丹江中游小流域氮素分布与流失机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丹江水源区的水环境质量对南水北调中线工程的供水安全具有重要意义。本文在丹江鹦鹉沟小流域进行水质监测和土壤采集分析的基础上,运用地统计学方法、分形理论、土壤侵蚀预报模型和水文学方法等对小流域土壤氮素空间变异特征和径流-泥沙-养分流失规律进行研究,以期为水源区保护和清洁小流域建设提供依据。本研究取得的主要结论如下:
     (1)流域土壤全氮含量随土壤深度的增加而降低,不同土地利用下0-40cm每平方米土壤全氮含量表现为林地>农地>草地。不同土层间土壤全氮含量存在极显著差异(P<0.01),0~(-1)0cm (A1)、10~(-2)0cm (A2)和20-40cm (A3)土壤全氮含量平均值分别为0.85、0.47和0.30g/kg;3个土层下,土壤全氮的最优模型均为线性模型,具有中等空间相关性;A1和A2层不同土地利用下土壤全氮含量存在显著差异(P<0.05),不同土层下土壤全氮在不同坡度均存在显著差异(P<0.05),农地不同土层下土壤全氮含量与海拔、坡度和坡向均呈极显著相关性(P<0.01);在0-40cm土壤深度下,研究区土壤全氮储量为562.37t,林地、农地和草地每平方米土壤全氮含量分别为0.343、0.299和0.289kg/m~2。
     (2)不同土壤深度下土壤含氮量与土壤颗粒特征有极显著关系,不同土地利用土壤粉粘粒含量随土壤深度的增加而增大。土壤全氮在0~(-2)0cm土层与中粗砂粒呈极显著正相关(P<0.01),土壤颗粒分形维数和土壤全氮在20-60cm土层均与土壤粉粘粒含量呈极显著正相关(P<0.01);不同土层下土壤粉粘粒含量平均值均表现为农地>林地>草地,不同植被类型间土壤颗粒分形维数亦存在显著差异(P<0.05),但10~(-2)0cm土层的土壤颗粒分形维数更能代表不同土地利用的差异;土壤颗粒分形维数与坡度呈显著负相关(P<0.05),与坡向和海拔无显著相关性;不同土地利用下0~(-1)0cm土层每平方米土壤粉粘粒含量表现为农地>林地>草地,分别为74.71kg/m~2,71.54kg/m~2和70.23kg/m~2。
     (3)阐明了氮素随径流的迁移转化过程及污染负荷特征,流域径流中总氮的流失模数为0.89t×km~(-2)×a~(-1)。径流水质中主要是总氮含量超标,且硝氮含量均大于氨氮含量,农村生产生活污染物排放对水质有很大影响;氨氮、硝氮和总氮的年均径流流失模数均表现为农地>草地>林地,农地、草地和林地的总氮年均径流流失模数分别为0.36、0.22和0.09t×km~(-2)×a~(-1);流域出口非点源污染物氨氮、硝氮和总氮的平均浓度分别为0.17、4.71和7.55mg/L,点源污染物氨氮、硝氮和总氮的平均浓度分别为0.20、2.12和4.08mg/L。
     (4)阐明了土壤氮素流失与水土流失的关系,流域泥沙中全氮的年均流失模数为0.27t×km~(-2)×a~(-1)。鹦鹉沟流域的年均土壤侵蚀模数为3140t/km~2,侵蚀强度为中度,坡耕地是流域需要重点治理的区域;林地、草地和农地的年均土壤侵蚀模数分别为509.7、1511.8和4606.5t/km~2,林草地年侵蚀量较小,农地土壤侵蚀量占流域总侵蚀量的95.3%;坡度每增加5°,不同土地利用的土壤侵蚀模数增加量比坡长每增加5m的增加量要大1~2倍;研究区表土流失造成的全氮、氨氮和硝氮损失量分别为3799.9、44.8和16.9kg,其中农地的氮素损失量最为严重。
     (5)模拟了不同水土保持治理情景对流域氮素流失的阻控作用,丹江流域大于5°的坡耕地全部退耕还林情景下,其径流总氮年均浓度将降低0.203mg/L。水土保持治理下,当坡面全部是林地和草地时,丹江流域的平均侵蚀模数分别为750.1t×km~(-2)×a~(-1)和1875.2t×km~(-2)×a~(-1),土壤侵蚀强度可达到轻度土壤侵蚀;坡面林(草)措施比例与侵蚀模数之间的关系接近于线性函数,而梯田比例与侵蚀模数之间的关系更接近于指数函数;林草措施减水减沙效益最好,使降水大部分以壤中流形式流出,从而降低了氮素浓度;丹江流域大于5°的坡耕地在林地和草地极限治理状态下,其泥沙量分别减少205.3和196.6万吨,泥沙全氮含量分别减少732.8和701.9吨,径流总氮流失量分别减少346.9和169.2吨。
The quality of water environment in the source area of the Dan River is of greatsignificance to the water supply security of the middle route of the South to North WaterDiversion Project. Based on the water quality monitoring and soil sampling inYingwugou Small Watershed of Dan River, geostatistical method, fractal theory, soilerosion prediction model and hydrology method are adopted to research the spatialvariability of soil nitrogen and losing rules of runoff-sediment-nutrient in the smallwatershed. It is expected to provide the basis for the protection of water source area andthe construction of clean small watershed. The main conclusions of this study are asfollows:
     (1)The total nitrogen content in the soil profile decreased as the soil depthincreased. The total nitrogen contents per square meter in0-40cm soil layer wereforestland> cropland> grassland. There were significant differences among the threesoil layers (P <0.01). The mean total nitrogen contents in0~(-1)0(A1),10~(-2)0(A2) and20-40cm (A3) were0.85,0.47and0.30g/kg, respectively. The best fitted models in thethree soil layers were all linear models indicating moderate spatial dependence. Thespatial variations of total nitrogen content under different land use types in A1and A2were significant (P <0.05). The impact of slope on soil total nitrogen content in the threesoil depths was significant (P <0.05). There were significant correlations between thetotal nitrogen content and elevation, slope and aspect in different soil layers of cropland(P<0.01). The soil total nitrogen storage in the study area in0-40cm was562.37t. Thetotal nitrogen contents per square meter in0-40cm soil layer under forestland, croplandand grassland were0.343,0.299and0.289kg/m~2, respectively.
