RTM成型用高性能苯并噁嗪树脂的分子设计、制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据树脂基复合材料的树脂传递模塑(Resin Transfer Molding, RTM)成型工艺技术对基体树脂的特殊要求,结合新型酚醛树脂——苯并噁嗪树脂的特点,围绕RTM 树脂低粘度和高性能这一研究主题,旨在既提高苯并噁嗪树脂成型工艺性、使其满足RTM 成型工艺的要求,又尽量不降低固化树脂的耐温性能和机械性能,从而得到数种可用于RTM 成型工艺的高性能苯并噁嗪树脂体系。
    在单体合成上,利用苯并噁嗪灵活的分子设计性,分别合成了四种苯并噁嗪单体。以苯酚、甲醛和苯胺、芳族二胺等为原料,合成出了低粘度的单官能苯并噁嗪S-BOZ 和双官能苯并噁嗪B-BOZ。以苯酚、甲醛和3-乙炔基苯胺为原料,合成了含乙炔基的苯并噁嗪EP-BOZ。此外,以苯酚和氯丙稀为原料,合成出2-烯丙基苯酚,进而再与甲醛、苯胺反应,合成出含有烯丙基的苯并噁嗪AP-BOZ,利用烯丙基与双马树脂的双键反应,将双马树脂结合进苯并噁嗪树脂,可得到双马树脂改性的苯并噁嗪树脂体系。利用FTIR、1H NMR 等分析方法对合成的苯并噁嗪单体结构进行了表征。
    在树脂配方的设计上,选定B-BOZ 作为基本组分,并通过加入反应性稀释剂S-BOZ、催化剂、含乙炔基反应性基团的EP-BOZ、AP-BOZ 中烯丙基与双马树脂的预聚物、液态橡胶以及脂环族环氧稀释剂等组分,分别设计了BB、BS64、BBC05、BS64C05、B-EP、BAPB121、BAPB111、B-R、BEAI、BECI、BEAPA和BECPA 等树脂体系。采用Brookfield 旋转粘度计对各树脂体系在成型温度下
Resin Transfer Molding (RTM) has the potential to manufacture high quality, geometrically complex composite parts. RTM offers the advantages of relatively low tooling and processing equipment cost, short cycle times, and the ability to make high quality, more precision complex composite parts with high fiber content and low voids. The polybenzoxazines are a newly developed class of thermosetting resins. The oxazine ring of benzoxazine precursor can be opened thermally or catalytically to form a cross-linked network like a phenolic resin. The polybenzoxazines have various unique properties such as high mechanical strength, low water absorption, ease of processing, no volatile evolution, and near-zero volumetric shrinkage upon polymerization. Based on the specific requirements of RTM and the characteristics, several novel high performance benzoxazine resins were prepared and their process performance, polymerization reactions and polymer properties were investigated.
    The first chapter of this dissertation is the background of study on high performance RTM benzoxazine resins and literature review. The goal, significance and works should be done were proposed.
    Chapter 2 refers to the synthesis of benzoxazine monomers. According to the flexibility of molecular design of benzoxazine, four benzoxazine monomers were designed and synthesized. The four monomers were 3-phenyl-3,4-dihydro-2H-1,3-benzoxazine (S-BOZ) which synthesized from formaldehyde, phenol and amine, bifunctional benzoxazine (B-BOZ) which synthesized from aromatic diamine, phenol and formaldehyde, 3-(3-ethynylphenyl)-3,4-dihydro-2H-1,3-ben-zoxazine (EP-BOZ) which synthesized from formalde-hyde, phenol and 3-ethynylaniline, and
    8-allyl-3-phenyl-3,4-dihydro-2H -1,3-benzoxazine (AP-BOZ) which synthesized from amine, formaldehyde and 2-allylphenol. The structures of these monomers were characterized by means of FTIR and 1H NMR. Chapter 3 concerned the design and choice of formulae of high performance RTM resins based benzoxazine. Take the B-BOZ as the basic component of resin, the process characteristics of the BB precursor were investigated by means of Brookfield viscometer and gelation time. It was soften and can be flowed when heated to temperature above 70℃, its initial viscosity at 100℃was 0.22 Pa·s and was only 0.33 Pa·s after 240 min. When temperature was in the range of 100 and 180℃, its viscosity was below 0.3 Pa·s. These results showed that the BB can be used as resin matrix for RTM technology. When BB mixed with reactive diluent S-BOZ by 6/4 (wt), the BS64 resin was obtained. The viscosity of BS64 was very low. It is concluded that the viscosity of resin can be modulated by adding reactive diluents. When 0.5% of catalyst was added to BB and BS64, we can get BBC05 and BS64C05 resins. The catalyst had little influence on the process properties of resin, but it can accelerate the ring-open reaction rate of benzoxazine. When BMI was reacted with allyl of AP-BOZ and obtained the low viscosity oligomer, then was mixed with BB, the BMI modified benzoxazine resins, BAPB121 and BAPB111 can be obtained, and the process property of resin can be adjusted by changing the ratio of AP-BOZ and BMI. When the BB was toughened with liquie rubber, the rubber content exerted a tremendous influence on resin viscosities. For the rubber had different reactivity with BB, the ATBN had more great effect on viscosity than CTBN. By adding liquid cycloaliphatic epoxy resin to the rubber modified BB resin, the low viscosity RTM resins can be obtained. Chapter 4 dealt with the curing reactions of several novel RTM benzoxazine resins. The curing behaviors of resins were studied by means of DSC, isothermal DSC and FTIR. The test results showed that the BB can be cured at 180℃, which conversion at 180℃for 5 hrs was 90%. If we want to get higher conversion, the resin should be post cured at elevated temperature, such as at 200℃for 60 min, the conversion was 95%. The curing reaction of BB was a autocatalyzed reaction, which activation energy was 110 kJ/mol, logA was 11.8 min-1, and reaction orders m and n were 1.84 and 1.33, respectively. When S-BOZ was added to BB, the ring-open reaction temperature become lower, and this phenomenon similar to the catalyzed BB resin, which initial reaction temperature was more lower. But the reaction stop temperatures were almost same.
