钻头自回转型潜孔锤研究及仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对潜孔锤钻进技术中钻具全孔旋转带来的诸多不利因素,将传统的潜孔锤与凿岩机相结合,利用空压机产生的压缩空气动力介质驱动潜孔锤工作并实现钻头自行回转,研究设计了一种新型的钻头自回转型潜孔锤。
     对该新型潜孔锤的上回转接头、加长配气座和专用活塞等关键零部件进行了创新设计。
     使用MATLAB语言对钻头自回转型潜孔锤进行了运动学和动力学仿真,揭示了该新型潜孔锤活塞的运动规律。
     将仿真结果与普通潜孔锤比较,前后气室压力、速度和加速度变化平稳,冲击频率略高于相近型号的普通潜孔锤,其他参数都接近。
     利用ANSYS有限元分析软件,对新型潜孔锤上的易损件—棘轮棘爪机构进行了强度和刚度分析与计算。
     该新型潜孔锤原理可行,结构设计合理,仿真分析与强度和刚度计算证明了其各项参数正确,可以应用于非开挖钻进、隧道管棚施工和海底取样钻进等工程中。
The percussive rotary drilling is the most effective method of hard rock, pebbles gravel and broken strata drilling. The percussive rotary drilling is used very widely because of its characteristics, such as high efficiency, excellent quality, low cost and security. Combining with other advanced drilling methods, multi-technique percussion and rotation drilling technology is formed. Its application fields are expanding, and it is playing a more important role in every fields of drilling engineering. At present, the percussive rotary drilling is used widely in different geological explorations and engineering constructions in different strata. Under some conditions, there are various problems of whole-hole rotation in trenchless drilling, tunnel tubular shed construction, directional drilling and seafloor sampling drilling construction.
     In allusion to problems above, through general and detailed researches to DTH hammer and pneumatic rock drill, this paper uses the former people’s research thought for reference, exploringly applies the theory of pneumatic rock drill to DTH hammer. Combining DTH hammer with pneumatic rock drill, use the high-pressure air of air-compressor to drive DTH hammer and make it rotate. This paper designs a new type DTH Hammer with self-propelled round bit. Such combination uses the respective advantages of DTH hammer and pneumatic rock drill and conquers their disadvantages. It makes a great significance to geological explorations and engineering constructions.
     This new type DTH hammer can adequately utilize the energy of returning stroke of the piston and achieve self-propelled round of the bit. It fully utilizes the energy of compressive air to efficiently break rocks by percussive rotary drilling. Comparing to the traditional DTH hammer, the structure of this new type DTH hammer changed greatly. It uses high-pressure air of the air-compressor to drive the piston of DTH hammer, and then transfers the linear movement of the piston to the rotation movement of the bit by a special structure. It realizes percussive and rotary movements of the bit. The operational principle and structural characteristics of this new type DTH hammer are introduced in this paper. The improved design of DTH hammer and design of key parts and suits are elaborated.
     Original working pattern of the DTH hammer is changed, and the bit rotates when the piston returns. The bit rotates when the friction between the DTH hammer and the bottom of the hole is small with the aid of the bounce force. The rotation of the bit uses the energy of return motion of the piston efficiently. So the high impacting work and less energy are obtained.
     Creative design of upper rotation joint, long air distribution seat, screw, and special-purpose piston of the new type DTH hammer is done in this paper. The upper rotation joint is used to separate rotation parts and other parts of DTH hammer. In the return stroke of the piston, upper rotation joint rotates, and external pipe rotates. So the bit rotates with the external pipe. Because the upper rotation joint mates with upper joint by hole, the upper rotation joint and other parts on it do not revolute. So it separates rotation parts and other parts.
     Long air distribution seat and notch wheel are made into one part. The primary function of it is used to be an air distribution seat and high-pressure air come into back and forth air chamber of DTH hammer through it. High-pressure air pulls the piston to reciprocate. The second function of long air distribution seat is used as notch wheel, which mates with pawl to come true interrupted movement of the notch wheel mechanism.