     (2)There was a significant relationship between soil total nitrogen content and soilparticle distribution in the different soil depths. The soil silt and clay content in the soil profile increased as the soil depth increased. Soil total nitrogen content had a significantpositive correlation with coarse sand at a depth of0–20cm (P <0.01). The fractaldimension and soil total nitrogen content both indicated positive correlations with siltand clay content at a depth of20–60cm (P <0.01). The mean soil silt and clay contentsin the different soil horizons were all cropland> forestland> grassland. The fractaldimensions of soil particle-size distribution among different plant communities alsoindicated significant differences (P <0.05). Howerver, the fractal dimension of soilparticle-size distribution in10~(-2)0cm soil layer could better represent the differences ofthe different land use types. There was a significant correlation between fractaldimension of soil particle-size distribution and slope (P <0.05), but no correlation withelevation and aspect. The soil silt and clay contents per square meter in0~(-1)0cm soillayer under cropland, forestland and grassland were74.71,71.54and70.23kg/m~2,respectively.
     (3)The nitrogen migration process in runoff and the characteristics of pollutionload were clarified. The average total nitrogen runoff loss modulus in Yingwugouwatershed was0.89t×km~(-2)×a~(-1). The total nitrogen content was the major exceededpollutant in runoff and nitrate nitrogen content was always greater than the ammoniacontent. Rural production and living pollutant emissions had a great impact on waterquality. The average annual nitrogen loss moduluses of ammonia nitrogen, nitratenitrogen and total nitrogen were all farmland> grassland> forestland. The average annualtotal nitrogen loss moduluses of farmland, grassland and forestland were0.36,0.22and0.09t×km~(-2)×a~(-1), respectively. The average non-point source pollutant concentration ofammonia nitrogen, nitrate nitrogen and total nitrogen in watershed export were0.17,4.71and7.55mg/L, respectively. The average point source pollutant concentration ofammonia nitrogen, nitrate nitrogen and total nitrogen in watershed export were0.20,2.12and4.08mg/L, respectively.
     (4)The relationship between soil nitrogen loss and soil erosion and water loss wasclarified. The annual loss moduluses of total nitrogen with sediment were0.27t×km~(-2)×a~(-1).The annual soil erosion modulus in Yingwugou watershed was3140t/km~2. It was in thecategory of moderate degree erosion. The high soil erosion area was mainly distributed insloping cropland with big slopes which was the key management area. The annual soil erosion moduluses of forestland, grassland and cropland were509.7、1511.8and4606.5t/km~2, respectively. The annual soil erosion amount of forestland and grassland wasrelatively small and the annual soil erosion amount of cropland accounted for95.3%ofthe total soil erosion amount in the study area. For each additional5°slope, the increasedsoil erosion modulus of different land uses was of1to2times greater than that of eachadditional5m for slope length. The annual loss amount of total nitrogen, ammonianitrogen and nitrate nitrogen in topsoil was3799.9,44.8and16.9kg, respectively. Thenitrogen loss of cropland was serious.
     (5)Different scenarios of soil and water conservation to prevent and controlnitrogen loss in watershed were simulated. When the sloping cropland more than5°wasin the ultimate governance status of forestland in Dan River watershed, the averageannual concentration of total nitrogen in Dan River would reduce0.203mg/L. Soilerosion intensity was in the category of light degree erosion when the slope was allwoodland or grassland. The average erosion modulus was750.1t×km~(-2)×a~(-1)and1875.2t×km~(-2)×a~(-1), respectively. The relationship between the proportions of slope forest(grass) measure and soil erosion modulus is close to a linear function. The relationshipbetween the proportions of terrace measure and soil erosion modulus is closer to anexponential function. The effect of forest and grass measures on reducing water andsediment was better than terracing, most of the precipitation outflows in the form ofsubsurface flow, thereby reduces the nitrogen concentration. When the sloping croplandmore than5°was in the ultimate governance status of forestland and grassland in DanRiver watershed, the sediment loads would reduce205.3and196.6million tonsrespectively. The amount of total nitrogen content in sediment would decrease732.8and701.9tons, respectively. The amount of total nitrogen content in runoff would reduce346.9and169.2tons, respectively.