    These results showed that catalyst and S-BOZ can accelerate the ring-open rate, but has little effect on polymerization reaction. The added components had a few of effect on the enthalpy of curing reaction. The allyl of AP-BOZ reacted with BMI when AP-BOZ and BMI were mixed and heated under 130℃for 30 min, and the self-polymerization peak at 349℃disappeared on DSC trace. The temperature of “ene”reaction of allyl and double bond of BMI was overlap with the temperature of polymerization reaction of benzoxazine. By changing the ratio of AP-BOZ and BMI, we can control the process properties of resins. When the pre-reacted mixtures were added to BB, the RTM resins with good process behavior based on BMI modified benzoxazine were obtained. When liquid rubbers were added to BB, their content had effect on the polymerization reaction, the more the rubber content, the lower of ring-open reaction temperature. The cyclo-aliphatic epoxy resin reacted at higher temperature; it should select suitable catalyst to catalyzed epoxy and made the epoxy react temperature range closed to the temperature of benzoxazine polymerization. Chapter 5 studied the properties of cured resins by means of TGA, DMA and INSTRON tester. The heat resistant temperature index was 233.57℃. The heat decomposition reaction was a 1st order reaction which the activation energy was 147.5 kJ/mol. BB cast had the good DMA and mechanical properties, which Eo′n set was 194.0℃, Tg ( Em′′ax) was 214.4℃, the tensile strength, modules and elongation at break were 93.6 MPa, 4.6 GPa and 2.2%, respectively, and flexural strength and modules were 160.1 MPa and 4.9 GPa, respectively. These results, except the elongation at break, are better than those of some commercial RTM epoxy resins (such as RTM6, which Tg is 183℃, the tensile strength, modules and elongation at break are 75 MPa, 2.89 GPa and 3.4%, respectively, and flexural strength and modules were 132 MPa and 3.30 GPa, respectively), and except the Tg, are better than those of some commercial RTM BMI resins (such as QY8911-4, which Tg is 230℃, the tensile strength, modules and elongation at break are 81 MPa, 4.5 GPa and 2.2%, respectively, and flexural strength and modules were 119 MPa and 4.2 GPa, respectively). When 4 parts of S-BOZ was added to 6 parts of BB, the Tg of BS64 was approximate 50℃lower than that of BB. The catalyst can reduce the curing time of BB, accelerated the curing rate, but the Tg of catalyzed resin BBC05 was approximate 15℃lower than BB. However, the diluent and catalyst components had little effect on the mechanical properties of resins. The BMI was reacted with allyl and was introduced into benzoxazine, and
    the obtained BMI modified benzoxazine resins had good properties and can be used as the high performance RTM resin matrices. Lastly, the liquid rubbers had great influence on the resin properties. When the rubber content increased from 2% to 20% (wt) of BB, the modules of cured resins decreased from 3.79 GPa to 1.94 GPa ( Ei′n itial of DMA) for ATBN modified BB, for CTBN modified BB, the modules of cured resins decreased from 3.43 GPa to 2.42 GPa. Compared with the BB, the mechanical properties of rubber modified BB also decreased, but the tensile strength reached the maximum value when the 10% of ATBN and 10% of CTBN were added to BB resins, and then decreased dramatically as the rubber content increased. But the added liquid rubbers had little effect on the Tg of rubber-modified resins. The study results showed that the obtained benzoxazine resins had well integration properties, and can be used as high performance resin matrices for RTM process, and some of them are in practice for using. Chapter 6 investigated the morphology of fracture surfaces of rubber modified benzoxazine resins by SME. The results showed that ATBN can react with benzoxazine, for the rubber particle did not become large as the rubber content increased. But in CTBN modified resin, the rubber particle size enlarged obviously with the rubber content increased, this phenomenon indicated that CTBN had weak reaction with benzoxazine. When ATBN and CTBN content was 10% of BB, the morphologies were not similar to the fracture surfaces of other rubber content resin, the results showed that the resin reached an equilibrium point of rubber content, and the resins ruptured in a roughness mode, and rubber particles played a important role in the fracture. The cycloaliphatic epoxy resin could improve the miscible of rubber and resins. For the epoxy could react with rubber molecules, the rubber particles can disperse into resin matrix, and enlarged more slowly than resins without cycloaliphatic epoxy resin, the rubber particle sizes were littler than those resins without epoxy.
