新型氧化硅、金复合纳米材料的制备、组装及其在生物医学、催化上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型金、氧化硅纳米材料和其复合纳米材料的制备、化学修饰、组装以及在化学、分子生物学、药学、医学等领域的应用研究是当前最热门的课题之一。本文对新型金、氧化硅纳米材料的制备、组装及在生物医学、化学催化上的应用进行了详细研究。主要开展的工作如下:
     以3-巯基丙基三甲氧基硅烷(MPTMOS)代替3-氨基丙基三甲氧基硅烷作连接剂,合成了Au@SiO2核壳纳米粒,并对其进行了光谱、TEM、荧光显微镜成像等系列表征。实验结果表明,经改进后制得的Au@SiO2核壳纳米粒形貌呈球形、单分散性较好,金纳米粒位于其中心,分布均匀,无团聚的金纳米粒包覆在氧化硅壳中。荧光检测发现其有光致发光性质,荧光强度在连续扫描3600s后仍没有明显变化,表明该核壳纳米粒具有良好的抗漂白性能。在3-氨基丙基三甲氧基硅烷及戊二醛交联剂的作用下,把TPA抗体固定在Au@SiO2核壳纳米粒上,利用抗原和抗体的特异性识别作用成功实现了对CNE-1/亲鼻咽癌细胞的荧光成像。
     以3-巯基丙基三甲氧基硅烷作连接剂,利用巯基能形成二硫键的性质把氧化硅纳米粒自组装成氧化硅纳米线,合成了金纳米粒子修饰的氧化硅纳米线,并对其进行了光谱、TEM、荧光显微镜成像等系列表征。实验结果表明,该方法可合成得到不同粗细的有金纳米粒包埋于其中或附在表面的氧化硅纳米线。所有实验都是在溶液中进行,不需要高温、真空及特殊的仪器设备,方法安全可行,成本低,有望放大生产以适应对这类新型氧化硅纳米线的大量需求。金纳米粒通过化学键负载在氧化硅纳米线上,表现出了较好的稳定性和较高的催化活性,在NaBH4相对大量过量的条件下,对硝基苯酚的催化还原反应符合准一级反应动力学,反应速率常数k=0.85min-1。此外,金纳米粒附在氧化硅纳米线的表面,目标分子(特别是生物分子)易接近,可潜在用于化学传感及生物传感的应用。
     用普通光学玻璃做基底,用3-巯基丙基三甲氧基硅烷做粘结剂,先在玻璃芯片上成功制得了排布均匀可控的金纳米粒单层膜,然后依次用组织多肽抗原抗体(anti-TPA)、小牛血清蛋白(BSA)对其功能化修饰,制成了对组织多肽抗原(TPA)有特异性响应的TPA光学免疫传感芯片。该传感芯片性能稳定,选择性好,可用紫外可见分光光度计直接对复杂样品检测其中TPA含量。该方法技术上只需要通过测量最大吸收波长处的吸光度变化值来测定样品中TPA含量,操作简单快捷,容易普及。在优化条件下,传感芯片用样品培育一定时间后,其吸光度减小值(△A)与样品中TPA的浓度(C)在1-1000ng/L范围内呈良好的线性关系,检测限为1.2×10-3ng/L,灵敏度很高。通过对3种人工混合样品的回收试验,检测结果与真实值基本一致,回收率为95.7~103.0%,标准偏差RSD=1.6~2.8%,说明方法的准确度和精密度都较好。将制得的传感芯片初步应用于人的血清样品中TPA的检测,发现对癌症患者的血清响应比较明显,而对健康人的血清响应不明显。基于金纳米粒紫外可见吸收的免疫传感法是一种比较理想的分析方法,其在抗原定量检测上的应用是可行的。
     将胶体金直接依次用anti-TPA、BSA、PEG修饰制成溶液基TPA光学生物传感探针,建立了一种快速、简单、有效的TPA定量分析方法。考察了反应时间、反应温度及工作溶液pH值等多种因素的影响。在优化条件下,探针吸光度的减少值与TPA的浓度在0.4-200ng/mL范围内近似呈线性关系,线性回归方程为-△A=0.02767C+0.00632,线性相关系数R=0.99271,检测限约为0.108ng/mL。把方法应用于真实血清样品的测定,检测结果与真实结果基本一致,相对误差在-4.0~8.7%范围内。
     用3-氨基丙基三甲氧基硅烷作粘结剂,在金纳米粒单层膜基础上继续交替铺上氧化硅纳米粒、金纳米粒,成功制得了金纳米粒/氧化硅纳米粒交替排列的多层膜芯片,并对其进行了紫外可见吸收光谱、SEM等系列表征。实验结果表明,随金纳米粒层层数的增加,芯片在540nm处的吸收峰增高,而吸收峰的峰位、峰形基本保持不变。金纳米粒/氧化硅纳米粒多层复合膜的扫描电镜图显示,制备的多层膜芯片表面金纳米粒层金纳米粒的大小为20nm左右,分布比较均匀、规整,为进一步的应用研究奠定了坚实的基础。用anti-TPA对制得的多层复合膜进行修饰、用BSA封住余留的活性点,由此所制得的传感芯片对TPA分子有特异性识别响应,TPA分子通过对anti-TPA分子免疫反应使传感芯片在最大吸收波长处的吸光度值减小。实验结果显示,吸光度的减少值与TPA的浓度在1-10000ng/L范围内近似呈线性关系,线性回归方程为-△A=0.05266C+0.00758,线性相关系数R=0.99734,检测限约为0.027ng/L。把制得的TPA传感芯片应用于血清真实样品的检测,结果表明,3个血清样品的测试结果和当地医院测得值基本一致,标准偏差在允许范围之内。
Preparation, chemical functionalization and assembly of Au nanoparticles, silicon oxide nanomaterial and the Au/SiO2composite nanomaterials, and their applications are one of the most important subjects in the fields of chemistry, molecular biology, medicine and so on. The technologies of preparing and assembling Au, SiO2nanopartices, and their applications are reviewed in this dissertation. The main detail is as follows:
     Au@SiO2core/shell nanoparticles were synthesized by using (3-mercaptopropyl)trimethoxysilane (MPTMOS) as cross-linker instead of (3-amino-propyl)trimethoxysilane. The nanoparticles were characterized by UV-visible spectroscopy, TEM and fluorescence microscope. Our results showed the nanocrystals were uniformly spherical and high monodisperse in water. Single gold nanoparticle was located at the center of silicon oxide shell. Moreover, no obvious change of fluorescence intensity of Au/SiO2composite nano-materials was observed after it was excited for3600seconds by successive intense irradiation, which demonstrates that these nanoparticles had excellent photostability. In addition, Au@SiO2core/shell nanoparticles were covalently conjugated with the TPA using (3-aminopropyl)trimethoxysilane and glutaraldehyde as the crosslinker and successfully completed the fluorescence imaging of nasopharyngeal carcinoma cells CNE-1.
     Based on the principle that the-SH could be oxidated to form a disulfide bond, we had synthesized the gold-nanoparticle-modified silica nanowires in solution by employing3-mercapto-propyltrimethoxysilane as the cross-linker under mild conditions. The nanowires were characterized by UV-visible spectroscopy, TEM and fluorescence microscope. The results demonstrate that the silica nanowires of various thicknesses that the gold nanoparticles were embedded in and/or attached on SiNWs were prepared. The method is simple, low cost, safe and feasible, so it is helpful for meeting the social great demand by synthesizing the SiNWs in large scale. Gold-nanoparticles were loaded on SiNWs by chemical bond that it showed the good stability and excellent catalytic activity. The Catalytic reduction of reaction of p-nitrophenol follows the first-order kinetic process when NaBH4is excessive, the reaction rate constant k=0.85min-1. Moreover, the composite nanoparticles were easy to covalently conjugate with the target molecule (i.e. biological molecule), and it made them become ideal candidates for use in chemical sensor and biosensor.