引文
[1]孙虎,王继夏.汉丹江流域水土流失类型区划分及分布规律[J].西北大学学报(自然科学版),2009,39(5):879-882
    [2]刘毅,陶勇,万开元,等.丹江口库区坡耕地柑桔园不同覆盖方式下地表径流氮磷流失特征[J].长江流域资源与环境,2010,19(11):1340-1344
    [3]赵文耀,胡家庆.丹江口水库流域面源污染现状分析[J].南水北调与水利科技,2007,5(2):50-52
    [4]韩建刚,李占斌.紫色土小流域土壤流失对不同土地利用类型的响应[J].中国水土保持科学,2010,3(4):37-41
    [5]王璞玉,潘竟虎,韩进凤,等. GIS和遥感支持下的小流域非点源污染负荷估算[J].资源开发与市场,2006,22(5):419-421
    [6]张秀玮,李光宗,董元杰,等.不同氮肥对侵蚀坡面土壤氮素流失的影响[J].水土保持学报,2012,26(2):45-48
    [7]谢红梅,朱波.农田非点源氮污染研究进展[J].生态环境,2003,12(3):349-352
    [8]邱卫国.农业氮素流失规律及河网污染控制研究[J].河海大学,2007
    [9]侯彦林,周永娟,李红英,等.中国农田氮面源污染研究:Ⅰ污染类型区划和分省污染现状分析[J].农业环境科学学报,2008,27(4):1271-1276
    [10]张维理,武淑霞,冀宏杰,等.中国农业面源污染形势估计及控制对策:Ⅰ,Ⅱ,Ⅲ[J].中国农业科学,2004,37(7):1008-1033
    [11]李虎,王立刚,邱建军,等.农田生态系统非点源氮污染研究进展[J].中国农学通报,2008,24(增刊):38-43
    [12]杨胜天,程红光,步青松,等.全国土壤侵蚀量估算及其在吸附态氮磷流失量匡算中的应用[J].环境科学学报,2006,26(3):366-374
    [13] O. Oenema, H. Kros, W. de Vries. Approaches and uncertainties in nutrient budgets: implicationsfor nutrient management and environmental policies [M],2003:3-16
    [14] C. A. Campbell, R. P. Zentner. Soil organic matter as influenced by crop rotations andfertilization[M],1993:1034-1040
    [15] S. M. Ross, R. C. Izaurralde, H. H. Janzen, J. A. Robertson, W. B. McGill. The nitrogen balanceof three long-term agroecosystems on a boreal soil in western Canada[M],2008:241-250
    [16] A. F. Bouwman, D. P. Van Vuuren, R. G. Derwent, M. Posch. A global analysis of acidificationand eutrophication of terrestrial ecosystems[M],2002:349-382
    [17] J. N. Galloway, A. R. Townsend, J. W. Erisman, M. Bekunda. Transformation of the nitrogencycle: recent trends, questions, and potential solutions[M],2008:889-892
    [18] C. H. E. Stark, L. M. Condron, A. Stewart, H. J. Di, M. O. Callaghan. Small-scale spatialvariability of selected soil biological properties[M],2004:601-608
    [19] F. Evrendilek, I. Celik, S. Kilic. Changes in soil organic carbon and other physical soil propertiesalong adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey[M],2004:743-752
    [20] D. W. Liu, Z. M. Wang, B. Zhang, K. S. Song, X. Y. Li, J. P. Li. Spatial distribution of soilorganic carbon and analysis of related factors in croplands of the black soil region, NortheastChina[M],2006:73-81
    [21] M. Sivapalan, G. Bloschl. Scale issues in hydrological modelling: A review[J]. HydrologyProcesses,1995,9(3/4):251-290
    [22] D. G. Rossiter. Njomgang Martin Y. Multi-scale characterization of soil variability within anagricultural landscape mosaic system in southern Cameroon[J]. Geoderma,2005,12(5):117-143
    [23] Yang Y. H., Ma W. H., A. Mohammat, Fang J. Y. Storage, Patterns and Controls of Soil Nitrogenin China[M],2007:776-785
    [24]王淑英,路苹,王建立,等.不同研究尺度下土壤有机质和全氮的空间变异特征—以北京市平谷区为例[J].生态学报,2008,28(10):4957-4964
    [25]杨劲松,杨奇勇.不同尺度下耕地土壤有机质和全氮的空间变异特征[J].水土保持学报,2010,24(6):100-104
    [26] R. E. White, R. E. Bramley. An analysis of variability in the activity of nitrifiers in a soil underpasture I. Spatially dependent variability and optimum sampling strategy[M],1991:95-108
    [27] S. J. Baxter, M. A. Oliver, J. Gaunt. A geostatistical analysis of the spatial variation of soilmineral nitrogen and potentially available nitrogen within an arable field[M],2003:213-226
    [28] M. J. Pringle, R. M. Lark. Spatial analysis of the error in a model of a soil process: a case study ofcarbon dioxide emissions[M],2006:168-183
    [29] M. J. Pringle, S. J. Baxter, B. P. Marchant, R. M. Lark. Spatial analysis of the error in a model ofsoil nitrogen[M],2008:453-467
    [30] Wang Y. Q., Zhang X. C., Huang C. Q. Spatial variability of soil total nitrogen and soil totalphosphorus under different land uses in a small watershed on the Loess Plateau, China[J].Geoderma,2009,150(1/2):141-149
    [31] B. H. Janzen H. Ellert. Measuring and comparing soil carbon storage.[J]. In: Lal, R., Kimble, J.M.,Follett, R.F., Stewart, A.J.(Eds.), Assessment Methods for Soil Carbon. CRC Press, Boca Raton,FL.,2001
    [32] A. J. Gregorich E. VandenBygaart. Assessment of the lateral and vertical variability of soilorganic carbon[J]. Canadian Journal of Soil Science,2007,87(4):433-444
    [33] Zhang M. K., Wang L. P., He Z. L. Spatial and temporal variation of nitrogen exported by runofffrom sandy agricultural soils[M],2007:1086-1092
    [34] Adrian L., Wolfgang B., Franz W., Wim de V. Farm, land, and soil nitrogen budgets foragriculture in Europe calculated with CAPRI[M],2011:3243-3253
    [35] Kirschbaum M. U. F. Murty D. Does conversion of forest to agricultural land change soil carbonand nitrogen? A review of the literature.[J]. Global Change Biology,2002,8(2):105-123