引文
1. 顾宜主编. 材料科学与工程基础. 化学工业出版社: 北京, 2002
    2. 颜鸣皋,吴学仁,朱知寿, 航空材料技术的发展现状与展望, 航空制造技术, 2003: 19-25.
    3. 郭玉明, 航天功能复合材料应用与发展趋势, 陈祥宝ed. 北京, 航空工业出版社, 2004.
    4. 朱晨,纪朝辉,郭英, 复合材料在航空工程中的应用研究现状及展望, 航空维修与工程, 2003, (3): 25-27.
    5. Johu, M., The Reinforced Plastic Handbook, Elservier Science Ltd., 1998.
    6. 陈祥宝, 先进树脂基复合材料的发展和应用, 航空材料学报, 2003, 23(增刊): 198-204.
    7. 郝建伟, 先进树脂基复合材料的技术现状及发展方向, 航空制造技术, 2001, (3): 22-25.
    8. 赵稼祥, 航天先进复合材料的现状与展望, 热固性树脂, 2000, 15(2): 37-41.
    9. 赵稼祥, 航天先进复合材料的现况与展望, 飞航导弹, 2000, (1): 58-63.
    10. 江辉, 国外航天结构新材料发展简述, 宇航材料工艺, 1998, (4): 1-8.
    11. Strong, A. B., High Performance and Engineering Thermoplastic Composites. Basel, Technomic, 1993.
    12. Macllick, P. K., Newman, S., Composite Materials Technology. New York, Hanser Publishers, 1990.
    13. Pirrung, P., Engineering Materials Handbook. Vol. 1, Composites ASM International, 1987.
    14. 黄家康,岳红军,董永祺, 复合材料成型技术. 北京, 化学工业出版社, 1999.
    15. Muskat, US Patent, 1940
    16. 艾伦·哈珀,董雨达, 树脂传递模塑技术, 哈尔滨工业大学出版社, 2003.
    17. 郝建伟,肇研, 先进树脂基复合材料技术计划综述(一), 航空制造工程, 1998, (3): 33-35.
    18. 郝建伟,肇研, 先进树脂基复合材料技术(ACT)计划综述(二), 航空制造工程, 1998, (4): 7-8.
    19. Davis, J. G., Jr., Overview of the ACT Program, NASA Langley Research Center: Hampton, Virginia.
    20. Poe, C. C., Jr, Dexter, H. B., Raju, I. S., A Review of the NASA Textile Composites Research, NASA Langley Research Center: Hampton, Virginia.
    21. Nielsen, D. R., Pitchumani, R., Closed-loop flow control in resin transfer molding using real-time numerical process simulations, Composites Science and Technology, 2002, 62: 283-298.
    22. 陈祥宝,包建文,娄葵阳, 树脂基复合材料制造技术. 北京, 化学工业出版社, 2000.
    23. http://www.dmi.stevens-tech.edu/research/projects/RTM.html.
    24. Denoulin, J., http://reasearch.et.byu.edu: Brigham Young University.
    25. 陈祥宝, 先进复合材料低成本技术. 北京, 化学工业出版社, 2004.
    26. 各式各样的RTM 成型技术, 玻璃钢, 2002, (3): 46.
    27. Reinforced Plastic, 2002, (5): 18-24.
    28. 董永祺, 我国树脂基复合材料成型工艺的发展方向, 纤维复合材料, 2003, (2): 32-34.
    29. 赵渠森, 先进战斗机用复合材料树脂基体, 高科技纤维与应用, 2000, 25(2): 1-8.
    30. 阎业海,赵彤,余云照, 复合材料树脂传递模塑工艺及适用树脂, 高分子通报, 2001, (3): 24-35.
    31. Hayward, J. S., Harris, B., SAMPE, 1990, 26(3): 39.
    32. W.B.Young, C.W.Tsong, Reinforced Plastic & Composites, 1994, 13: 467.
    33. 蓝立文, 材料工程, 1995, (9): 6.
    34. 梁国正,顾媛娟, ed. 双马来酰亚胺树脂. 化学工业出版社: 北京, 1997
    35. 陈祥宝, 高性能树脂基体. 北京, 化学工业出版社, 1999.
    36. Hackea, S. C., 35th Inter SAMPE Symp, 1990: 1398.
    37. Http://www.cytec.com/business/EngineeredMaterials/RTM.shtm.
    38. 赵渠森, 先进复合材料手册. 北京, 机械工业出版社, 2003.