     Screw rod is the key part to transfer linear movement of the piston to rotation of DTH hammer. The screw rod has two engagement parts. The lower part of it has spiral teeth, which make the screw rod mate with nut in the piston. The linear movement of piston pulls spiral teeth of screw rod, and then the screw rod gets torque and rotates. The other part of screw rod is the seat of pawls. The pawls and tower springs are all fixed in it. The pawls in it mate with the notch wheel.
     The nut is mounted in special-purpose piston and mates with screw rod. The mate of them transfers linear movement of the piston to rotation of screw rod. Because of the single way movement of notch wheel and pawls, the screw rod rotates with load in the return stroke of the piston, but rotates without load in the impacting stroke of the piston, and doesn’t make other parts rotate.
     Relative theories of the DTH hammer with self-propelled round bit are studied by using some equations, such as air state equation, acceleration differential equation, and velocity differential equation, displace differential equation of piston, air flow equation, impact frequency equation, resistance equation of piston return, impact energy equation, and air consumption equation, etc. Then set up the moving and dynamic models of the piston and the rotation mechanism. So it lays the foundation of simulation analysis.
     According to the mathematical models, Runge-Kutta equation and advanced software MATLAB are used to simulate and calculate the DTH hammer, and then respective parameters of the DTH hammer are obtained. From the results of simulation, we get:
     a) When the piston finish its impact stroke, the last impact velocity of the piston exceeds 6m/s, and the impact work reach 76N·m. Impact frequency is 28.09Hz, and the largest air consumption is 3.18m3/min. The largest velocity of the piston in return stroke is 4.6m/s.
     b) The simulation curves clearly show the change of pressure in back and forth air chamber, air consumption, velocity and acceleration of the piston in it’s impact and return stroke.
     c) Compared with conventional DTH hammer, the pressure of two chambers, acceleration and velocity of the piston changed slowly. Impact frequency of the new type DTH hammer is a little higher than conventional DTH hammer’s, and other parameters are similar to conventional DTH hammer’s. Because the piston drives the screw rod, notch wheel, external pipe of DTH hammer, and bit, it needs more energy, the new type DTH hammer needs an air-compressor with higher pressure. The output energy of the new type DTH hammer approaches to general DTH hammer’s. So it doesn’t influence the selection of DTH hammer. The new type DTH hammer only has more requirements of air-compressor.
     Using software ANSYS, the strength and rigidity of the key or throwaway parts (the notch wheel and pawl mechanism) of the rotational units are analyzed and calculated. From the results of analysis, the conclusions are as follows:
     a) When the notch wheel and pawls are acted a load of 165 N·m, stress of the notch wheel and pawls are very small, the value of the stress is much smaller than their yield stress. Strain of the notch wheel and pawls is much smaller than their acceptability limit also.
     b) Contact stress of the notch wheel and pawl is 9.811N/m2, it is much smaller than the permissible stress. So the notch wheel and pawl mechanism of the DTH hammer is reasonable, and it can meet the requirements of use.
     The new type of DTH hammer uses the energy of the compressive air of the air-compressor to realize the percussion and self-rotation, so it expands the application fields of traditional DTH hammer. The principle of the DTH hammer with self-propelled round bit is feasible, and the structure design is reasonable. The simulation analysis and the strength and rigidity calculation prove the respective parameters of the DTH hammer are correct. So it can be used in trenchless drilling, large-caliber shallow-hole rock-socketed engineering drilling, large-caliber curtain engineering drilling, tunnel tubular shed construction, directional drilling and seafloor sampling drilling engineering. It provides new techniques to enhance the efficiency of large-caliber curtain engineering, water conservancy and electricity engineering, and trenchless engineering. It makes a great significance to geological explorations and engineering constructions.
引文
[1] 张祖培,殷琨,蒋荣庆,孙友宏等.岩土钻掘工程新技术[M].北京:地质出版社,2003:17-100.
    [2] 耿瑞伦,陈星庆.多工艺空气钻探[M].北京:地质出版社,1995:1-213.
    [3] 菅志军,张玉霖,王茂森,戴树林.冲击旋转钻进技术新发展[J].地质与勘探,2003,39(3):78-83.
    [4] 谢旭恩.风动潜孔锤钻探工艺在岩土工程中的应用[J].应用技术,2005,(6):24.