    [36] Gifford R. M. Guo L B. Soil carbon stocks and land use change: a meta analysis.[J]. GlobalChange Biology,2002,8(4):345-360
    [37] M. A. Hamza, W. K. Anderson. Soil compaction in cropping systems. A review of the naturecauses and possible solutions[M],2005:121-145
    [38] Y. Chen, S. Tessier, J. Rouffignat. Soil bulk density stimation for tillage systems and soiltextures[M],1998:1601-1610
    [39] A. R. Braswell, B. Townsend. Spatial and temporal patterns in terrestrial carbon storage due todeposition of fossil fuel nitrogen.[J]. Ecol. Appl.,1996,6:806-814
    [40] B. T. Johnston, A. Christensen. Soil organic matter and soil quality-lessons learned fromlong-term experiments at Askov and Rothamsted.[J]. In: Gregorich, E.G., Carter, M.R.(Eds.), SoilQuality for Crop Production and Ecosystem Health. Elsevier, Amsterdam, Nitrogen Environ.Pollut.,1997:399-430
    [41] M. Woodward F. I. Cao. Dynamic responses of terrestrial ecosystem carbon cycling to globalclimate change.[J]. Nature,1998,393:249-252
    [42] E. A. Collins H. Paul. Management effects on the dynamics and storage rates of organic matter inlong-term crop rotations.[J]. Can. J. Soil Sci.,2004,84:49-61
    [43] C. Arnone J. A. Ko Rner. Responses to elevated carbon dioxide in artificial tropicalecosystems.[J]. Science,1992,257:1672-1675
    [44] Z. C. Cai, S. W. Qin. Dynamics of crop yields and soil organic carbon in a longterm fertilizationexperiment in the Huang-Huai-Hai Plain of China[M],2006:708-715
    [45] W. Zhang, M. Xu, B. Wang, X. J. Wang. Soil organic carbon, total nitrogen and grain yieldsunder long-term fertilizations in the upland red soil of southern China[M],2009:59-69
    [46] S. J. Kemmitt, D. Wright, K. W. T. Goulding, D. L. Jones. pH regulation of carbon and nitrogendynamics in two agricultural soils[M],2006:898-911
    [47] W. B. Stevens, R. G. Hoeft, R. L. Mulvaney. Fate of nitrogen-15in a long-term nitrogen ratestudy: II. Nitrogen uptake efficiency[M],2005:1046-1053
    [48] S. Delin, A. Nyberg, B. Lindén, M. Ferm, G. Torstensson, C. Lerenius, I. Gruvaeus. Impact ofcrop protection on nitrogen utilisation and losses in winter wheat production[M],2008:361-370
    [49] L. López-Bellido, R. J. López-Bellido, R. Redondo. Nitrogen efficiency in wheat under rainfedMediterranean conditions as affected by split nitrogen application[M],2005:86-97
    [50] Z. L. Cui, F. S. Zhang, X. P. Chen, Y. X. Miao, J. L. Li, L. W. Shi, J. F. Xu. On-farm evaluationof an inseason nitrogen management strategy based on soil Nmin test[M],2008:48-55
    [51] J. Y. Yang, E. C. Huffman, R. De Jong, V. Kirkwood, K. B. MacDonald. Residual soil nitrogen insoil landscapes of Canada as affected by land use practices and agricultural policy scenarios[M],2007:89-99
    [52] J. G. Han, Z. B. Li, P. Li, J. L. Tian. Nitrogen and phosphorous concentrations in runoff from apurple soil in an agricultural watershed[M],2010:757-762
    [53] K. A. Jackson D. Smith. Nutrient losses by surface run-off following the application of organicmanures to arable land1[J]. Nitrogen Environ. Pollut.,2001,112:41-51
    [54] M. Z. Krothe N. Iqbal. Infiltration mechanisms related to agricultural waste transport through thesoil mantle to karst aquifers of southern Indiana, U.S.A.[J]. J. Hydrol.,1995,164:171-192
    [55] E. W. Davis R. Peterson. Movement of nitrate through regolith covered karst terrane, northwestArkansas.[J]. J. Hydrol.,2002,256:35-47
    [56] J. Soulsby C. Malcolm Petry. Hydrological controls on nutrient concentrations and fluxes inagricultural catchments.[J]. Sci. Total Environ.,2002,294:95-110
    [57] R. G. Holub S. Silva. Indicators of nitrate leaching loss under different land use of clayey andsandy soils in southeastern Oklahoma.[J]. Agric. Ecosyst. Environ.,2005,109:346-359
    [58] Lei A. Lei J. Jia H. Y. Effects of hydrological processes on nitrogen loss in purple soil[J].Agricultural Water Management,2007,89:89-97
    [59] R. K. Sheridan J. Hubbard. Water and nitrate losses from a small upland coastal plainwatershed.[J]. J. Environ. Qual.,1983,12:291-295
    [60] Drury C. F. Reynolds Tan C S. Water and nitrate loss through tiles under a clay loam soil inOntario after42years of consistent fertilization and crop rotation [J]. Agric, Ecosys and Environ,2002,93(1-3):121-130
    [61] K. Sieling, O. Gu Nther-Borstel, T. Teebken, H. Hanus. Soil mineral N and N net mineralizationduring autumn and winter under an oilseed rape-winter wheat-winter barley rotation in differentcrop management systems[M],1999:127-137