    39. 雷勇, 树脂传递模塑成型专用双马来酰亚胺树脂及其复合材料的研究, 四川大学, 博士学位论文, 2001
    40. Kevin, D. P., 32nd International SAMPE Symposium, 1987.
    41. Dane, L. N., 33rd International SAMPE Symposium, 1988.
    42. Stenzenberger, H. D., Konig, P., Romer, W., 29th International SAMPE Symposium, 1984: 1043.
    43. Stenzenberger, H. D., Konig, P., Romer, W., 32nd International SAMPE Symposium, 1987: 44.
    44. Chaudhari, M. A., King, J. J., SME Conference, 1985, Paper MF 85503.
    45. King, J. J., Chaudhari, M. A., Zahir, S. in 30th National SAMPE Symposium. 1985.
    46. 闫福胜, 王志强, 张明习, 氰酸酯树脂的性能与应用, 工程塑料应用, 1996, 24(6): 11.
    47. Gariepy, C. A., Eby, P. K., Meador, M. A., Polym. Prepr., 1999, 40: 624-625.
    48. Gariepy, C. A., Meador, M. A., Meador, M. A. B., Eby, R. K., Polym. Prepr., 2000, 41: 369-370.
    49. Nguyen, B. N., Eby, R. K., Meador, M. A., Polym. Prepr., 1999, 40: 626-627.
    50. Nguyen, B. N., Eby, R. K., Meador, M. A., Polym. Prepr., 2000, 41: 225-226.
    51. Connell, J. W., Smith, J. G., Hergenrother, P. M., Composition of and Method for Making High Performance Resins for Infusion and Transfer Molding Process, US Patent, 6,359,107 B1, 2002
    52. Holly, F. W., Cope, A. C., J. Am. Chem. Soc., 1944, 66: 1875.
    53. Burke, W. J., J. Am. Chem. Soc., 1949, 71: 609.
    54. Burke, W. J., Weatherbee, C., J. Am. Chem. Soc., 1950, 72: 4691.
    55. Burke, W. J., Smith, R. P., Weatherbee, C., J. Am. Chem. Soc., 1952, 74: 602.
    56. Burke, W. J., Kolbezen, M. J., Stephens, C. W., J. Am. Chem. Soc., 1952, 74: 3601.
    57. Burke, W. J., Reynolds, R. J., J. Am. Chem. Soc., 1954, 76: 1291.
    58. Burke, W. J., Nurdock, K. C., J. Am. Chem. Soc., 1954, 76: 1677.
    59. Burke, W. J., Hammer, C. R., Weatherbee, C., J. Organ. Chem., 1961, 26: 4403.
    60. Burke, W. J., Nasutuvicus, W. A., Weatherbee, C., J. Organ. Chem., 1964, 29: 407.
    61. Burke, W. J., Glennie, E. L. M., Weatherbee, C., J. Organ. Chem., 1964, 29: 909.
    62. Schreiber, H., 1, German Patent, 2 255 504, 1973
    63. Schreiber, H., 2, German Pat., 2 323 936, 1973
    64. Riess, G., Schwob, J. M., Guth, G., Roche, M., Laude, B., Advances in Polymer Synthesis, B.M. Culbertson ,J.E. McGrath, Editors, Plenum: New York.1985
    65. Higginbottom, H. P., 1, US Patent, 4 501 864, 1985
    66. Higginbottom, H. P., US Patent, 4 557 979, 1985
    67. 顾宜, 苯并噁嗪树脂----一类新型热固性树脂, 热固性树脂, 2002, 17(2): 31.
    68. Ishida, H., Low, H. Y., Synthesis of Benzoxazine Functional Silane and Adhesion Properties of Glass-Fiber-Reinforced Polybenzoxazine Composites, J. Appl. Polym. Sci., 1998, 69(13): 2559-2567.
    69. 顾宜, 裴顶峰, China Patent, ZL 95111413.1, 1995
    70. Ishida, H., US Patent, 5 543 516, 1996
    71. Ishida, H., Krus, C. M., Synthesis and Characterization of Structurally Uniform Model Oligomers of Polybenzoxazine, Macromolecules, 1998, 31: 2409-2418.
    72. Dunkers, J., Ishida, H., Vibrational Assignments of N,N-bis(3,5-dimethyl-2-hydroxybenzyl) methyldamine in the Fingerprint Region, Spectrochim. Acta, 1995, 51A(5): 855-867.
    73. Dunkers, J., Ishida, H., Vibrational Assignments of 3-alkyl-3,4-dihydro-6-methyl-2H-1,3-benzoxazines in the Fingerprint Region, Spectrochim. Acta, 1995, 51A(6): 1061-1074.
    74. Burke, W. J., Bishop, J. L., Glennie, E. L. M., W. N. Bauer, J., J. Organ. Chem., 1965, 30: 3423.
    75. Ishida, H., Rodriguez, Y., Curing Kinetics of a New Benzoxazine-Based Phenolic Resin by Differential Scanning Calorimetry, Polymer, 1995, 36: 3151-3158.
    76. Ishida, H., Rodriguez, Y., Catalyzing the Curing Reaction of a New Benzoxazine-Based Phenolic Resin, J. Appl. Polym. Sci., 1995, 58: 1751-1760.
    77. Liu, X., Gu, Y., Effects of molecular structure parameters on ring-opening reaction of benzoxazines, Science in China (Series B), 2001, 44(5): 552-560.
