1362-1365.
    [23]Nash R. J., Thomas P. I., Waigh R. D., et al. Casuarine:A very highly oxygenated pyrrolizidine alkaloid. Tetrahedron Lett.1994,35:7849-7852.
    [24]Molyneux R. J., Benson M., Wong R. Y., et al. Australine, a Novel Pyrolizidine Alkaloid Glucosidase Inhibitor from Castanospermum austral. J. Nat. Prod.1988, 51:1198-1206.
    [25]Colegate S. M., Dorling P. R., Huxtable C. R. A Spectroscopic Investigation of Swainsonine:An α-Mannosidase Inhibitor Isolated from Swainsona canescens. Aust. J. Chem.1979,32:2257-2264.
    [26]Hohenschutz L. D., Bell E. A., Jewess P. J. et al. Castanospermine, A 1,6,7,8-tetrahydroxyoctahydroindolizine alkaloid, from seeds of Castanospermum austral. Phytochemistry.1981,20:811-814.
    [27]Goldmann A., Milat M.-L., Ducrot P.-H., et al. Tropane derivatives from Calystegia sepium. Phytochemistry.1990,29:2125-2127.
    [28]Carlos Cativiela, Maria Dolores D., Stereoselective synthesis of quaternary a-amino acids. Part 2:Cyclic compounds. Tetrahedron:Asymmetry,2000,11:645-732.
    [29]Jean M. H., Van den Elsen, Douglas A., et al., Structure of Golgi α-mannosidase Ⅱ: a target for inhibition of growth and metastasis of cancer cells. EMBO J.2001, 20:3008-3017.
    [30]Watson A. A., Fleet G. W. J., Asano N., et al., Polyhydroxylated alkaloids——natural occurrence and therapeutic applications. Phytochemistry,2001,56:265-295.
    [31]Van de Laar F. A., Lucassen P. L., Akkermans R. P., et al., α——Glucosidase Inhibitors for Patients With Type 2 Diabetes:Results from a Cochrane systematic review and meta-analysis. Diabetes Care 2005,28,154-163.
    [32]Asano N., Nash R. J., Molyneus R. J., et al. Tetrahedron:Asymmetry 2000,11,645
    [33]Khanna I. S., Weier J. R. M., Julien R. A., et al., The synthesis of 1,5-dideoxy-1,5-(alkyl)imino-2-C-methyl-d-glucitols. Tetrahedron Lett.1996, 9:1355-1358.
    [34]M. Shigeake, Y. Hiroshi, M. Katsunori, et al. A novel and efficient method for enzymatic synthesis of high purity maltose using Moranoline(1-deoxynojirimycin) [J].Biosci.Biotech.Biochem.1992,56(9):1406-1409
    [35]Csiki Z., Fuegedi P., Unambiguous syntheses of 3-o-benzyl-1,5-dideoxy-1,5-imino-d-glucitol and-1-iditol. Synthesis,2010,15:2626-2630.
    [36]Matos Carlos R. R., Lopes Rosangela S. C., Lopes Claudio C., Synthesis of 1-Deoxynojirimycin and N-Butyl-1-deoxynojirimycin. Synthesis.1999,4:571-573.
    [37]Koji D., Yoshihiko I., Tsunematsu T., Studies on the Constituents of the Water Extract of the Root of Mulberry Tree (Morus bombycis KOIDZ). Chemical & Pharmaceutical Bulletin,1986, vol.34,5:2243-2246.
    [38]Guether K., Michael S., Vierstufige 1-Desoxynojirimycin-Synthese mit einer Biotransformation als zentralem Reaktionsschritt. Angewandte Chemie,1981,vol. 93,9:799-800.
    [39]Andrew H., Norman C., Donald M., et al., Glucosidase Inhibitors:Structures of Deoxynojirimycin and Castanospermine. Journal of Medicinal Chemistry,1993, vol.36, 25:4082-4086.
    [40]Yagi M, Kouno T, Aoyagi Y et al., The structure of moranoline a piperidine alkaloid from Morus species [J]. Nippon Nogeik Kaishi,1976,50(11):571-572.
    [41]陈松,刘宏程,储一宁,等.12个桑树品种桑叶中的1-脱氧野尻霉素含量测定与分析[J].蚕业科学,2007,33(4):637-641
    [42]Kinura T, Nakagawa K, Kubota H, et al., Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans [J]. J A gric Food Chem,2007,55(14):5869-5874.
    [43]欧阳臻,陈钧.不同季节桑叶中1-脱氧野尻霉素(DNJ)含量的测定[J].食品科学,2004,25(10):211-214.