    [62] H. F. M. Ten Berge, S. L. G. E. Burgers, H. G. Van der Meer, J. J. Schr der, J. R. Van der Schoot,W. Van Dijk. Residual inorganic soil nitrogen in grass and maize on sandy soil[M],2007:22-30
    [63] Maria S., Barbro U., Mats S., Bj rn R., Karl D., Carl-Anders H. Tile drain losses of nitrogen andphosphorus from fields under integrated and organic crop rotations. A four-year study on a claysoil in southwest Sweden[M],2012:79-89
    [64] Dem Yr N. Kanik Camdev Yren H. Use of principal component scores in multiple linearregression models for prediction of Chlorophylla in reservoirs [J]. Ecological Modeling,2005,181(4):581-589
    [65] Funakawa S. Kosaki T. Kadono A. Factors controlling mineralization of soil organic matter in theEurasian steppe.[J]. Soil Biology and Biochemistry,2008,40(4):947-955
    [66] Wang X. K. Ouyang Wang S. F. Effects of land use, climate, topography and soil properties onregional soil organic carbon and total nitrogen in the UpstreamWatershed of Miyun Reservoir,North China [J]. Journal of Environmental Sciences,2012,24(3):387-395
    [67] S. Marinari, A. Lagomarsino, M. C. Moscatelli, A. Di Tizio, E. Campiglia. Soil carbon andnitrogen mineralization kinetics in organic and conventional three-year cropping systems[M],2010:161-168
    [68] Amundson R, Austin A. T, Schuur E. A. G. Global patterns of the isotopic composition of soiland plant nitrogen[M],2003:1031,10-1029
    [69] Swap R. J, Aranibar J. N, Dowty P. R. Natural abundance of13C and15N in C3and C4vegetationof southern Africa:patterns and implications[M],2004:350-358
    [70]刘卫国,王政.黄土高原现代植物-土壤氮同位素组成及对环境变化的响应[M],2008:2917-2924
    [71] X. X. Wei X. Jia. Distribution of soil carbon and nitrogen along a revegetational succession on theLoess Plateau of China [J]. Catena,2012,95:160-168
    [72] Billen N. Stahr K. Chen H. Q. Effects of nitrogen and intensive mixing on decomposition of14C-labelled maize (Zea mays L.) residue in soils of different land use types[J]. Soil&TillageResearch,2007,96:114-123
    [73] Claire B., Gilles B., Mathieu S., Fran ois B., Julien T. Nitrogen isotopic composition of leachednitrate and soil organic matter as an indicator of denitrification in a sloping drained agriculturalplot and adjacent uncultivated riparian buffer strips[M],2010:108-117
    [74] J. C. Clement, R. M. Holmes, B. J. Peterson, G. Pinay. Isotopic investigation of denitrification ina riparian ecosystem in western France[M],2003:1035-1048
    [75] P. G. F. Vidon, A. R. Hill. Landscape control on nitrate removal on stream riparian zones[M],2004:210-228
    [76] M. E. Price. Global change in mountain regions[M]. Duncow, UK: Sapiens Publishing,2006
    [77] K. C. Weathers, S. M. Simkin, G. M. Lovett, S. E. Lindberg. Empirical modeling of atmosphericdeposition in mountainous landscapes[M],2006:1590-1607
    [78] Anna M. L., Anthony D., William D. B. Nitrogen deposition decreases acid buffering capacity ofalpine soils in the southern Rocky Mountains[M],2011:220-224
    [79] F. L. Himes. Nitrogen, sulphur, and phosphorous and the sequestering of carbon[M]: Boca Raton,FL,1998:315-319
    [80] S. F. Christopher, R. Lal. Nitrogen management affects carbon sequestration in North Americancropland soils[M],2007:45-64
    [81] L. Cote, S. Brown, D. Pare, J. Fyles, J. Bauhus. Dynamics of carbon and nitrogen mineralizationin relation to stand type, stand age and soil texture in the boreal mixedwood.[M],2000:1079-1090
    [82] C. P. Giardina, M. G. Ryan, R. M. Hubbard, D. Binkley. Tree species and soil textural controls oncarbon and nitrogen mineralization rates[M],2001:1272-1279
    [83] Zhou J. B., Chen X. L., Zhang Y. L., Liu J. L. Nitrogen released from different plant residues ofthe Loess Plateau and their additions on contents of microbial biomass carbon, nitrogen insoil[M],2010:123-128
    [84]窦培谦,王晓燕,王丽华.非点源污染中氮磷迁移转化机理研究进展[J].首都师范大学学报(自然科学版),2006,27(2):94-98
    [85] Zingg W A. Degree and length of land slope as it affects soil loss in runoff[J]. Agric.Eng.,1940,21:59-64
    [86]汤立群,陈国祥.小流域产流产沙动力学模型[J].水动力学研究与进展:A辑,1997,12(2):164-174
    [87]胡世雄,靳长兴.坡面土壤侵蚀临界坡度问题的理论与实验研究[J].地理学报,1999,54(4):347-356
    [88] K. M. Yair A. The influence of surface properties on flow and erosion processes on debriscovered slopes in an arid area[J]. Catena,1973,1(1):1-8
    [89]杨丽霞,杨桂山,苑韶峰,等.影响土壤氮素径流流失的因素探析[J].中国生态农业学报,2007,15(6):190-194
    [90]刘青泉,陈力,李家春.坡度对坡面土壤侵蚀的影响分析[J].应用数学和力学,2001,22(5):449-457
    [91] Wischmeier W. H. Smith D. D. Factor affecting sheet and rill erosion[J]. Trans.AGU,1957,38:889-896
    [92] Morgan R. P. C. Soil Erosion and Conservation[J]. New York:Longman Scientific and Technical,1986