    [5] 陶兴华.冲击回转钻进在石油钻井中的应用[J].西部探矿工程(岩土钻掘矿业工程),1996.3,8(2):18-19.
    [6] 沈崇峰,赵大军,陈丽,辜华良.冲击回转钻进用于水下锚固孔施工[J].探矿工程,1998,(4):22-23.
    [7] 殷琨,蒋荣庆.发展中的冲击回转钻进技术[J].探矿工程,1997,(5):53-55.
    [8] Wolke, Roy M, Deakins, Ken, Suter, Roqer L. Air drilling techniques[J]. Geothermal Resources Council Bulletin, 1990,5,19(5):138-143.
    [9] B. Lundberg and M. Okrouhlik. Efficiency of a percussive rock drilling process with consideration of wave energy radiation into the rock[J]. International Journal of Impact Engineering, 2006,10,32(10): 1573-1583.
    [10] 李世忠.钻探工艺学[K].北京:地质出版社,1992:199-242.
    [11] 杨日平,汪玉如.潜孔冲击器钻进是最佳的钻进方式[J].凿岩机械气动工具,1998,(3):36-37,64.
    [12] 殷琨,蒋荣庆,赖振宇.气动潜孔锤钻进技术[J].世界地质,1999,6,18(2):101-104.
    [13] 陈玉凡.矿山机械(钻孔机械部分)[M].北京:冶金工业出版社,1981,9:1-98,166-177.
    [14] 陈玉凡,朱祥.钻孔机械设计[M].北京:机械工业出版社,1987,6:1-81.
    [15] Meyers, John. Sagan, Michael. Air hammers cut Barnett Shale drilling timein half[J]. World Oil, 2004,9,225(9):71-72.
    [16] Malard, Florian. Datry, Thibault. Gibert, Janine. Subsurface sediment contamination during borehole drilling with an air-actuated down-hole hammer[J]. Journal of Contaminant Hydrology, 2005,10,79(3-4):156-164.
    [17] 王人杰,苏长寿.我国液动冲击回转钻探的回顾与展望[J].探矿工程(岩土钻掘工程),1999 年增刊:140-145.
    [18] 原长春地质学院探工教研室.液动冲击回转钻进技术[M] .长春:长春科技大学出版社,1985:41-88.
    [19] 刘广志.潜孔锤的研制与发展[J].地质与勘探,1994,30(2):71-75.
    [20] 殷琨,蒋荣庆.潜孔锤反循环钻进技术及应用[J].探矿工程,1996,(5):13-15.
    [21] 王如生,殷琨,王茂森,等.贯通式潜孔锤钻头钻进复杂地层防卡堵试验研究[J].煤矿机械,2005,(7):40-43.
    [22] 蒋荣庆,殷琨.FGC-15 型大直径单头潜孔锤钻具系统研制[J].探矿工程[岩土钻掘工程],1995,(5):17-19.
    [23] 蒋荣庆,殷琨,王茂森,汪火旺等.硬岩和漂、卵石层中大直径工程孔钻进技术试验研究[J].水文地质工程地质,1996,(4):49-52.
    [24] 杨明伟.砂层大孔径钻孔桩施工,山西建筑,2003,4,29(4):58-59.
    [25] 原长春地质学院探矿工程系.国际潜孔锤钻进及钻探新技术研讨会论文集[M].长春:长春科技大学出版社,1993:22-45.
    [26] Pixton, David S. Rotary-percussive drilling engine[C].Houston:Proceedings of the 1998 ASME Energy Sources Technology Conference,1998.
    [27] Gaddy,Dean E. Russian drilling technologies-1:Pioneering work,economic factors provide insights into Russian drilling technology [J].Oil and Gas Journal,1998, 96(27) :67-69.
    [28] 李红桃,郭玉平,梁冬梅.空气潜孔锤钻进技术在硬基岩中的应用[J].石油地球物理勘探,1998,12,33(增刊 2):157-158.
    [29] 郑新权,汪海阁.中国石油钻井技术现状及需求.石油钻采工艺,2003,4,25(2):1-4,87.
    [30] 王如生,殷琨,谭凡教,胡振阳,陈家旺.泡沫潜孔锤应用于水文水井钻探的钻进工艺初探[J].吉林大学学报(地球科学版),2004,10,34(4):390-642.