     The monolayer membrane of gold nanoparticles was controllably prepared on the glass chip using optical glass as substrate and MPTMOS as agglomerant. Then, anti-TAP and BSA were used to functionalize this monolayer membrane of gold nanoparticles to prepare the optical immune sensing chip that could specifically response to TPA. This chip can directly detect the TPA in complex sample using ultraviolet visible spectrophotometer with good stabilization and selectivity. In addition, because this technique need only measure the absorbance change in the largest ultraviolet absorption wavelength of TPA to detect the content of TPA in samples, this method can be easily popularized for this kind of simple and fast format. Under the optimized conditions, the decreased absorbency (AA) was linear with TPA concentration (C) in the range of1~1000ng/L and the low detection limit was1.2×10-3ng/L. The results of determination for TPA in three synthetic samples were identical with the true values, the recovery (98.9%-102.4%) and the standard deviation (1.6~2.8%) was satisfactory. Moreover, the method was applied to the determination of the content of TPA in human serum samples. Compared to the serum of healthy person, the response value was improved obviously in cancer patients. The concept demonstrated that the application of Immunosensors based on the UV-Vis absorption of gold-nanoparticles to quantitative detecting the antigen was feasible.
     Liquid TPA optical bio-sensing probe was constructed using the anti-TPA, BSA and PEG functionalized gold nanoparticles. This method provides a fast, simple and efficient character for quantitative analysis of TPA. In this work, a series of factors (i.e. reaction time, reaction temperature and pH) were investigated to find the better determination condition. Under the optimized conditions, a linear relationship of the decreased absorbency (△A) and TPA concentration (C) was established in the range of0.4-200ng/mL using the equation-△A=0.02767C+0.00632(R=0.99271) and the low detection limit was0.108ng/mL. The results of the determination for TPA in serum real samples were identical with the true value, and the relatively error is at-4.0~8.7%.
     By using the (3-aminopropyl)trimethoxysilane as cross-linker, the multilayer chip was formed by alternating Au-nanoparticles and SiO2-nanoparticles on nano-Au single-layer. The multilayer chip was characterized by UV-visible spectroscopy, SEM and so on. The absorbing intensity at540nm of chip increased with enhancement of layer of Au-nanoparticles, but the position and shap of the absorption peak was nearly invariant. The TEM image of the multilayer film proved this method yielded the Au-nanopartices on the multilayer chip surface with20nm in diameter and uniform. The successful preparation of multilayer chip paved a way for further study and application. When the multilayer chip was modified by anti-TPA and the remaining active sites of multilayer chip were blocked by BSA, the as-prepared sensoring chip can specifically recognize TPA molecular and the absorbing intensity of sensoring chip at the maximum absorption wavelengths was decreased because of immune reaction between TPA and anti-TPA. The results showed a linear relationship of the decreased absorbency (△A) and TPA concentration (C) was established in the range of1~1000ng/L using the equation-△A=0.05266C+0.00758(R=0.99734) and the low detection limit was0.027ng/L. The results of the determination for TPA in three serum real samples were identical with the conventional method of hospital, and the standard deviation was satisfactory.
引文
[1]朱宏伟,吴德海,徐才录.纳米碳管.北京:机械工业出版社,2003.1-6
    [2]Ferry D K, Akis R, Vasileska D. Quantum effects in MOSFETs:Use of an effective potential in 3D Monte Carlo simulation of ultra-short channel devices. IEDM Technical Digest,2000,287-290
    [3]Wang Y, Chou S Y. Engineering sub-50 nm quantum effect devices and single-electron transistors using electron-beam lithography. Journal of Vacuum Science and Technology B,1992,10,2962-2965
    [4]Obrosova N K, Shananin A A. Quantum effect in production model taking into account deficiency of floating assets and trading infrastructure. Trudy Instituta Matematiki i Mekhaniki UrO RAN,2010,16,127-134
    [5]Huang J, Zhang X, Wang C, et al. Size and Surface Effect of Gold Nanoparticles (AuNPs) in Nanogold-assisted PCR. Surface Review and Letters,2008,15, 757-762
    [6]Hui T, Chen Y. Surface Effect and Size Dependence on the Energy Release due to a Nano InAs Inclusion Expansion in a GaAs Matrix Material. Advanced Studies in Theoretical Physics,2010,4,369-381
    [7]Li W H, Yang C C, Tsao F C. Enhancement of superconductivity by the small size effect in In nanoparticles. Physical Review B 2005,72,214516-214520
    [8]zhaganV M D, Valakh M Y, Raevskaya A E. Size effects on Raman spectra of small CdSe nanoparticles in polymer films. Nanotechnology,2008,19,305707
    [9]Sako S, Kimura K. Size effect in CESR of magnesium and calcium small particles. Surface Science,1985,156,511-515
    [10]Awschalom D D, DiVincenzo D P, Smyth J F. Macroscopic Quantum Effects in Nanometer-Scale Magnets. Science,1992,258,414-421
    [11]Chen I W, Xue L A. Development of Superplastic Structural Ceramics. Journal of the American Ceramic Society,1990,73,2585-2609
    [12]Yeh T S, Sacks M D. Low-temperature sintering of aluminum oxide. Journal of the American Ceramic Society,1988,71 (10),841-844
    [13]Wang W X, Li D H, Liu Z C, et al. Strong piezoelectricity in nanosized silicon-nitride prepared by laser-induced chemical vapor-deposition. Applied Physics Letters,1993,62(3),321-322
    [14]Lue J T. A Review of Characterization and Physical Property Studies of Metallic Nanoparticles. Journal of Physics and Chemistry of Solids,2001,62,1599-1612
    [15]Jensen T R, Malinsky M D, Haynes C L. Spectra of Silver Nanoparticles. The Journal of Physical Chemistry B,2000,104,10549-10556
    [16]Michaels A M, Nirmal M, Brus L E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. Journal of the American Chemical Society,1999,121,9932-9939
    [17]Schultz S, Smith D R, Mock J J. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proceedings of the National Academy of Sciences of the United States of America,2000,97,996-1001
    [18]Yguerabide J, Yguerabide E E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. Analytical Biochemistry,1998,262,137-156
    [19]Yguerabide J, Yguerabide E. Light scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications:experimental characterization. Analytical Biochemistry,1998,262, 157-176
    [20]Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chemical Society Reviews,1998,27,241-250
    [21]Blackie E J, Le R, Eric C. Surface Enhanced Raman Scattering Enhancement Factors:A Comprehensive Study. Journal of Physical Chemistry C,2007,111, 13794-13803
    [22]Blackie E J, Le R, Eric C. Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules. Journal of the American Chemical Society,2009,131 (40):14466-14472
    [23]Rafiee-Pour H A, Noorbakhsh A, Salimi A, et al. Sensitive Superoxide Biosensor Based on Silicon Carbide Nanoparticles. Electroanalysis,2010,22,1599-1606
    [24]Jefferson D A. The surface activity of ultrafine particles. Philosophical Transactions of the Royal Society A,2000,358,2683-2692
    [25]Vincenot J, Aikens C M. Quantum Mechanical Examination of Optical Absorption Spectra of Silver Nanorod Dimers. Progress in Theoretical Chemistry and Physics,2009,20,253-264
    [26]Ji L, Saquing C, Khan S A, et al. Preparation and characterization of silica nanoparticulate-polyacrylonitrile composite and porous nanofibers. Nanotechnology,2008,19,085605.