    [93] Zachar D. Soil Erosion (Development in Soil Science10)[J]. Amsterdam:Elservier ScientificPublishing Company,1982
    [94] King L. C. The uniformitarian nature of hillslopes[J]. Trans.Edin.Geol.Soc.,1957,17(1):81-102
    [95] Ellison W. D. Soil detachment hazard by rainfall splash [J]. Agricultural Engineering,1947,28:197-201
    [96] Borodin A. David S. A new measure for the study of the on-line algorithm[J]. Algorithmica,1994,11:73-91
    [97]刘旦旦,王健,尹武君.天然降雨对黄土坡地土壤侵蚀和养分流失的影响[J].节水灌溉,2011,8:17-20
    [98]吴发启,范文波.土壤结皮与降雨溅蚀的关系研究[J].水土保持学报,2001,15(3):1-3
    [99]万延朝.黄丘五副区降雨和地形因素与坡面水土流失关系研究[J].中国水土保持,1996,12:26-29
    [100]姚治君.云南玉龙山东南坡降雨因子与土壤流失关系的研究[J].自然资源学报,1991,6(1):45-53
    [101]林昌虎,朱安国.贵州喀斯特山区土壤侵蚀与环境变异的研究[J].水土保持学报,2002,16(1):9-12
    [102] Ambasht R. S. Srivastava Kumar R. Reduction of nitrogen losses through erosion byLeonotisnepetaefolia and Sida acutain simulated rain intensities[J]. Ecological Engineering,1997,8(3):233-239
    [103]吕唤春,陈英旭,方志发,等.千岛湖流域坡地利用结构对径流氮、磷流失量的影响[J].水土保持学报,1999,16(2):91-92
    [104]陈欣,姜曙千,张克中,等.红壤坡地磷素流失规律及其影响因素[J].水土保持学报,1999,5(3):38-41
    [105] Nearing M. A. Pruski F. F. Climate-induced changes in erosion during the21st century for eightU.S.locations [J]. Water Resources Research,2002,38(12):1298
    [106]范菲菲,范成五,秦松,等.贵州农业土壤氮素流失对环境的影响及防治对策[J].环境污染与防治,2012,34(7):106-110
    [107]刘宏斌,李志宏,张云贵,等.北京平原农区地下水硝态氮污染状况及其影响因素研究[J].土壤学报,2006,43(3):405-413
    [108]朱晓梅,张丽萍,方继青,等.红壤坡地土壤水蚀过程的产流产沙动态模拟试验研究[J].科技通报,2009,25(5):680-683
    [109] Rees H. W. Chow T. L. Effects of coarse-fragment content and size on soil erosion undersimulated rainfall [J]. Canadian Journal of Soil Science,1995,75(2):227-232
    [110] Lax A. Caravaca F. Organic matter, nutrient contents and cation exchange capacity in finefractions from semiarid calcareous soils.[J]. Geoderma,1999,93(3-4):161-176
    [111]张兴昌,邵明安,黄占斌,等.不同植被对土壤侵蚀和氮素流失的影响[J].生态学报,2000,20(6):1038-1044
    [112] Martinez-Mena M. Albaladejo J. Castillo V. M. Runoff and soil loss response to vegetationremoval in a semiarid environment[J]. Soil Sci.Soc.Am.J.,1997,61(4):1116-1121
    [113] Foster G. R. Nikolov Meyer L. D. Effect of flow rate and canopy on rill erosion[J]. Trans.ASAE,1975,8(5):905-911
    [114] K. McIntyre, A. Vickers, R. P. C. Morgan. A rainfall simulation study of soil erosion onrangeland in Swaziland[J]. Soil Technology,1997,11(3):291-299
    [115]张兴昌,刘国彬,付会芳.不同植被覆盖度对流域氮素径流流失的影响[J].环境科学,2000,21(6):16-19
    [116]黄满湘,章申,张国梁,等.北京地区农田氮素养分随地表径流流失机理[J].地理学报,2003,58(1):147-154
    [117]马云,何丙辉,陈晓燕,等.不同土地利用方式下坡面土壤养分分布特征[J].水土保持学报,2009,23(6):118-122
    [118]杨金玲,张甘霖,张华,等.丘陵地区流域土地利用对氮素径流输出的影响[J].环境科学,2003,24(1):16-23
    [119] Libra R. D. Schlling K. E. The relationship of nitrate concentrations in streams to row crop landuse in Iowa[J]. J.Environ.Qual.,2000,29(6):1846-1951
    [120]王晓燕,王一峋.密云水库小流域土地利用方式与氮磷流失规律[J].环境科学研究,2003,16(1):30-33
    [121]王超.氮类污染物在土壤中迁移转化规律试验研究[J].水科学进展,1997,8(2):176-182
    [122] Paustian K. Rosswall T. Cycling of nitrogen in modern agricultural systems[J]. Plant and Soil,1984,76(1):3-21
    [123]高懋芳.小清河流域农业面源氮素污染模拟研究[J].博士论文,2011
    [124] Parris K. Agricultural nutrient balances as agri-environmental indicators:an OECD perspective[J].Environmental Pollution,1998,102(S1):219-225
    [125] C. R. Xu Z. Chen. Soil carbon pools in adjacent natural and plantation forests of subtropicalAustralia.[J]. Soil Science Society of America Journal of Hydrology Processes,2004,68:282-291
    [126] P. Lal R. Puget. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected bytillage and land use[J]. Soil and Tillage Research,2005,80(1-2):201-213
    [127] G. J. Beke. Sediment and runoff water characteristics as influenced by cropping and tillagepractices[J]. Canadian Journal of Soil Science,1989,69:639-647
    [128] K. S. Goyne K. Veum. Runoff and dissolved organic carbon loss froma paired-watershed study ofthree adjacent agriculturalwatersheds[J]. Agriculture, Ecosystems and Environment,2009,130(3-4):115-122
    [129] R. D. Moore I. Barling. Role of buffer strips inmanagement ofwaterway pollution: a review[J].Environmental Management,1994,18(4):543-558
    [130] R. D. Jensen J. Semlitsch. Core habitat, not buffer zone[J]. National Wetlands Newsletter,2001,23(4):5-11
    [131] K. Gollehon N. Wiebe. Agricultural resources and environmental indicators[J]. EIB-16, U.S.Department of Agriculture-Economic Research Service,2006
    [132] Busmanis P. Dzalbe I. Jansons V. Catchment and drainage field nitrogen balances and nitrogenloss in three agriculturally influenced Latvian watersheds[J]. European Journal of Agronomy,2003,20(1-2):173-179