    [31] 吉林大学建设工程学院.河南省洛阳市栾川县三道庄钼钨矿区生产勘探报告[M].长春:吉林大学出版社,2004:1-25.
    [32] 补家武,鄢泰宁,昌志军.海底取样技术发展现状及工作原理概述[J].探矿工程(岩土钻掘工程) ,2001,(2):44-48.
    [33] 姜存壁,沈世雄.大直径孔硬岩钻进技术现状及发展[J].探矿工程,1995,(3):1-4.
    [34] 蒋荣庆,殷琨,王茂森,周占江.潜孔锤钻进理论与实践的新进展[J].探矿工程(岩土钻掘工程),2001 年增刊:179-183.
    [35] 殷琨,蒋荣庆.WC-85 型潜孔锤参数设计.原长春地质学院探工所,1988.
    [36] 殷琨,蒋荣庆.WC-85 型风动无阀式潜孔冲击器研制报告.原长春地质学院探工所,1989,12.
    [37] Chiang,L. E.;Stamm,E.B. Design optimization of valveless DTH pneumatic hammers by a weighted pseudo-gradient search method[J].Journal of Mechanical Design, Transactions of the ASME. 1998,12, 120 (4) :687-694.
    [38] 王人杰.液动锤钻探技术实践及展望[J].探矿工程(岩土钻掘工程),1999,(4):11-13.
    [39] 河北省地质局综合研究地质大队.液动冲击回转钻进译文集[M]. 1978 : 22-25.
    [40] 苏长寿.液动潜孔锤技术现状及发展设想[J].探矿工程,2003,(1):28-30.
    [41] 耿瑞伦,冯国强.液动锤技术及其应用前景[J].探矿工程(岩土钻掘工程),2001,(1):32-33.
    [42] 谭凡教,殷琨,王如生.射流式液动锤回程冲击孕镶金刚石钻头钻进的实践与分析[J].吉林大学学报(地学版),2003,4:45-48.
    [43] 苏长寿.液动潜孔锤的现状及用于石油钻井应注意的几个问题[J].探矿工程,2002,6:14-17.
    [44] 谭凡教,殷琨.地热井射流式冲击器冲击回转钻进的分流试验研究[J].煤矿机械,2003,12:45-78.
    [45] 地矿部情报研究所.国外探矿工程情报[J].反循环中心取样钻探专辑,1992:1-2.
    [46] 张天锡,魏伴云,陈庆寿.勘探掘进学(第一分册)[M].北京:冶金工业出版社,1981,9:114-155.
    [47] 张国忠.气动冲击设备及其设计[M].北京:机械工业出版社,1991,10:1-304.
    [48] 於仁灵.矿山机械构造[M].北京:机械工业出版社,1981,7:62-103.
    [49] 赵统武.冲击钻进动力学[M].北京:冶金工业出版社,1996,10:1-34.
    [50] 韩耀斌.气腿凿岩机[M].北京:冶金工业出版社,1973,11:1-196.
    [51] 成志强,赵统武.内回转气动凿岩机的动力学分析与实验研究[J].矿山机械,1995,(11):10-15.
    [52] R. Altindag. Estimation of Penetration Rate in Percussive Drilling by Means of Coarseness Index and Mean Particle Size[J].Rock Mechanics and Rock Engineering. 2003,36(4) :323-332.
    [53] K. J. Swick, G. W. Stachowiak and A. W. Batchelor. Mechanism of wear of rotary-percussive drilling bits and the effect of rock type on wear [J].Tribology International, 1992, 25(1), :83-88.
    [54] http://www.ccsd.org.cn/中国大陆科学钻探工程网站.
    [55] D.R. Pavone. Application of high sampling rate downhole measurements for analysis and cure of stick–slip, SPE28324, 1994.
    [56] A.D. Batako, V.I. Babitsky, N.A. Halliwell. Self-excited system of percussive-rotary drilling[J].Journal of Sound and Vibration , 2003,259 (1): 97-118.
    [57] T. R. Harper and J. L. Chambers. Stress state and its influence on drilling performance in the Brighton Marine field, Trinidad[J].Marine and Petroleum Geology, 2004,8, 21(7): 947-963.