    78. Liu, X., Gu, Y., Chem. Res. Chinese Universities, 2002, 18(3): 367.
    79. Dunkers, J., Ishida, H., Reaction of Benzoxazine-Based Phenolic Resins with Strong and Weak Carboxylic Acids and Phenols as Catalysts, J. Polym. Sci., Part A: Polym. Chem., 1999, 37(13): 1913-1921.
    80. Ishida, H., Sanders, D. P., Regioselectivity and Network Structure of Difunctional Alkyl-Substituted Aromatic Amine-Based Polybenzoxazines, Macromolecules, 2000, 33: 8149-8157.
    81. Ishida, H., Sanders, D. P., Regioselectivity of the ring-opening polymerization of monofunctional alkyl-substituted aromatic amine-based benzoxazines, Polymer, 2001, 42: 3115-3125.
    82. Wang, Y.-X., Ishida, H., Cationic Ring-Opening Polymerization of Benzoxazines, Polymer, 1999, 40: 4563-4570.
    83. Ishida, H., US Patent, 6 224 440 B1, 2001
    84. 万晓波,何金波,徐宁等, 高等学校化学学报, 2001, 22(3): 506.
    85. Ning, X., Ishida, H., Novel Approach to Phenolic Materials: Synthesis and Characterization of Phenolic Resins via Ring Opening Polymerization, J. Polym. Sci., Part A: Polym. Chem., 1994, 32(6): 1121-1129.
    86. Ishida, H., Allen, D. J., Physical and Mechanical Characterization of Near-Zero Shrinkage Polybenzoxazines, J. Polym. Sci., Part B: Polym. Phys., 1996, 34(6): 1019-1030.
    87. Ishida, H., Sanders, D., US Patent, 6 160 079, 2000
    88. Dunkers, J., Zarate, E. A., Ishida, H., Crystal Structure and Hydrogen-Bonding Characteriatics of N,N-Bis(3,5-dimethyl-2-hydroxybenzyl)methylamine, A Benzoxazine Dimer, J. Phys. Chem., 1996, 100: 13514-13520.
    89. Schnell, I., Brown, S. P., Low, H. Y., Ishida, H., Spiess, H. W., An Investigation of Hydrogen Bonding in Benzoxazine Dimers by Fast Magic-Angle Spinning and Double-Quantum 1H NMR Spectroscopy, J. Am. Chem. Soc., 1998, 120: 11784-11795.
    90. Wirasate, S., Dhumrongvaraporn, S., Allen, D. J., Ishida, H., Molecular Origin of Unusual Physical and Mechanical Properties in Novel Phenolic Materials Based on Benzoxazine Chemistry, J. Appl. Polym. Sci., 1998, 70(7): 1299-1306.
    91. Kim, H.-D., Ishida, H., A Stydy on Hydrogen-Bonded Network Structure of Polybenzoxazines, J. Phys. Chem. A, 2002, 106: 3271-3280.
    92. Ishida, H., Lee, Y.-H., Study of Hydrogen Bonding and Thermal Properties of Polybenzoxazine and Poly-(?caprolactone) Blends, J. Polym. Sci., Part B: Polym. Phys., 2001, 39(7): 736-749.
    93. Ishida, H., Lee, Y.-H., Infrared and Thermal Analyses of Polybenzoxazine and Polycarbonate Blends, J. Appl. Polym. Sci., 2001, 81(4): 1021-1034.
    94. Low, H. Y., Ishida, H., Mechanistic Study on the Thermal Decomposition of Polybenzoxazines: Effects of Aliphatic Amines, Journal of Polymer Science: Part B: Polymer Physics, 1998, 36: 1935-1946.
    95. Ishida, H., Sanders, D. P., Improved Thermal and Mechanical Properties of Polybenzoxazines Based on Alkyl-Substituted Aromatic Amines, J. Polym. Sci., Part B: Polym. Phys., 2000, 38(24): 3289-3301.
    96. Low, H. Y., Ishida, H., An Investigation of the Thermal and Thermo-Oxidative Degradation of Polybenzoxazines with a Reactive Functional Group, J. Polym. Sci., Part B: Polym. Phys., 1999, 37(7): 647-659.
    97. Brunovska, Z., Ishida, H., Thermal Study on the Copolymers of Phthalonitrile and Phenylnitrile-Functional Benzoxazines, J. Appl. Polym. Sci., 1999, 73(14): 2937-2949.
    98. Kim, H. J., Brunovska, Z., Ishida, H., Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers, Polymer, 1999, 40: 6565-6573.
    99. Brunovska, Z., Lyon, R., Ishida, H., Thermal Properties of Phthalonitrile Functional Polybenzoxazines, Thermochim. Acta, 2000, 357-358: 195-203.
    100. Agag, T., Takeichi, T., Novel Benzoxazine Monomers Containing p-Phenyl Propargyl Ether: Polymerization of Monomers and Properties of Polybenzoxazines, Macromolecules, 2001, 34: 7257-7263.
    101. Hemvichian, K., Ishida, H., Thermal Decomposition Processes in Aromatic Amine-Based Polybenzoxazines Investigated by TGA and GC-MS, Polymer, 2002, 43: 4391-4401.