    [27]Jing Y, Moore L R, Williams P S, et al. Blood progenitor cell separation from clinical leukapheresis product by magnetic nanoparticle binding and magnetophoresis. Biotechnology and Bioengineering,2007,96,1139-1154
    [28]Yang Y, Yan X, Cui Y, et al. Preparation of polymer-coated mesoporous silica nanoparticles used for cellular imaging by a "graft-from" method. Journal of Materials Chemistry,2008,18,5731-5737
    [29]Jaiswal J K, Goldman E R, Mattoussi H, et al. Use of quantum dots for live cell imaging. Nature Methods 2004,1,73-78
    [30]Dwarakanath S, Bruno J G, Shastry A, et al. Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria. Biochemical and Biophysical Research Communications,2004,325(3),739-43
    [31]Couvreur P, Dubernet C, Puisieux F. Controlled drug delivery with nanoparticles: current possibilities and future trends. European Journal of Pharmaceutics and Biopharmaceutics,1995,41,2-13
    [32]Eunlee Koo Y, Ramachandra R G, Bhojani M, et al. Brain cancer diagnosis and therapy with nanoplatforms. Advanced drug delivery reviews,2006,58, 1550-1577
    [33]Haes A J, Van D. A nanosale optical biosensor:sensitivity and selectivity of an approach based on the localized surface Plasmon resonance spectroscopy of triangular silver nanoparticles. Journal of the American Chemical Society,2002, 124,10596-10604
    [34]Kang M S, Martin C R. Investigations of Potential-Dependent Fluxes of Ionic Permeates in Gold Nanotubule Membranes Prepared via the Template Method. Langmuir,2001,17 (9),2753-2759
    [35]包建民,郭玉高,吴晶.电喷雾技术在纳米材料制备中的应用.材料导报(增刊),2005,1
    [36]凤雷,郑韬LICVD法制备a—Si3N4纳米粒子光谱研究.半导体学报,1999,20(11),952-956
    [37]Brust M, Walker M, Bethell D, et al. Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System. Chemical Communication, 1994,7,801
    [38]Male K B, Li J, Bun C C, et al. Synthesis and Stability of Fluorescent Gold Nanoparticles by Sodium Borohydride in the Presence of Mono-6-deoxy-6-pyridinium-β-cyclodextrin Chloride. Journal of physical chemistry C,2008,112, 443-451
    [39]Eniistun B V, Turkevich J. Coagulation of Colloidal Gold. Journal of the American Chemical Society,1963,85:3317-3328
    [40]Niu J, Zhu T, Liu Z. One-step seed-mediated growth of 30-150 nm quasispherical gold nanoparticles with 2-mercaptosuccinic acid as a new reducing agent. Nanotechnology,2007,18,325607
    [41]Liu J, He F, Gunn T M, et al. Precise seed-mediated growth and size-controlled synthesis of palladium nanoparticles using a green chemistry approach. Langmuir, 2009,25(12):7116-28
    [42]Murphy C J, Thompson L B, Chernak D J, et al. Gold nanorod crystal growth: From seed-mediated synthesis to nanoscale sculpting. Current Opinion in Colloid & Interface Science,2011,16,128-134
    [43]Xu Z C, Shen C M, Xiao C W, et al. Wet chemical synthesis of gold nanoparticles using silver seeds:a shape control from nanorods to hollow spherical nanoparticles. Nanotechnology,2007,18,115608
    [44]Jana N R, Wang Z L, Sau T K, et al. Seed-mediated growth method to prepare cubic copper nanoparticles. Current Science,2000,79,1367-1370
    [45]Sajanlal P R, Pradeept T. Growth of anisotropic gold nanostructures on conducting glass surfaces. Journal of Chemical Science,2008,120,79-85
    [46]Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science,1998,279,208-211
    [47]Vlad A, Matefi-Tempfli M, Faniel S, et al. Controlled growth of single nanowires within a supported alumina template. Nanotechnology,2006,17,4873
    [48]Ajayan P M, Stephan O, Redlich P, et al. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature,1995,375, 564-567
    [49]Monson C F, Woolley A T. DNA-Templated Construction of Copper Nanowires. Nano Letters,2003,3 (3),359-363
    [50]Petroski J M, Wang Z L, Green T C, et al. Kinetically Controlled Growth and Shape Formation Mechanism of Platinum Nanoparticles. The Journal of Physical Chemical B,1998,102,3316-3320
    [51]Yao Z F, Huang K L, Yu J G, et al. Preparation and Spectrum study of Monodispersed Regular Spherical Au@SiO2 Core-shell Nanoparticles. Chinese Journal of Inorganic Chemistry,2009,25,2163-2168
    [52]Das B C, Pal A J. Core-shell hybrid nanoparticles with functionalized quantum dots and ionic dyes:growth, monolayer formation, and electrical bistability. ACS NANO,2008,2,1930-1938
    [53]Perez-Juste J, Pastoriza S, Liz-Marza L M, et al. Gold nanorods:Synthesis, characterization and applications. Coordination Chemistry Reviews,2005,249, 1870-1901
    [54]Nie S, Emory S R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science,1997,275,1102-1106
    [55]Le Ru E C, Meyer M, Etchegoin P G. Proof of Single-Molecule Sensitivity in Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique. The Journal of Physical Chemistry B,2006,110,1944-1948
    [56]Blackie E J, Le Ru E C, Etchegoin P G. Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules. Journal of the American Chemical Society,2009,131 (40),14466-14472
    [57]Blackie E J, Le Ru E C, Meyer M. Surface Enhanced Raman Scattering Enhancement Factors:A Comprehensive Study. The Journal of Physical Chemistry C,2007,111,13794-13803
    [58]Faraday M. The Bakerian lecture:experimental relations of gold (and other metals) to light. Philosophical Transactions of the Royal Society,1857,147, 145-181
    [59]Mie G. Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen. Annals of Physics,1908,25,377-445
    [60]Zhang X, He X, Wang K, et al. Biosynthesis of Size-Controlled Gold Nanoparticles Using Fungus, Penicillium sp. Journal of Nanoscience and Nanotechnology,2009,9 (10),5738
    [61]Mieszawska A J, Jalilian R, Sumanasekera G U, et al. Synthesis of Gold Nanorod/Single-Wall Carbon Nanotube Heterojunctions Directly on Surfaces. ournal of the American Chemical Society,2005,127 (31),10822-10823
    [62]Xu C L, Zhang L, Zhang H L, et al. Well-dispersed gold nanowire suspension for assembly application. Applied Surface Science,2005,252(4),1182-1186
    [63]Yuan H, Cai R X, Pang D W. A Simple Approach to Control the Growth of Non-spherical Gold Nanoparticles. Chinese Chemical Letters,2003,14, 1163-1166
    [64]吴馨洲,王庐岩,裴梅山.一步法合成高产率枝状金纳米粒子.济南大学学 报(自然科学版),2011,25,52-54
    [65]Turkevich J, Stevenson P C, Hillier J. The nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society,1951,11,55-75
    [66]Daniel M C, Astruc D. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical reviews,2004,104(1),293-346
    [67]Kimling J, Maier M, Okenve B, et al. Turkevich Method for Gold Nanoparticle Synthesis Revisited. The Journal of Physical Chemistry B,2006,110(32), 15700-15707
    [68]Brust M, Walker M, Bethell D, et al. Synthesis of Thiol-Derivatized Gold Nanoparticles in a Two-Phase Liquid-Liquid System. Journal of the Chemical Society, Chemical Communications,1994,801-802
    [69]Templeton A C, Wuelfing W P, Murray R W. Monolayer-Protected cluster molecules. Accounts of Chemical Research,2000,33,27-36
    [70]Wang Z, Su Y K, Li H L. AFM study of gold nanowire array electrodeposited within anodic aluminum oxide template. Applied Physics A:Materials Science & Processing,2001,74,563-565
    [71]Lu Y, Ji H F. Electric field-directed assembly of gold and platinum nanowires from an electrolysis process. Electrochemistry Communications,2008,10, 222-224
    [72]Jana N R, Gearheart L, Murphy C J. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir,2001,17,6782-6786
    [73]Sau T K, Murphy C J. Seeded high yieldsynthesis of short Au nanorods in aqueous solution. Langmuir,2004,20,6414-6420
    [74]Sau T K, Murphy C J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. Journal of the American Chemical Society,2004,126,8648-8649