    [44]Asano N, Kato A. Miyauchi M, et al, Nitrogerr containing furanose and pyranose analogues from Hyacinthus orientalis [J]. Nat Prod,1998,61(5):625-628.
    [45]Kim H. S., Kim Y. H., Hong Y. S. et al., α-Glucosidase inhibitors from Commelina communis [J]. Planta Med.1999,65(5):437-439.
    [46]Murao S., Miyata S., Isolation and characterization of a new trehalase inhibitor S-GI [J]. Agric BiolChem.1980,44(1):219-221.
    [47]Daniel C., Stein T., Leslie K., et al., Characterization of Bacillus subtilis DSM704 and its production of 1-deoxynojirimycin [J]. Appl Environ Microbiol, 1984,48(2):280-284.
    [48]周乐春,魏兆军,张海祥,等.产1-脱氧野尻霉素微生物菌株的筛选与鉴定[J].食品科学,2009,30(23):361-364。
    [49]Rye C. S., Withers S. G. Curr. Opin. Chem. Biol.2004,4,573.
    [50]吴东儒.糖类的生物化学.北京:高等教育出版社,1987.687-758
    [51]Tierney M ,Pottage J ,Kessler H,et al. The tolerability and pharmacokinetics of N-butyl-deoxynojirimycin in patients with advanced HIV disease(ACTG 100). J Acquir Immune Defic Syndr Hum Netrovirol,1995,10(5):549-553.
    [52]Paulsen H., Sangster I., Heyns K., Monosaccharide mit stickstoffhaltigem Ring, ⅩⅢ. Synthese und Resktionen von Keto-piperidinosen. Chem. Ber.1967,100,802-815.
    [53]Beaupere D., Stasik B., Vzanet R., et al., Azidation selective du L-sorbose. Application a la synthese rapide de la l-deoxynojirimycin. Carbohydr Res., 1989,191(1):163-166.
    [54]田丽丽,李中军,李辉.1-脱氧氮杂-D-葡萄糖(1-Deoxynoj irimycin,DN J)的合成[J].应用化学,2004,21(1):12-15。
    [55]Hideo I., Naoki Y., Chihiro K., Total Synthesis of (+)-Nojirimycin and (+)-1-Deoxynojirimycin. J.Org. Chem.1987,52(15):3337-3342.
    [56]Gregory D. Julien C., Andrew E., et al. Stereocontrolled Total Synthesis of (+)-1-Deoxynojirimycin. Eur. J. Org. Chem.2009,4221-4224.
    [57]Weymouthwilson A., Fleet G, Stereo specific Synthesis. WO2010/004269 A2. 2010-01-14.
    [58]Peter B. Anzeveno, Laura J. Creemer; Efficient synthesis of (+)-nojirimycin and (+)-1-deoxynojirimycin; Tetrahedron Letters:31,15,1990,2085-2088
    [59]Kinast G, Schedel M., Production of N-substituted derivatives of 1-deoxynojirimycin. United States Pat,4,266,025(C12P19/26),1981-05-05.
    [60]周晓玲,孙凌云,张进,等。1-脱氧野尻霉素的来源及合成研究进展。蚕业科学。2011,37(1):0105-0111.
    [61]Theodore D. Perrine, C. P. J. Glaudemans, Robert K. Ness, et al. Syntheses with Partially Benzylated Sugars. Ⅶ. The Anomeric Vinyl D-Glucopyranosides. J.O. C.1967, 32:664-669.
    [62]Filimonov V. D., Krasnokutskaya E. A., Yusubov M. S., et al, Oxidation of Alcohols with Dimethyl Sulfoxide, Oxidant and Substrate Activation Pathways. Russian Journal of Organic Chemistry.1998,34(1):31-33
    [63]Maughan Michael A. T., Davies Ieuan G., Claridge Timothy D. W., et al, Nitrogen Inversion as a Diastereomeric Relay in Azasugar Synthesis:The First Synthesis of Adenophorine. Angewandte Chemie. International Edition.2003.42(32):3788-3792.
    [64]Yadav J. S., Subba Reddy B. V., Shiva Shankar K., et al. The reductive etherification of carbonyl compounds using polymethylhydrosiloxane activated by molecular iodine. Tetrahedron Letters.2010,51 (1):46-48.
    [65]Wennekes T., Berg Richard J. B. H. N. van den, Donker W., et al. Development of Adamantan-1-yl-methoxy-Functionalized 1-Deoxynojirimycin Derivatives as Selective Inhibitors of Glucosylceramide Metabolism in Man. Journal of Organic Chemistry.2007, 72(4):1088-1097.
    [66]杨青,郑晓瑞,陈红梅,等.1-脱氧野尻霉素衍生物的研究进展.中国生化药物杂志.2010,31(1):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700