    102. Hemvichian, K., Laobuthee, A., Chirachanchai, S., Ishida, H., Thermal Decomposition Processes in Polybenzoxazine Model Dimers Investigated by TGA-FTIR and GC-MS, Polym. Degrad. Stab., 2002, 76(1): 1-15.
    103. Macko, J. A., Ishida, H., Behavior of a Bisphenol-A-Based Polybenzoxazine Exposed to Ultraviolet Radiation, J. Polym. Sci., Part B: Polym. Phys., 2000, 38(20): 2687-2701.
    104. Macko, J. A., Ishida, H., Structural Effects of Phenols on the Photooxidative Degradation of Polybenzoxazines, Polymer, 2001, 42: 227-240.
    105. Macko, J. A., Ishida, H., Structural Effects of Amines on the Photooxidative Degradation of Polybenzoxazines, Polymer, 2001, 42: 6371-6383.
    106. Ishida, H., Low, H. Y., A Study on the Volumetric Expansion of Benzoxazine-Based Phenolic Resin, Macromolecules, 1997, 30: 1099-1106.
    107. Liu, X., Gu, Y., 苯并噁嗪热固化过程中体积变化的研究, 高分子学报(Acta Polymerica Sinica), 2000, (5): 612-619.
    108. Liu, X., Gu, Y., Study on the Volumetric Expansion of Benzoxazine Curing with Different Catalysts, Journal of Applied Polymer Science, 2002, 84(6): 1107-1112.
    109. Chirachanchai, S., Laobuthee, A., Phongtamrug, S., Siripatanasarakit, W., Ishida, H., A Novel Ion Extraction Material Using Host-Guest Properties of Oligobenzoxazine Local Structure and Benzoxazine Monomer Molecular Assembly, J. Appl. Polym. Sci., 2000, 77(12): 2561-2568.
    110. Xu, R.-j., Schreiber, H. P., Huang, M., Ishida, H., Polybenzoxazine Resins: Aspects of Interaction and Adsorption Behavior, J. Polym. Sci., Part B: Polym. Phys., 1999, 37(13): 1441-1447.
    111. Ishida, H., Allen, D. J., Gelation Behavior of Near-Zero Shrinkage Polybenzoxazines, J. Appl. Polym. Sci., 2001, 79(3): 406-417.
    112. Ishida, H., High Char Yield Benzoxazines, US Patent, 5 973 144, 1999
    113. Ji, F.-L., Gu, Y., Xie, M.-L., 宇航材料工艺(Aerospace Materials & Technology), 2002, (1): 25.
    114. Dettloff, M. L., White, J. E., Null, M. J., High Char Yield Benzoxazine Compositions, US Patent, 6 482 946 B1, 2002
    115. 顾宜,钟赤峰,谢美丽, 用于RTM 成型工艺的苯并噁嗪树脂及其复合材料, 复合材料学报, 2000, 17(4): 32-37.
    116. Dansiri, N., Yanumet, N., Ellis, J. W., Ishida, H., Resin Transfer Molding of Natural Fiber Reinforced Polybenzoxazine Composites, Polymer Composites, 2002, 23(3): 352-360.
    117. 顾宜, 向海, 王劲, 凌鸿, 朱蓉琪, 盛兆碧, 可用于RTM 的改性苯并噁嗪树脂及其制备方法, China Patent, ZL 03117779.4, 2003
    118. Ishida, H., Wang, Y.-X., WO, 00/61650, 2000
    119. Takeichi, T., Zeidam, R., Agag, T., Polybenzoxazine/Clay Hybrid Nanocomposites: Influence of Preparation Method on the Curing Behavior and Properties of Polybenzoxazines, Polymer, 2002, 43: 45-53.
    120. Ishida, H., Polybenzoxazine Nanocomposites of Clay and Method for Making Same, US Patent, 6 323 270 B1, 2001
    121. 余鼎声, 史子兴, 王一中, China Patent, ZL 99122268.7, 1999
    122. 叶朝阳, 顾宜, 苯并噁嗪树脂插层蛭石纳米复合材料的制备与表征, 四川大学学报(工程科学版), 2002, 34(4): 71-75.
    123. Gordon, M., Simpson, W., Polymer, 1961, 2: 383-391.
    124. Lunak, S., Vladyka, J., Dusek, K., Polymer, 1978, 19: 931-933.
    125. Kenny, J. M., Maffezzoli, A., Nicolais, L., Comp. Sci. Tech., 1990, 38: 339-358.
    126. Kinloch, A. J., Advances in Polymer Science -Epoxy Resins and Composites I, K. Dusek, Editor, Springer-Verlag: Berlin. 72: 45-67.1985
    127. Kenny, J. M., Apicella, A., Nicolais, L., Polym. Eng. Sci., 1989, 29(15): 973-983.
    128. Pusatcioglu, S. Y., Fricke, A. L., Hassler, J. C., J. Appl. Polym. Sci., 1979, 24: 937-946.
    129. Lee, J. H., Lee, J. W., Polym. Eng. Sci., 1994, 34(9): 742-749.
    130. 戴夫, R. S., 卢斯, A. C., 高分子复合材料加工工程. 北京, 化学工业出版社, 2004.