    [75]Murphy C J, Gole A M, Hunyadi S E, et al. Chemical Sensing and Imaging with Metallic Nanorods. Chemical Communications,2008,544-557
    [76]Kim Y J, Song J H. Practical Synthesis of Au Nanowires via a Simple Photochemical Route. Bulletin of the Korean Chemical Society,2006,27, 633-634
    [77]Chen H, Wang Y, Dong S. Synthesis of different gold nanostructures by solar radiation and their SERS spectroscopy. Journal of Raman Spectroscopy,2009,40, 1188-1193
    [78]Huang X, El-Sayed I H, Yi X, et al. Gold nanoparticles:catalyst for the oxidation of NADH to NAD+. The Journal of Photochemistry and Photobiology B,2005, 81,76-83
    [79]Narayanan R, Tabor C, El-Sayed M A. Metallic Colloidal Nanocatalysis:Can the Observed Changes in the Size or Shape of a Colloidal Nanocatalyst Reveal the Nanocatalysis Mechanism Type:Homogeneous or Heterogeneous. Topics in Catalysis,2008,48(1-4),60-74
    [80]Narayanan R, El-Sayed M A. Some Aspects of Colloidal Nanoparticle Stability, Catalytic Activity, and Recycling Potential. Topics in Catalysis,2008,47(1-2), 15-21
    [81]Narayanan R, El-Sayed M A. Catalysis with Metallic Nanoparticles:The Good and the Bad. Chimica Oggi-Chemistry Today,2007,25(1),84-86
    [82]Narayanan R, El-Sayed M A. Catalysis with Transition Metal Nanoparticles in Colloidal Solution:Nanoparticle Shape Dependence and Stability. The Journal of Physical Chemistry B,2005,109(26),12663-12676
    [83]Link S, Mohamed M B, El-Sayed M A. Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant. The Journal of Physical Chemistry B,1999,103 (16),3073-3077
    [84]Yu C, Irudayaraj J. Multiplex Biosensor Using Gold Nanorods. Analytical Chemistry,2007,79,572-579
    [85]Dickerson E B, Dreaden E C, Huang X, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Letters,2008,269(1),57-66
    [86]Nikoobakht B, El-Sayed M A. Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir,2001,17,6368-6374
    [87]Pan B, Cui D, Ozkan C, et al. DNA-templated ordered array of gold nanorods in one and two dimensions. The Journal of Physical Chemistry,2007,111, 12572-12576
    [88]Chang J Y, Wu H, Chen H, et al. Oriented assembly of Au nanorods using biorecognition system. Chemical Communications,2005,8,1092-1094
    [89]Khanal B P, Zubarev E R. Rings of Nanorods. Angewandte Chemie International Edition,2007,46,2195-2198
    [90]Schmid G, Baumle M, Beyer N. Ordered two-dimensional monolayers of Au55 clusters. Angewandte Chemie International Edition,2000,39,181-183
    [91]Zehner R W, Lopes W A, Morkved T L, et al. Selective Decoration of a Phase-Separated Diblock Copolymer with Thiol-Passivated Gold Nanocrystals. Langmuir,1998,14,241-244
    [92]Crespo-Biel O, Dordi B, Maury P, et al. Patterned, Hybrid, Multilayer Nanostructures Based on Multivalent Supramolecular Interactions. Chemistry of Materials,2006,18,2545-2551
    [93]Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA based method for assembling nanoparticles. Nature,1996,382,607-609
    [94]Le J D, Pinto Y, Seeman N C, et al. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Letters,2004,4,2343-2347
    [95]Zhang J P, Liu Y, Ke Y G, et al. Periodic Square-like gold nanoparticle arrays templated by a DNA nanogrids on a surface. Nano Letters,2006,6,248-251
    [97]Li H Y, Park S H, Reif J H, et al. DNA templated self-assembly of protein and nanoparticle linear arrays. Journal of the American Chemical Society,2004,126, 418-419
    [97]Shenton W, Davies S A, Mann S. Directed Self-assembly of Nanoparticles into Macroscopic Materials Using Antibody-Antigen Recognition. Advanced Materials,1999,11(6),449-452
    [98]Connolly S, Fitzmaurice D. Programmed assembly of gold nanocrystals in aqueous solution. Advanced Materials,1999,11.1202-1205
    [99]Aslan K, Luhrs C C, Perez-Luna V H. Controlled and Reversible Aggregation of Biotinylated Gold Nanoparticles with Streptavidin. The Journal of Physical Chemistry B,2004,108,15631-15639
    [100]Blum A S, Soto C M, Wilson C D, et al. Cowpea Mosaic Virus as a Scaffolding for 3-D Patterning of Gold Nanoparticles. Nano Letters,2004,4,867-870
    [101]Blum A S, Soto C M, Wilson C D, et al. An engineered virus as a scaffold for threedimensional self-assembly on the nanoscale. Small,2005,1,702-706
    [102]McMillan R A, Paavola C D, Howard J, et al. Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nature Materials,2002,1, 247-252
    [103]Hu M H, Qian L P, Brinas R P, et al. Assembly of Nanoparticle-Protein Binding Complexes:From Monomers to Ordered Arrays. Angewandte Chemie International Edition,2007,46,5111-5114
    [104]Nath N, Chilkoti A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Analytical Chemistry,2002, 74,504-509
    [105]Yao Z F, Huang K L, Liu S Q, et al. A novel method to prepare gold-nanoparticle-modified nanowires and their spectrum study. Chemical Engineering Journal,2011,166,378-383
    [106]Dickerson E B, Dreaden E C, Huang X, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of HSC-3 tumors in mice. Cancer Letters,2008,269,57-66
    [107]Pang L, Li J, Jiang J, et al. DNA point mutation detection based on DNA ligase reaction and nano-Au amplification:A piezoelectric approach. Analytic Biochemistry,2006,358,99-103
    [108]El-Sayed I H, Huang X, and El-Sayed M A. Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics:Applications in Oral Cancer. Nano Letters, 2005,5,829-834
    [109]Qian W, Huang X, Kang B, et al. Single cancer cell imaging during its full cycle from birth to division using gold nanoprobe imaging technique. Journal of Biomedical Optics,2010,15(4),046025-046033
    [110]Debouttie're P J, Roux S, Vocanson F, et al. Design of Gold Nanoparticles for Magnetic Resonance Imaging. Advanced Functional Materials,2006,16, 2330-2339
    [111]Lim Y T, Cho M Y, Kim J K, et al. Plasmonic Magnetic Nanostructure for Bimodal Imaging and Photonic-Based Therapy of Cancer Cells. ChemBioChem, 2007,8,2204-2209
    [112]Larson T A, Bankson J, Aaron J, et al. Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology,2007,18,325101
    [113]Ji X, Shao R, Elliott A M, et al. Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy. The Journal of Physical Chemistry C,2007,111(17), 6245-6251
    [114]Choi J S, Choi H J, Jung D C, et al. Nanoparticle assisted magnetic resonance imaging of the early reversible stages of amyloid beta self-assembly, Chemical Communications,2008,19,2197-9
    [115]Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature,382, 607-609
    [116]Murphy D, Redmond G. Optical Detection and Discrimination of Cystic Fibrosisrelated Genetic Mutations Using Oligonucleotide-nanoparticle Conjugates. Analytical Bioanalytical Chemistry,2005,381,1122-1129
    [117]Nam J N, Steva S I, Mirkin C A. Bio-bar-code-based DNA detection with PCR-like sensitivity. Journal of the American Chemical Society,2004,126, 5932-5933
    [118]Murphy C J, Gole A M, Hunyadi S E, et al. Chemical Sensing and Imaging with Metallic Nanorods. Chemical Communications,2008,544-557
    [119]Xu X Y, Han M S, Mirkin C A. A Gold-Nanoparticle-Based Real-Time Colorimetric Screening Method for Endonuclease Activity and Inhibition. Angewandte Chemie International Edition,2007,46,3468-3470
    [120]Shin Y B, Lee J M, Park M R, et al. Analysis of recombinant protein expression using localized surface Plasmon resonance (LSPR). Biosensors and Bioelectronics,2007,22,2301-2307
    [121]Astruc D. Electron Transfer and Radical Processes in Transition Metal Chemistry. New Yok:VCH,1995, ch.4-7