    [133] Smith S. J. Nutrient losses from agricultural land runoff in Oklahoma[J]. Proc.22thOkal.Agric.Chem.Conf.,1988:23-26
    [134]马立珊,王祖强,张水铭,等.苏南太湖水系农业面源污染及控制对策研究[J].环境科学学报,1997,17(1):39-47
    [135]袁东海,王兆赛,陈欣,等.不同农作方式红壤坡耕地土壤氮素流失特征[J].应用生态学报,2002,13(7):863-866
    [136] Wagger W. G. Leidy Myers J. L. Chemical movement in relation to tillage system and simulatedrainfall intensity[J]. J. Environ. Qual.,1995,24(6):1183-1192
    [137] Mahdi M. A., X. H. Yin, Mark A. L. Soil carbon and nitrogen changes as influenced by tillageand cropping systems in some Iowa soils[M],2005:635-647
    [138]杜军,杨培岭,李云开,等.不同灌期对农田氮素迁移及面源污染产生的影响[J].农业工程学报,2011,27(1):66-74
    [139]宁建凤,邹献中,杨少海,等.农田氮素流失对水环境污染及防治研究进展[J].广州环境科学,2007,22(1):5-10
    [140]张玉斌,郑粉莉,曹宁.近地表土壤水分条件对坡面农业非点源污染物运移的影响[J].环境科学,2009,30(2):376-383
    [141]陈志凡,赵烨.基于氮素流失对非点源污染研究的述评[J].水土保持研究,2006,13(4):49-53
    [142] Et Al. Baird F C Dybala T J Jennings M E. Charaeterization of non-point sources and loadings tothe Corpus Christi Bay National Estuary Program Study Area[J]. Corpus Christi National EstuaryProgram,Corpus Christi, TX,1996
    [143] Et Al. Budhendra B Jon H Bernie E. Assessing watershed-seale, long-term hydrologic impacts ofland-use change using a GIS-NPS model[J]. Environmental Management,2003,26(6):643-658
    [144]陈志良,程炯,刘平,等.暴雨径流对流域不同土地利用土壤氮磷流失的影响[J].水土保持学报,2008,22(5):30-33
    [145] J. Sharpley, A. N. Smith. Predietion of soluble PhosPhorus transPort in agricultural runoff[J].Environ Qual,1989(18):313-316
    [146] Barwell R. E. Schuman G. E. Precipitation nitrogen contribution to surface runoff discharges[J].J.Environ.Qual.,1974,3(4):366-368
    [147]李恒鹏,杨桂山,黄文枉,等.不同尺度流域地表径流氮、磷浓度比较[J].湖泊科学,2006,18(4):377-386
    [148]刘秉正,吴发启.土壤侵蚀[J].西安:陕西人民出版社,1997:136-151
    [149]李定强,王继增.广东省东江流域小流域非点源污染物流失规律研究[J].土壤侵蚀与水土保持学报,1995,4(3):12-15
    [150]王洪杰,李宪文,史学正.四川紫色土区小流域土壤养分流失初步研究[J].土壤通报,2002,33(6):441-444
    [151]杨金玲,张甘霖,周瑞荣.皖南丘陵地区小流域氮素径流输出的动态变化[J].农村生态环境,2001,17(3):1-4
    [152] X. L. Fu, M. A. Shao, X. R. Wei. Soil organic carbon and total nitrogen as affected by vegetationtypes in Northern Loess Plateau of China[M],2010:31-35
    [153]张玉斌,郑粉莉,武敏.土壤侵蚀引起的农业非点源污染研究进展[J].水科学进展,2007,18(1):124-132
    [154] Galloway J. N. Nitrogen mobilization in Asia[J]. Nutrient Cycling in Agroecosystems,2000,57:1-12
    [155] Ritter A. Socorro A. Munoz-Carpena R. Nitrogen evolution and fate in a Canary Islands (Spain)sprinkler fastigiated banana plot[J]. Agric WaterManage,2002,52(2):93-117
    [156] Jagath J. K. Mohammad N A. Assessment and management of long-term nitrate pollution ofground water in agriculture-dominated watersheds[J]. J of Hydrology,2004,295(1-4):225-245
    [157] J. M. Laflen, J L. Baker. Water quality consequences of conservation tillage[J]. J Soil and WaterCons,1983,38:186-193
    [158] C. Huang, L. Norton, F L. Zheng. Effects of Near-Surface Hydraulic Gradients on Nitrate andPhosphorus Losses in Surface Runoff[J]. J Environ Qual,2004,33(6):2174-2182
    [159] C. Huang, L. Norton, F L. Zheng. How near-surface moisture gradients affect phosphorus andnitrate losses[A]. Soil Erosion Res·For the21st Century, Am-Proceedings of the InternationalSymposium Soc Agri Eng, Hawaii,2001:649-652
    [160] Palis R. G. Okwach Al. Soil erosion Proeesses and nutrient lossⅡ:The effect of contact cover anderosion proeesses on enrichment nitrogen loss in erosion sediment[J]. Aust. J. Soil. Res.,1990,28:623-639
    [161]杨武德,王兆赛.土壤侵蚀对土壤下垫面及土地生产力的影响[J].应用生态学报,1999,10(2):175-178
    [162]张兴昌,邵明安.侵蚀泥沙、有机质和全N富集规律的研究[J].水土保持研究,2000,7(1):18-22
    [163]张乃明,张玉娟,陈建军,等.滇池流域农田土壤氮污染负荷影响因素研究[J].中国农学通报,2004,20(5):145-150
    [164]赵允格,邵明安.模拟降雨条件下成垄压实对硝态氮迁移的影响[J].植物营养与肥料学报,2003,9(1):45-49
    [165]黄丽,丁树文.三峡库区紫色土养分流失的试验研究[J].土壤侵蚀与水土保持学报,1998,4(1):8-13
    [166]唐克丽,白红英.坡地土壤侵蚀与养分过程的研究[J].水土保持通报,1991,15(3):14-18
    [167]康玲玲,朱小勇,王云璋,等.不同雨强条件下黄土性土壤养分流失规律研究[J].土壤学报,1999,36(4):536-543
    [168] Flanagan D. C. Foster R. Storm Patters effect on nltrogen and Phosphorus losses in surfacerunoff[J]. Transaetions of the ASAE,1989,32(2):535-544
    [169]王百群,刘国彬.黄土丘陵地形对坡地土壤养分流失的影响[J].土壤侵蚀与水土保持学报,1999,5(2):18-22
    [170]张玉斌,郑粉莉. AGNPS模型及其应用[J].水土保持研究,2004,11(4):124-127
    [171] Et Al. Saleh A Arnold J G Gassman P W. Application of SWAT for the upper NorthBosqueRiverwatershed[J]. Transaction of the American Society of Agricultural Egineers,2000,43(5):1077-1087
    [172] Johnes P. J. Evaluation and management of the impact of land use on the nitrogen and phosphorusload delivered to surface waters: the export coefficient modeling approach[J]. Journal ofHydrology Processes,1996,183:323-349