    131. Huang, M. L., Williams, J. G., Mocromolecules, 1994, 27: 7423-7428.
    132. John, N. A. S., George, G. A., Polymer, 1992, 33(13): 2679-2688.
    133. Piloyan, G. O., Ryabchikov, I. D., Novikova, O. S., Nature, 1966, 212: 1229.
    134. Hong, J.-L., Wang, C.-K., Lin, R.-H., J. Appl. Polym. Sci., 1994, 53: 105-112.
    135. Donnellan, T., Roylance, D., Polym. Eng. & Sci., 1982, 22(13): 821-825.
    136. Ryan, M. E., Dutta, A., Polymer, 1979, 20: 203-206.
    137. Pang, K. P., Gillham, J. K., J. Appl. Polym. Sci., 1990, 39: 909-933.
    138. Batch, G. L., Macosko, C. W., J. Appl. Polym. Sci., 1992, 44: 1711-1729.
    139. Lam, P. W. K., Plaumann, H. P., Tran, T., J. Appl. Polym. Sci., 1990, 41: 3043-3057.
    140. Flory, P. J., Principles of Polymer Chemistry. New York, Cornell University Press, 1953.
    141. Enns, J. B., Gillham, J. K., J. Appl. Polym. Sci., 1983, 28: 2567-2591.
    142. Gillham, J. K., Polym. Eng. & Sci., 1979, 19(10): 676-682.
    143. Gillham, J. K., Polym. Eng. & Sci., 1986, 26(20): 1429-1443.
    144. Wisanrakkit, G., Gillham, J. K., J. Appl. Polym. Sci., 1990, 41: 2885-2929.
    145. Stockmayer, W. H., J. Chem. Phys., 1943, 11: 45.
    146. Wisanrakkit, G., Gillham, J. K., Enns, J. B., J. Appl. Polym. Sci., 1990, 41: 1895-1912.
    147. Williams, M. L., Landel, R. F., Ferry, J. D., J. Am. Chem. Soc., 1955, 77: 3701.
    148. Cohen, M. H., Turnbull, D., J. Chem. Phys., 1959, 31: 1164.
    149. Sanford, W. M., Mccullough, R. L., J. Polym. Sci.: Part B: Polym. Phys., 1990, 28: 973-1000.
    150. Stolin, A. M., Merzhanov, A. G., Malkin, A. Y., Polym. Eng. & Sci., 1979, 19(15): 1074-1080.
    151. Castro, J. M., Macosko, C. W., Soc. Plast. Eng. Tech. Papers, 1980, 26: 434.
    152. Lee, D.-S., Han, C.-D., Polym. Eng. Sci., 1987, 27(13): 955-963.
    153. Srinivasan, R., Wang, T. J., Lee, L. J., ANTEC, 1995: 3016-3029.
    154. Ostromislensky, US Patent, 1 613 673, 1927
    155. Amos, J. L., Polym. Eng. Sci., 1974, (1): 14.
    156. Amos, J. L., US Patent, 2 694 692, 1952
    157. 欧玉春, 高分子材料科学与工程, 1998, 14(2): 12-15.
    158. 李东明, 漆宗能, 高分子学报, 1989, (3): 33.
    159. 陈平, 张岩, 热固性树脂的增韧方法及其增韧机理, 复合材料学报, 1999, 16(3): 19-22.
    160. Mertz, E. H., Claver, G. C., Baer, M., J . Polym Sci., 1956, 22: 325.
    161. Newman, S., Strella, S., J. Appl. Polym. Sci., 1965, 9(2): 297.
    162. Schmitt, J., Keskula, H., J. Appl. Polym. Sci., 1962, 3: 132.
    163. Kambour, R. P., Holik, A. S., J. Polym. Sci., 1969, A27: 1393.
    164. Bucknall, C. B., Smith, R. R., Polymer, 1965, 6: 437.
    165. Bragaw, C. G., in Multicomponent Polymer Systems, Robert, Editor. 99: 86.1971
    166. Gigna, G., J. Appl. Polym. Sci., 1970, 14: 1781.
    167. Andrews, E. H., Developments in Polymer Fracture -1. London, Applied Science Publishers Ltd., 1979.
    168. Bucknall, P., Thomas, A., Bevis, M., J. Mater. Sci., 1976, 11: 1207.
    169. Kambour, R. P., J. Polym. Sci., 1973, D7: 1.
    170. Manzione, L. M., Gillhaam, J. K., J. Appl. Polym. Sci., 1981, 26: 906.
    171. Ishida, H., Allen, D. J., Mechanical Characterization of Copolymers Based on Benzo-xazine and Epoxy, Polymer, 1996, 37(20): 4487-4495.
    172. 顾宜, 谢美丽, 刘新华, 工程塑料应用, 1998, 26(12): 1.