    [122]Dequaire M, Degrand C, Limoges B. An electrochemical met-alloimmunoassay based on a colloidal gold label. Analytical Chemistry,2000,72,5521-5528
    [123]Pumera M, Sanchez S, Ichinose I, et al. Electrochemical Nanobiosensors. Sensors and Actuators B,2007,123,1195-1205
    [124]Guo S, Wang E. Synthesis and electrochemical applications of gold nanoparticles. Analytical Chimical Acta,2007,598,181-192
    [125]Xiao Y, Patolsky F, Katz E, et al.'Plugging into enzymes':Nanowiring of redox-enzymes by a gold nanoparticle. Science,2003,299,1877-1881
    [126]Scodeller P, Flexer V, Szamocki R, et al. Wired-Enzyme Core-Shell Au Nanoparticle Biosensor. Journal of the American Chemical Society,2008, 130(38),12690-12697
    [127]El-Sayed I H, Huang X H, El-Sayed M A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Letters,2006,239,129-135
    [128]Zharov V P, Galitovskaya E N, Johnson C, et al. Synergetic enhancement of selective nanophotothermolysis with gold nanoclusters:potential for cancer therapy. Lasers in Surgery and Medicine,2005,37,219-226
    [129]Hirsch L R, Stafford R J, Bankson J A, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America,2003,100, 13549-13554
    [130]Huang X, El-Sayed I H, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society,2006,128(6),2115-2120
    [131]Hauck T, Chan W C W. Nanostructure-mediated thermal therapy-the path from bench to clinic. Nanomedicine,2006,1,115-117
    [132]Hu K W, Huang C C, Hwu J R, et al. A new photothermal therapeutic agent: core-free nanostructured AuxAgl-x Dendrites. Chemistry-A European Journal, 2008,14,2956-2964
    [133]Loo C, Lowery A, Halas N J, et al. Immunotargeted nanoshells for Integrated cancer imaging and therapy. Nano Letters,2005,5,709-711
    [134]Huang X H, El-Sayed I H, Qian Wei, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society,2006,128,2115-2120
    [135]Han G, Ghosh P, Rotello V M. in Advanced Experimental Medicine and Biology:Bio-Applications of Nanoparticles, ed. W. C. W. Chan, Springer, Heidelberg,2007, vol.620, ch.4, pp.48-56
    [136]Han G, Ghosh P, Rotello V M. Functionalized gold nanoparticles for drug delivery. Nanomedicine,2007,2(1):113-123
    [137]Lee R J, Low P S. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochimistry Biophysical Acta,1995,1233,134-144
    [138]Yang P H, Sun X S, Siu J F, et al. Transferrin-mediated gold nanoparticle cellular uptake, Bioconjugate Chemistry,2005,16,494-496
    [139]Paciotti G F, Myer L, Weinreich D. Colloidal gold:a novel nanoparticle vector for tumor directed drug delivery. Drug Delivery,2004,11,169-183
    [140]Paciotti G F, Kingston D G I, Tamarkin L. Colloidal gold nanoparticles:a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Development Research,2006,67,47-54
    [141]Rosi N L, Giljohann D A, Thaxton C S, et al. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science,2006,312,1027-1030
    [142]Han G, Chari N S, Verma A, et al. Controlled Recovery of the Transcription of Nanoparticle-Bound DNA by Intracellular Concentrations of Glutathione. Bioconjugate Chemistry,2005,16,1356-1359
    [143]Han G, You C C, Kim B J, et al. Light-Regulated Release of DNA and Its Delivery to Nuclei by Means of Photolabile Gold Nanoparticles. Angewandte Chemie International Edition,2006,45,3165-3169
    [144]Bond G C, Louis C, Thompson D T. Catalysis by Gold. London:Imperial College Press.2007
    [145]Hashmi S A K. Gold-catalyzed organic reactions. Chemical Reviews,2007,107, 3180-3211
    [146]Bond G C, Thompson D T. Catalysis by Gold. Catalysis Reviews, Science and Engineering,1999,41,319-388
    [147]Carrettin S, Hao Y, Aguilar-Guerrero V, et al. Increasing the Number of Oxygen Vacancies on TiO2 by Doping with Iron Increases the Activity of Supported Gold for CO Oxidation. Chemistry-A European Journal,2007,13,7771-7779
    [148]Corma A, Serna P. Chemoselective Hydrogenation of Nitro Compounds with Supported Gold Catalysts. Science,2006,313,332-334
    [149]Hayashi T, Tanaka K, Haruta M. Selective Vapor-Phase Epoxidation of Propylene over Au/TiO2Catalysts in the Presence of Oxygen and Hydrogen. Journal of Catalysis,1998,178,566-575
    [150]Corma A, Concepcion P, Dominguez I, et al. Gold supported on a biopolymer (chitosan) catalyzes the regioselective hydroamination of alkynes. Journal of Catalysis,2007,251,39-47
    [151]Min B K, Friend C M. Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chemical Reviews,2007, 107,2709-2724
    [152]Carrettin S, Blanco M C, Corma A. Heterogeneous Gold-Catalysed Synthesis of Phenols. Advanced Synthesis & Catalysis,2006,348,1283-1288
    [153]Ge J, Zhang Q, Zhang T, et al. Core-Satellite Nanocomposite Catalysts Protected by a Porous Silica Shell:Controllable Reactivity, High Stability, and Magnetic Recyclability. Angewandte Chemie International Edition,2008,47, 8924-8928
    [154]Stober W, Fink A, Bohn E. Controlled growth of mono-disperse silica spheres in the micron size range. Journal of Colloid and Interface Science,1968,26, 62-69
    [155]Hwang J S, Chen K Y, Hong S J, et al. The preparation of silver nanoparticle decorated silica nanowires on fused quartz as reusable versatile nanostructured surface-enhanced Raman scattering substrates. Nanotechnology,2010,21, 025502
    [156]Chen Y, Xue X, Wang T. Large-scale controlled synthesis of silica nanotubes using zinc oxide nanowires as templates. Nanotechnology,2005,16,1978
    [157]Wang L, Major D, Paga P, et al. High yield synthesis and lithography of silica-based nanospring mats. Nanotechnology,2006,17, S298-S303
    [158]Wagner R. S, Ellis W. C. Vapor-liquid-solid Mechanism of Single Crystal Growth. Applied Physics Letters,1964,4,89-90
    [159]Yu D P, Hang Q L, Ding Y, et al. Amorphous silica nanowires:Intensive blue light emitters. Applied Physics Letters,1998,73,3076-3078
    [160]Jagannathan H, Nishi Y, Reuter M, et al. Effect of oxide overlayer formation on the growth of gold catalyzed epitaxial silicon nanowires. Applied Physics Letters,2006,88,103113
    [161]Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science,1968,26,62-69
    [162]Muller-Schulte D, Schmitz-Rode T, Born P. Ultra-fast synthesis of magnetic and luminescent silica beads for versatile bioanalytical applications. Journal of Magnetism and Magnetic Materials,2005,293,135-143
    [163]Rossi L, Shi L, Quina F, et al. Stober synthesis of monodispersed luminescent silica nanoparticles for bioanalytical assays. Langmuir,2005,21(10), 4277-4280
    [164]Kobayashi Y, Saeki S, Yoshida M, et al. Synthesis of spherical submicron-sized magnetite/silica nanocomposite particles. Journal of Sol-Gel Science and Technology,2008,45,35-41
    [165]Tang D, Yuan R, Chai Y, et al. Magnetic-Core/Porous-Shell CoFe2O4/SiO2 Composite Nanoparticles as Immobilized Affinity Supports for Clinical Immunoassays. Advanced Functional Materials,2007,17,976-982
    [166]Tan T, Selvan T, Zhao L, et al. Size control, shape evolution, and silica coating of near-infrared-emitting PbSe quantum dots. Chemistry of Materials,2007,19, 3112-3117
    [167]Bruchez Jr. M, Moronne M, Gin P, et al. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science,1998,281 (5385),2013-2016
    [168]Fu X, Huang K, Liu S. A rapid and universal bacteria-counting approach using CdSe/ZnS/SiO2 composite nanoparticles as fluorescence probe. Analytical and Bioanalytical Chemistry.2010,396 (4),1397-1404
    [169]Knopp D, Tang D, Niessner R. Review:Bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles. Analytica Chimica Acta,2009,647,14-30
    [170]Qhobosheane M, Santra S, Zhang P, et al. Biochemically functionalized silica nanoparticles. Analyst,2001,126,1274-1278