    [58] 殷琨,蒋荣庆等.GQ-200 型贯通式风动潜孔锤研究报告. 原长春地质学院探工所,1991.
    [59] 殷琨,蒋荣庆等.GQ-100 型贯通式风动潜孔锤研究报告. 原长春地质学院探工所,1993.
    [60] 苏立君.大口径钻探技术与钻头类型概述[J].浙江水利科技,2001,(5):53-54.
    [61] 张晓西,杨甘生,朱永宜,谢文卫.大口径硬岩钻探技术在中国大陆钻探工程中的应用.探矿工程,2003,(1):23-27.
    [62] X.Li, G.Rupert, D.A.Summers, P.Santi,D.Liu. Analysis of Impact Hammer Rebound to Estimate Rock Drillability[J].Rock Mechanics and Rock Engineering,2000,33(1):1-13.
    [63] J. P. McKinley and F. S. Colwell .Application of perfluorocarbon tracers to microbial sampling in subsurface environments using mud-rotary and air-rotary drilling techniques[J]. Journal of Microbiological Methods, 1996,7,26(1-2): 1-9.
    [64] Florian Malard, Thibault Datry and Janine Gibert. Subsurface sediment contamination during borehole drilling with an air-actuated down-hole hammer[J]. Journal of Contaminant Hydrology, 2005,10,79(3) :156-164.
    [65] 徐小荷等.冲击凿岩的理论基础与电算方法[M].沈阳:东北工学院出版,1986:1-28.
    [66] 张也影.流体力学[M] .北京:高等教育出版社,1999:77-88.
    [67] 何富智.热工学理论基础[M].北京:北京科学技术出版社,1989,4:19-40.
    [68] 张志兵.气动冲击锤的计算机模拟研究.中南大学博士学位论文,2001,3:8-69.
    [69] 殷琨,蒋荣庆.GC-100 型低压高能气动潜孔锤微机电算研究及研制报告.原长春科技大学探工所,1997,8.
    [70] 殷琨,蒋荣庆.GQW-200 型贯通式气动潜孔锤微机电算研究报告.原长春地质学院探工所,1991,3.
    [71] 殷琨,蒋荣庆.WC-85 型风动无阀式潜孔冲击器微机仿真研究报告.原长春地质学院探工所,1989,12.
    [72] 熊青山,殷琨,祁宏军,彭枧明.可视化无阀式风动潜孔锤仿真电算软件设计[J].吉林大学学报(地球科学版),2003, 10,33(4):571-574.
    [73] 熊青山,殷琨,曾勇辉,刘静.高围压潜孔锤前后气室长度及进出气口面积分析[J].西部探矿工程,2003,11(90):103-106.
    [74] 熊青山,殷琨,曾勇辉,刘静.高围压潜孔锤背压、气源压力、锤重、活塞直径比分析[J].2003,10(89):115-117.
    [75] 熊青山、彭振斌、殷琨.潜孔锤结构参数优化—遍历法[J].凿岩机械气动工具,2004(2):42-45.
    [76] 熊青山、彭振斌、殷琨、刘静.可视化气动潜孔锤设计软件系统开发[J].探矿工程,2003,6:21-24.
    [77] 熊青山,彭振斌,殷琨,刘静.配气行程对常、高围压潜孔锤性能影响的电算研究[J].凿岩机械气动工具,2003,4:33-40.
    [78] V.K. Astahev, V.I. Babitsky, M.Z. Kolovsky. Dynamics and Control of Machines, Springer, Berlin, 2000:1-159.
    [79] Rasit Altindag.Evaluation of drill cuttings in prediction of penetration rate by using coarseness index and mean particle size in percussive drilling[J]. Geotechnical and Geological Engineering,2004,22(3):417-425.
    [80] 张铮,杨文平,石博强,李海鹏.MATLAB 程序设计与实例应用[M].北京:中国铁道出版社,2003:45-56.
    [81] 薛定宇,陈阳泉.基于 MATLAB/Simulink 的系统仿真技术与应用[M].北京:清华大学出版社,2004:12-44.