    173. Gu, Y., Zhong, C.-F., Xie, M.-L. Preprints of Second East Asian Polymer Conference. 1999. Hong Kong.
    174. 刘欣, 顾宜, 苯并噁嗪-环氧化合物-胺类催化剂体系开环聚合反应的研究, 高分子材料科学与工程, 2002, 18(2): 168-173.
    175. Liu, X., Gu, Y., Study on the Volumetric Expansion of Benzoxazine Curing with Different Catalysts, J. Appl. Polym. Sci., 2002, 84(6): 1107-1113.
    176. Rimdusit, S., Ishida, H., Development of New Class of Electronic Packaging Materials Based on Ternary Systems of Benzoxazine, Epoxy, and Phenolic Resins, Polymer, 2000, 41: 7941-7949.
    177. Ishida, H., Rimdusit, S., Ternary Systems of Benzoxazine, Epoxy, and Phenolic Resins, US Patent, 6 207 786 B1, 2001
    178. Rimdusit, S., Ishida, H., Synergism and Multiple Mechanical Relaxations Observed in Ternary Systems Based on Benzoxazine, Epoxy, and Phenolic Resins, J. Polym. Sci., Part B: Polym. Phys., 2000, 38(13): 1687-1698.
    179. Rimdusit, S., Ishida, H., Gelation Study of High Processability and High Reliability Ternary Systems Based on Benzoxazine, Epoxy, and Phenolic Resins for an Application as Electronic Packaging Materials, Rheol Acta, 2002, 41: 1-9.
    180. 顾宜, 凌鸿等, 中国专利申请号031265189, 2003
    181. 凌鸿, 王劲, 向海, 盛兆碧, 顾宜, 一种新型无卤阻燃覆铜箔板材料的制备, 化学研究与应用, 2004, 16(1): 55-57.
    182. Kimura, H., Murata, Y., Matsumoto, A., Hasegawa, K., Ohtsuka, K., Fukuda, A., New Thermosetting Resin from Terpenediphenol-Based Benzoxazine and Epoxy Resin, J. Appl. Polym. Sci., 1999, 74(9): 2266-2273.
    183. Ishida, H., Lee, Y.-H., Synergism Observed in Polybenzoxazine and Poly(?caprolactone) Blends by Dynamic Mechanical and Thermogravimetric Analysis, Polymer, 2001, 42: 6971-6979.
    184. Ishida, H., Lee, Y.-H., Study of Exchange Reaction in Polycarbonate-Modified Polybenzoxazine via Model Compound, J. Appl. Polym. Sci., 2002, 83(9): 1848-1855.
    185. Kimura, H., Matsumoto, A., Sugito, H., Hasegawa, K., Ohtsuka, K., Fukuda, A., New Thermosetting Resin from Poly( p-vinylphenol) Based Benzoxazine and Epoxy Resin, J. Appl. Polym. Sci., 2001, 79(3): 555-565.
    186. Kimura, H., Matsumoto, A., Hasegawa, K., Fukuda, A., New Thermosetting Resin From Bisphenol A-Based Benzoxazine and Bisoxazoline, J. Appl. Polym. Sci., 1999, 72(12): 1551-1558.
    187. Kimura, H., Taguchi, S., Matsumoto, A., Studies on New Type of Phenolic Resin (IX) Curing Reaction of Bisphenol A-Based Benzoxazine with Bisoxazoline and the Properties of the Cured Resin. II. Cure Reactivity of Benzoxazine, J. Appl. Polym. Sci., 2001, 79(13): 2331-2339.
    188. Takeichi, T., Agag, T., Zeidam, R., Preparation and Properties of Polybenzoxazine/ Poly(imidesiloxane) Alloys: In Situ Ring-Opening Polymerization of Benzoxazine in the Presence of Soluble Poly(imide-siloxane)s, J. Polym. Sci., Part A: Polym. Chem., 2001, 39(15): 2633-2641.
    189. Jang, J., Seo, D., Performance Improvement of Rubber-Modified Polybenzoxazine, J. Appl. Polym. Sci., 1998, 67(1): 1-10.
    190. Jang, J., Yang, H., Toughness Improvement of Carbon-Fibre/Polybenzoxazine Composites by Rubber Modification, Composites Science and Technology, 2000, 60: 457-463.
    191. Takeichi, T., Guo, Y., Agag, T., Synthesis and Characterization of Poly(urethanebenzo-xazine) Films as Novel Type of Polyurethane/Phenolic Resin Composites, J. Polym. Sci., Part A: Polym. Chem., 2000, 38(22): 4165-4176.
    192. Takeichi, T., Guo, Y., Preparation and Properties of Poly(urethane-benzoxazine)s Based on Monofunctional Benzoxazine Monomer, Polym. J. (Tokyo, Jpn.), 2001, 33(5): 437-443.
    193. 陈晔, 崔燕军, 王新灵, 唐小真, 聚氨酯/苯并噁嗪互穿聚合物网络的合成及表征, 上海交通大学学报, 2002, 36(5): 719-722.
    194. 陈晔, 刘允航, 田国华, 王新灵, 聚氨酯/苯并噁嗪互穿聚合物网络的阻尼性能, 上海交通大学学报, 2002, 36(10): 1506-1508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700