    [171]Lian W, Litherland S A, Badrane H, et al. Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles. Analytical Biochemistry,2004,334(1),135-144
    [172]Santra S, Zhang P, Wang K, et al. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Analytical Chemistry,2001,73,4988-4993
    [173]Selvan S T, Patra P K, Ang C Y, et al. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angewandte Chemie International Edition,2007,46(14),2448-2452
    [174]Torchilin V P. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annual Review of Biomedical Engineering,2006, 8:343-75
    [175]Barbe C, Bartlett J, Kong L, et al. Silica Particles:A Novel Drug-Delivery System. Advanced Materials,2004,16,1959-1966
    [176]Tan W, Wang K, He X, et al. Bionanotechnology based on silica nanoparticles. Medicinal Research Reviews,2004,24,621-638
    [177]He X, Huo H, Wang K, et al. Plasmid DNA isolation using amino-silica coated magnetic nanoparticles (ASMNPs). Talanta,2007,73,764-9
    [178]Liang Y, Gong J L, Huang Y, et al. Biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering probes for detection of DNA related to HIV gene using silica-coated magnetic nanoparticles as separation tools. Talanta, 2007,72,443-449
    [179]Park M, Chang J. High throughput human DNA purification with aminosilanes tailored silica-coated magnetic nanoparticles. Materials Science and Engineering,2007,27,1232-1235
    [180]Zhao X, Tapec-Dytioco R, Wang K, et al. Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers. Analytical Chemistry,2003,75(14),3476-83
    [181]Gemeinhart R A, Luo D, Saltzman W M. Cellular fate of a modular DNA delivery system mediated by silica nanoparticles. Biotechnology Progress,2005, 21(2),532-537
    [182]Xu Z P, Zeng Q H, Lu G Q, et al. Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science,2006,61 (3),1027-1040
    [183]Ferber D. Gene therapy:safer and virus-free? Science,2001,294,1638-1642
    [184]Niidome T, Huang L. Gene therapy progress and prospects:nonviral vectors. Gene Therapy,2002,9,1647-1652
    [185]Kang J H, Toita R, Niidome T, et al. Effective delivery of DNA into tumor cells and tissues by electroporation of polymer-DNA complex. Cancer Letters,2008, 265(2),281-8
    [186]Lehrman S. Virus treatment questioned after gene therapy death. Nature,1999, 401,517-518
    [187]Yamanouchi D, Wu J, Lazar A N, et al. Biodegradable arginine-based poly(ester-amide)s as non-viral gene delivery reagents. Biomaterials,2008,29, 3269-3277
    [188]Son S J, Bai X, Lee S B. Inorganic hollow nanoparticles and nanotubes in nanomedicine Part 2:Imaging, diagnostic, and therapeutic applications. Drug Discovery Today,2007,12(15-16),657-63
    [189]Luo D, Saltzman W M. Nonviral gene delivery-Thinking of silica. Gene Therapy,2006,13,585-586
    [190]Pagliaro M, Ciriminna R, Wong M, et al. Better Chemistry through Ceramics: The Physical Bases of the Outstanding Chemistry of ORMOSIL. The Journal of Physical Chemistry B,2006,110,1976-1988
    [191]Fuller J, Zugates G, Ferreira L, et al. Intercellular delivery of core-shell fluorescent silica nanoparticles. Biomaterials,2008,29,1526-1532
    [192]McBain S C, Griesenbach U, Xenariou S, et al. Magnetic nanoparticles as gene delivery agents:enhanced transfection in the presence of oscillating magnet arrays. Nanotechnology,2008,19,405102
    [193]Torney F, Trewyn B G, Lin V S Y, et al. Mesoporous Silica Nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology,2007,2, 295-300
    [194]Jere D, Yoo M K, Arote R, et al. Poly (amino ester) composed of poly (ethylene glycol) and aminosilane prepared by combinatorial chemistry as a gene carrier. Pharmaceutical Research,2008,25(4),875-85
    [195]Fuller J, Zugates G, Ferreira L, et al. Intercellular delivery of core-shell fluorescent silica nanoparticles. Biomaterials,2008,29,1526-1532
    [196]Wang G H, Zhang L M. Using novel polysaccharide-silica hybrid material to construct an amperometric biosensor for hydrogen peroxide. The Journal of Physical Chemistry B,2006,110(49),24864-8
    [197]Tang D, Yuan R, Chai Y, et al. Study on electrochemical behavior of a diphtheria immunosensor based on silica/silver/gold nanoparticles and polyvinyl butyral as matrices. Electrochemistry Communications,2005,7, 177-182
    [198]Kang X, Mai Z, Zou X, et al. Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol-gel chitosan/silica hybrid. Talanta,2008,74,879
    [199]Boissiere M, Allouche J, Chaneac C, et al. Potentialities of silica/alginate nanoparticles as Hybrid Magnetic Carriers. International Journal of Pharmaceutics,2007,344,128-134
    [200]Wang B, Zhang J J, Pan Z Y, et al. A novel hydrogen peroxide sensor based on the direct electron transfer of horseradish peroxidase immobilized on silica-hydroxyapatite hybrid film. Biosensors and Bioelectronics,2009,24, 1141-1145
    [201]Ballarin B, Cassani M C, Mazzoni R, et al. Enzyme electrodes based on sono-gel containing ferrocenyl compounds. Biosensors and Bioelectronics, 2007,22,1317-1322
    [202]Walcarius A. Electrochemical Applications of Silica-Based Organic-Inorganic Hybrid Materials. Chemistry of Materials,2001,13 (10),3351-3372
    [203]Betancor L, Luckarift H R, Seo J H, et al. Three-dimensional immobilization of beta-galactosidase on a silicon surface. Biotechnology and Bioengineering, 2008,99,261-7
    [204]Grant S A, Weilbaecher C, Lichlyter D J. Development of a Protease Biosensor Utilizing Silica Nanobeads. Sensors & Actuators B,2007,121(2),482-489
    [205]Wu Y, Chen C, Liu, S. Enzyme-functionalized silica nanoparticles as sensitive labels in biosensing. Analytical Chemistry,2009,81,1600-1607
    [206]Loo C, Lowery A, Halas N, et al. Immunotargeted Nanoshells for Integrated Cancer Imaging and Therapy. Nano Letters,2005,5,709-711
    [207]Katz E, Willner I. Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications. Angewandte Chemie International Edition,2004,43,6042-6108
    [208]Ge J, Zhang Q, Zhang T, et al. Core-Satellite Nanocomposite Catalysts Protected by a Porous Silica Shell:Controllable Reactivity, High Stability, and Magnetic Recyclability. Angewandte Chemie International Edition,2008,47, 8924-8928
    [209]蒋璐芸,尹星,赵健伟.金纳米球热力学稳定性的理论研究.无机化学学报,2009,25(1),176~179
    [210]鲁群岷,刘忠芳,刘绍璞.金纳米微粒作探针共振瑞利散射法测定某些蒽环类抗癌药物.化学学报,2007,65(9),821-828
    [211]Wang J, Zhu X, Tu Q, et al. Capture of p53 by electrodes modified with consensus DNA duplexes and amplified voltammetric detection using ferrocenecapped gold nanoparticle/streptavidin conjugates. Analytical Chemistry,2008,80,769-774
    [212]Jain P K, El-Sayed I H, El-Sayed M A. Au nanoparticles target cancer. Nanotoday,2007,2,18-29
    [213]El-Sayed I H, Huang X, El-Sayed M A. Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics:Applications in Oral Cancer. Nano Letters,2005,5, 829-834
    [214]Pernodet N, Fang X, Sun Y, et al. Adverse Effects of Citrate/Gold Nanoparticles on Human Dermal Fibroblasts. small,2006,2(6),766-773
    [215]Hayat M A. Colloidal Gold, Principles, Methods and Applications. San Diego: Academic Press.1989
    [216]Marinakos S M, Shultz D A, Feldheim D L. Gold Nanoparticles as Templates for the Synthesis of Hollow Nanometer-Sized Conductive Polymer Capsules. Advanced Materials,1999,11,34-37
    [217]Gittins D I, Caruso F. Multilayered Polymer Nanocapsules Derived from Gold Nanoparticle Templates. Advanced Materials,2000,12,1947-1949
    [218]Liz-Marzan L M, Giersig M, Mulvaney P. Synthesis of Nanosized Gold-Silica Core-Shell Particles. Langmuir,1996,12,4329-4335