    [82] 郑智琴.Simulink 电子通讯仿真与应用[M].北京:国防工业出版社,2002:101-106.
    [83] 飞思科技产品研发中心.MATLAB6.5 辅助图像处理[M].北京:电子工业出版社,2003:88-98.
    [84] 刘敏,魏玲.MATLAB 通信仿真与应用[M].北京:国防工业出版社,2000:69-74.
    [85] 空气钻进专辑,国外探矿工程情报[J].地矿部情报研究所,1988:2-3.
    [86] 同济大学数学教研室.高等数学[M].北京:高等教育出版社,2003:10-55.
    [87] 傅永华.有限元分析基础[M].武昌:武汉大学出版社,2003,8:83-158.
    [88] 陈精一.ANSYS 工程分析实例教程[M].北京:中国铁道出版社,2007,5:203-358.
    [89] 谭凡教,殷琨.受冲击荷载作用土体变形的有限元研究[J].岩土力学,2004,(12):45-48.
    [90] 詹 军,殷 琨,于清杨,曾建华.风动冲击器活塞冲击末速度的有限元研究[J].煤田地质与勘探,2003,12,31(6):58-60.
    [91] R.S. Bais, A.K. Gupta, B.C. Nakra and T.K. Kundra . Studies in dynamic design of drilling machine using updated finite element models[J]. Mechanism and Machine Theory, 2004, 12, 39 (12):1307-1320.
    [92] J. Yamatomi and Y. Kotake. Pillar control and the effects of back-filling support at Kosaka mine[J].International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1986, 2,23(1): 41-53.
    [93] 王先逵.机械加工工艺手册[M].北京:机械工业出版社,2006,12:120-250.
    [94] 郭仁生,魏宣燕.机械设计基础[M].北京:清华大学出版社,2001,7:99-116.
    [95] 朱德本等.机械制图手册[M].北京:机械工业出版社,1997,8:1-50.
    [96] 刘贵富,刘大维.机械设计基础[M].北京:蓝天出版社,1989,12:1-98.
    [97] 同济大学等.机械制图[M].北京:高等教育出版社,1994,8:20-93.
    [98] 丁丽娟.数值计算方法[M].北京:北京理工大学出版社,1997,8:184-210.
    [99] 马东升.数值计算方法[M].北京:机械工业出版社,2001,6:150-181.
    [100] 陈纪修,於崇华,金路.数值分析[M].北京:高等教育出版社,2000,4:128-161.
    [101] 陈庆华.高等数学[M].北京:高等教育出版社,1999,8:219-248.
    [102] 沈继红,施久玉等.数学建模[M].哈尔滨:哈尔滨工程大学出版社,1996,5:87-108.
    [103] 同济大学计算数学教研室.数值分析基础[M].上海:同济大学出版社1998,12:1-159.
    [104] 飞思科技产品研发中心.MATLAB6.5 辅助优化计算与设计[M].北京:电子工业出版社,2003,1:79-152.
    [105] K. J. Swick, G. W. Stachowiak and A. W. Batchelor. Mechanism of wear of rotary-percussive drilling bits and the effect of rock type on wear[J]. Tribology International, 1992, 25(1): 83-88.
    [106] Lzquierdo, Luis E; Chiang, Luciano E. A methodology for estimation of the specific rock energy index using corrected down-the-hole drill monitoring data[J]. Transactions of the Institutions of Mining and Metallurgy. 2004,12,113(4) : A225-A236.
    [107] L. C. Duan, X. Y. Liu, B. S. Mao, K. H. Yang and F. L. Tang. Research on diamond-enhanced tungsten carbide composite button bits[J]. Journal of Materials Processing Technology, 2002,10,129(1-3): 395-398.
    [108] L. E. Chiang and D. A. Elías. Modeling impact in down-the-hole rock drilling[J]. International Journal of Rock Mechanics and Mining Sciences, 2000,6,37(4): 599-613.
    [109] Z. Q. Yue, C. F. Lee, K. T. Law and L. G. Tham. Automatic monitoring of rotary-percussive drilling for ground characterization—illustrated by a case example in Hong Kong[J].International Journal of Rock Mechanics and Mining Sciences, 2004, 6, 41(4): 573-612.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700