    [219]Caruso F. Nanoengineering of Particle Surfaces. Advanced Materials,2001,13, 11-22
    [220]Budroni G, Corma A. Gold-Organic-Inorganic High-Surface-Area Materials as Precursors of Highly Active Catalysts. Angewandte Chemie International Edition,2006,45,3328-3331
    [221]Lee H B, Yoo Y M, Han Y H. Characteristic optical properties and synthesis of gold-silica core-shell colloids. Scripta Materialia,2006,55,1127-1129
    [222]范晓敏,邹文君,顾仁敖等Au@SiO2核壳纳米粒子的制备及其表面增强拉曼光谱.高等学校化学学报,2008,29(1),130~134
    [223]Enustiin B V, Turkevich J. Coagulation of Colloidal Gold. Journal of the American Chemical Society,1963,85,3317-3328
    [224]Boerio F J, Armogan L, Cheng S Y. The structure of y-aminopropyltriethoxysilane films on iron mirrors. Journal of Colloid and Interface Science,1980,73,416-424
    [225]Aden A L, Kerker M. Scattering of Electromagnetic Waves from Two Concentric Spheres. Journal of Applied Physics,1951,22,1242-1246
    [226]Biggs S, Mulvaney P. Measurement of the forces between gold surfaces in water by atomic force microscopy. Journal of Chemical Physics,1994,100 (11) 8501-8505
    [227]陈国珍,黄贤智,郑朱梓等.《荧光分析法》.科学出版社.1990年10月第二版,17
    [228]Barnes W L, Dereux A, Ebbesen T W. Surface Plasmon Subwavelength Optics. Nature,2003,424,824-830
    [229]Fedutik Y, Temnov V, Woggon U, et al. Exciton-Plasmon Interaction in a Composite Metal-Insulator-Semiconductor Nanowire System. Journal of the American Chemical Society,2007,129,14939-14945
    [230]Voss D. Condensed-matter Physics:Switch-Hitter Materials Tantalize Theorists. Science,2001,292,1987
    [231]Zhang H F, Wang C M, Buck E C, et al. Synthesis, Characterization, and Manipulation of Helical SiO2 Nanosprings. Nano Letters,2003,3,577-580
    [232]Zhang X, Liu Z, Wong C, et al. Fabrication and Optical Properties of Erbium-Doped Silicon-Rich Silicon Oxide Nanofibers. The Journal of Physical Chemistry C,2007,111,4083-4086
    [233]Huang Y, Duan X, Cui Y, et al. Logic Gates and Computation from Assembled Nanowire Building Blocks. Science,2001,294,1313-1317
    [234]Cui Y, Zhong Z, Wang D, et al. High Performance Silicon Nanowire Field Effect Transistors. Nano Letters,2003,3,149-152
    [235]Tang Z, Kotov N A, Giersig M. Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires. Science,2002,297,237-240
    [236]Zhou X T, Hu J Q, Li C P, et, al. Silicon nanowires as chemical sensors, Chemical Physics Letters,2003,369,220-224
    [237]Cui Y, Wei Q, Park H, et al. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science,2001,293, 1289-1292
    [238]Salem A K, Searson P C, Leong K W. Multifunctional nanorods for gene delivery. Nature Materials,2003,2,668-671
    [239]Bekyarova E, Ni Y, Malarkey E B, et al. Applications of Carbon Nanotubes in Biotechnology and Biomedicine. Journal of Biomedical Nanotechnology,2005, 1,3-17
    [240]Peng K, Zhang M, Lu A, et al. Ordered silicon nanowire arrays via nanosphere lithography and metalinduced Etching. Applied Physics Letters,2007,90, 163123
    [241]Nakamura H, Matsui Y. Silica Gel Nanotubes Obtained by the Sol-Gel Method. Journal of the American Chemical Society,1995,117,2651-2652
    [242]Wang L, Major D, Paga P, et al. High yield synthesis and lithography of silica-based nanospring mats. Nanotechnology,2006,17,298-303
    [243]Wu Y, Livneh T, Zhang Y X, et al. Templated Synthesis of Highly Ordered Mesostructured Nanowires and Nanowire Arrays. Nano Letters,2004,4, 2337-2342
    [244]Hahm J, Lieber C M. Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors. Nano Letters,2004,4, 51-54
    [245]He J H, Zhang Y Y, Liu J, et al. ZnS/Silica Nanocable Field Effect Transistors as Biological and Chemical Nanosensors, The Journal of Physical Chemistry C, 2007,111,12152-12156
    [246]Sekhar P K, Sambandam S N, Sood D K, et al. Selective growth of silica nanowires in silicon catalysed by Pt thin film. Nanotechnology,2006,17, 4606-4613
    [247]Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters,1964,4,89-90
    [248]Yu D P, Hang Q L, Ding Y, et al. Amorphous silica nanowires:Intensive blue light emitters. Applied Physics Letters,1998,73,3076-3078
    [249]Jagannathan H, Nishi Y, Reuter M, et al. Effect of oxide overlayer formation on the growth of gold catalyzed epitaxial silicon nanowires. Applied Physics Letters,2006,88,103113
    [250]Loo C, Lowery A, Halas N, et al. Immunotargeted Nanoshells for Integrated Cancer Imaging and Therapy. Nano Letters,2005,5,709-711
    [251]Oldenburg S J, Westcott S L, Averitt R D, et al. Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates. Journal of Chemical Physics,1999,111,4729-4735
    [252]Jana N R, Gearheart L, Murphy C J. Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles. Langmuir,2001,17,6782-6786
    [253]Hirsch L R, Jackson J B, Lee A, et al. A whole blood immunoassay using gold nanoshells. Analytical Chemistry,2003,75,2377-2381
    [254]Hu M S, Chen H L, Shen C H, et al. Photosensitive gold-nanoparticle-embedded dielectric nanowires. Nature Materials,2006,5,102-106
    [255]Lee H B, Yoo Y M, Han Y H. Characteristic optical properties and synthesis of gold-silica core-shell colloids. Scripta Materialia,2006,55,1127-1129
    [256]Endo T, Kerman K, Nagatani N, et al. Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. Analytical Chemistry,2005,77,6976-6984
    [257]Liz-Marzan L M, Philipse A P. Synthesis and optical properties of gold-labelled silica particles. Journal of Colloid and Interface Science,1995,176,459-466
    [258]Grabar K C, Freeman R G, Hommer M B, et al. Preparation and Characterization of Au Colloid Monolayers. Analytical Chemistry,1995,67, 735-743
    [259]Liang C H, Meng G W, Zhang L D, et al. Large-scale synthesis of-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles. Chemical Physics Letters,2000,329,323-328
    [260]Nishikawa H, Watanabe E, Ito D. Decay kinetics of the 4.4-eV photoluminescence associated with the two states of oxygen-deficient-type defect in amorphous SiO2, Physical Review Letters,1994,72,2101-2104
    [261]Wu X C, Song W H, Wang K Y, et al. Preparation and photoluminescence properties of amorphous silica nanowires. Chemical Physics Letters,2001,336, 53-56
    [262]Lee J, Park J C, Song H. A Nanoreactor Framework of a Au@SiO2 Yolk/Shell Structure for Catalytic Reduction of p-Nitrophenol. Advanced Materials,2008, 20,1523-1528
    [263]Larkin S E T, Zeidan B, Taylor M G, et al. Proteomics in prostate cancer biomarker discovery. Expert Review of Proteomics,2010,7,93-102
    [264]Mishra A, Verma M. Cancer Biomarkers:Are We Ready for the Prime Time? Cancers,2010,2(1),190-208
    [265]Leffall L S D. Colorectal cancer-prevention and detection. Cancer,1981,47, 1170-1172
    [266]Mainprize K S N, Mortensen J M C, Warren B F. Early colorectal cancer: recognition, classification and treatment. British Journal of Surgery,1998,85, 469-476
    [267]Fenoglio-Preiser C M. Selection of appropriate cellular and molecular biologic diagnostic tests in the evaluation of Cancer. Cancer,1992,69,1607-1632
    [268]Booth R A. Minimally invasive biomarkers for detection and staging of colorectal cancer. Cancer Letters,2007,249,87-96
    [269]Duffy M J. Role of tumor markers in patients with solid cancers:A critical review. European Journal of Internal Medicine,2007,18,175-184
    [270]Verma M, Manne U. Genetic and epigenetic biomarkers in cancer diagnosis and identifying high risk populations. Critical Reviews in Oncology/Hematology, 2006,60,9-18
    [271]Faraggi D, Kramar A. Methodological issues associated with tumor marker development:Biostatistical aspects. Urologic Oncology,2000,5,211-213.
    [272]Mellerik D M, Osborn M, Weber K. On the nature of serological tissue polypeptide antigen (TPA):monoclonal keratin 8,18,19 antibodies react differently with TPA prepared from human cultured carcinoma cells and TPA in human serum. Oncogene,1990,5,100-17
    [273]Luning B, Wiklund B, Redelius P, et al. Biochemical properties of tissue polypeptide antigen. Biochimica and Biophysica Acta,1980,624,9-101
    [274]Treska V, Topolcan O, Stanislav K, et al. Preoperative Tumor Markers as Prognostic Factors of Colorectal Liver Metastases. Hepato-Gastroenterology, 2009,56(90),317-320
    [275]Prados C, Alvarez-Sala R, Gomez de Terreros J, et al. An Evaluation of Tissue Polypeptide Antigen (TPA) in the Two Bronchoalveolar Lavage Fractions of Lung Cancer Patients. Japanese Journal of Clinical Oncology,2000,30(5), 215-220
    [276]Schouwink H, Korse C M, Bonfrer J M G, et al. Prognostic value of the serum tumour markers Cyfra 21-1 and tissue polypeptide antigen in malignant mesothelioma. Lung Cancer,1999,25,25-32
    [277]Kochanska-Dziurowicz A A, Mielniczuk M J, Bijak A, et al. Estimation of usefulness of monitoring tissue polypeptide antigen-TPA-M concentrations in the effectiveness of surgical treatment of urinary bladder cancer. Nuclear Medicine Review,2002,5,109-111
    [278]Maulard C, Touberf M E, Chrefien Y, et al. Serum Tissue Polypeptide Antigen (STPA) in Bladder Cancer as a Tumor Marker. Cancer,1994,73,394-398
    [279]Sonoo H, Kurebayashi J. Serum tumor marker kinetics and the clinical course of patients with advanced breast cancer. Surg Today,1996,26,250-7
    [280]Gion M, Mione R, Gatti C, et al. Tissue polypeptide antigen in tumor cytosol:a new prognostic indicator in primary breast cancer. Breast Cancer Research and Treatment,1990,17,15-21
    [281]Ghazizadeh M. Immunohistochemical and ultrastructural localization of tissue polypeptide antigen in human ovarian tumours. Virchows Archiv Fur Pathologische Und Physiologie Und Fur Klinische Medizin,1989,414, 453-457
    [282]Ghazizadeh M, Kagawa S, Oguro T, et al. Tissue polypeptide antigen expression in human prostate tumors. Journal of Cancer Research and Clinical Oncology,1989,115,84-88
    [283]Hefler L, Tempfer C, Frischmuth K, et al. Serum Concentrations of Tissue Polypeptide Antigen in Patients with Vulvar Intraepithelial Neoplasia and Vulvar Cancer. Tumor Biology,2000,21,98-104
    [284]Bjorklund B, Bjorklund V, Wiklund B, et al. A human tissue polypeptide related to cancer and placenta. In:Bjorklund B (ed) Immunologic techniques for detection of cancer. Stockholm:Bonniers,1973.133-187
    [285]Menendez-Botet C J, Oettgen H F, Pinsky C M, et al. A preliminary evaluation of tissue polypeptide antigen in serum or urine (or both) of patients with cancer or benign neoplasms. Clinical Chemistry,1978,4,368-872
    [286]Inoue M, Inoue Y, Hiramatsu K, et al. The clinical value of tissue polypeptide antigen in patients with gynecologic tumors. Cancer,1985,55,2618-2623
    [287]Plebani M, Paoli M D, Basso D, et al. Serum tumor markers in colorectal cancer staging, grading, and follow-up. Journal of Surgical Oncology,1996,62, 239-244
    [2888]Bjorklund B, Wiklund B, Luning B, et al. Radioimmunoassay of TPA:A laboratory test in cancer. Tumor Diagnostik,1980,2,78-84
    [289]Findeisen R, Albrecht S, Richter B, et al. Chemiluminometric determination of tissue polypeptide antigen (TPA), cancer antigen 15-3 (CA 15-3), carcinoembryonic antigen (CEA) in comparison with vascular endothelial growth factor (VEGF) in follow-up of breast cancer. Luminescence,2000,15, 283-289
    [290]Ecke T H, Schlechte H H, Schulze G, et al. Four tumour markers for urinary bladder cancer-tissue polypeptide antigen (TPA), HER-2/neu (ERB B2), urokinase-type plasminogen activator receptor (uPAR) and TP53 mutation. Anticancer Research,2005,25,635-641
    [291]Kalyuzhny G, Schneeweiss M A, Shanzer A, et al. Differential Plasmon Spectroscopy as a Tool for Monitoring Molecular Binding to Ultrathin Gold Films. Journal of the American Chemical Society,2001,123,3177-3178
    [292]Nath N, Chilkoti A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions real time on a surface. Analytical Chemistry,2002,74, 504-509
    [293]Haes A J, Hall W P, Chang L, et al. A localized surface plasmon resonance biosensor:first steps toward an assay for Alzheimer's disease. Nano Letters, 2004,4,1029-1034
    [294]Haes A J, Van Duyne R P. A nanoscale optical biosensor:sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticle. Journal of the American Chemical Society,2002,124,10596-10604
    [295]Freeman R G, Grabar K C, Allison K J, et al. Self-Assembled Metal Colloid Monolayers:An Approach to SERS Substrates. Science,1995,267,1629-1632
    [296]Grabar K C, Freeman R G, Hommer M B, et al. Preparation and characterization of Au colloid monolayers. Analytical Chemistry,1995,67,735-743
    [297]Mulvaney P. Surface-Plasmon Spectroscopy of Nanosized Metal Particles Langmuir. Langmuir,1996,12,788-800
    [298]Malinsky M D, Kelly K L, Schatz G C, et al. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. Journal of the American Chemical Society,2001,123,1471-1482
    [299]张修华,王升富.2-巯基乙醇自组装膜电极对多巴胺电催化氧化及其分析应用.分析化学,2002,11,1312-1315

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700