    [173] S. Shrestha, F. H. Kazama. A framework for estimating pollutant export coefficients fromlong-term in-stream water quality monitoring data[J]. Environmental Modelling and Software,2008,23:182-194
    [174]龙天渝,梁常德,李继承,等.基于SLURP模型和输出系数法的三峡库区非点源氮磷负荷预测[J].环境科学学报,2008,28(3):574-581
    [175] Magette W. L. Monitoring. In: Ritter W F, Shirmohammadi A. Agricultural Non-point SourcePollution.[J]. London: LEWIS Publishers,2000:205-328
    [176] Brannan K. M. Dillaha Mostaghimi S. Best management practices for non-point source pollutioncontrol: selection and assessment. In: Ritter W F, Shirmohammadi A. Agricultural Non-pointSource Pollution[J]. London: LEWIS Publishers,2000:257-304
    [177] Brown T. C., Brown D., Dan B. Law and Programs for Controlling Non-point Source Pollution inForest Areas[J]. Water Resource Bulletin,1993,29(1):1-3
    [178] Wolfe M. L. Mostaghimi Buck S P. Application of probabilitic risk assessmentto agriculturalnonpoint source pollution[J]. J Soil and Water Cons,2000,55(3):340-346
    [179] Risser D. W. Hall D. W. Effects of agricultural nutrient management on nitrogen fate andtransport in lancaster county pennsylvania[J]. Journal of the American Water ResourcesAssociation,1993,29(1):55-76
    [180] Ramos C. Effect of agricultural practices on the nitrogen losses to the environment[J]. NutrientCycling in Agroecosystems,1995,43(1):183-189
    [181] Paul J. W. Van Zebarth B. J. The effect of nitrogen management in agricultural production onwater and air quality:evaluation on a regional scale[J]. Agriculture,Ecosystems and Environment,1999,72(1999):35-52
    [182] Harrison R. Russell K. Mitchell R D. The effect of crop residue incorporation date on soilinorganic nitrogen, nitrate leaching and nitrogen mineralization[J]. Biology and Fertility of Soils,2000,32(4):294-301
    [183] Lal R. Dick W. Choudhary M A. Long-term tillage effects on runoff and soil erosion undersimulated rainfall for a central Ohio soil[J]. Soil&Tillage Research,1977,42(3):175-184
    [184] Tiscareo-Lpez M. Stone J. Tapia-Vargas M. Tillage system effects on runoff and sediment yieldin hillslope agriculture[J]. Field Crops Research,2001,69(2):173-182
    [185] DeVuyst E. A. White Shankar B. Nitrate abatement practices, farm profits, and lake water quality:a central Illinois case study[J]. J Soil and Water Cons,2000,55(3):296-303
    [186] Gupta S. C. Moncrief Hansen N C. Snowmelt runoff, sediment, and phosphorus losses under threedifferent tillage systems[J]. Soil Tillage Res,2000,57:93-100
    [187] Parlange J. Y. Walter M T. Management practice effecs on phosphorus losses in runoff in cornproduction systems[J]. J Environ Qual,2001,30(5):1822-1828
    [188] McGregor K. C. McDowell L L. Plant nutrient losses in runoff from conservation tillage corn[J].Soil and Tillage Res,1984,4:79-81
    [189] Spomer R. G. Alberts E E. Dissolved nitrogen and phosphorus in runoff fromwatersheds inconservation and conventional tillage[J]. J Soil and Water Cons,1985,40:153-157
    [190] Sadeghi A. M. Isensee A R. Impact of tillage practice on runoff and pesticide, transports[J]. J Soiland Water Cons,1993,48:523
    [191] Drury C. F. Influence of tillage on nitrate loss in surface runoff and tile drainage[J]. Soil Sci SocAm J,1993,57:797
    [192] Haycock N. E, Pinay G. Nitrate retention in grass on polar vegetated riparian buffer strips duringthe winter[J]. J Environ Qual,1993,22:273-278
    [193] Braskerud B. C. Factors affecting nitrogen retention in small constructionwetlands treatingagricultural non-point source pollution[J]. Eco Engin,2002,18:351-370
    [194] Goldstein A. L. Utilization of wetlands as BMPs for the reduction of nitrogen and phosphorus inagricultural runoff from south florida watersheds[J]. North American Lake Management SocietyConference.Proceedings.,1986,2(1):345-350
    [195] Monica V. Francesco M. Maurizio B. Effectiveness of buffer strips in removing pollutants inrunoff from a cultivated field in North-East Italy[J]. Agri Ecosys&Environ,2005,102(1-2):101-114
    [196] Woltemade C. J. Ability of restored wetlands to reduce nitrogen and phosphorus concentration inagricultural drainage water[J]. J Soil and Water Cons,2000,55(3):303-309
    [197] Moore M. T. Mitigation of chlorpyrofos runoff using constructed wetlands[J]. Chemosphere,2002,46:827-835
    [198] Rosato P. Giupponi C. Simulating impacts of agricultural policy on nitrogen losses from awatershed in Northern Italy[J]. Environment International,1995,21(5):577-582
    [199] Hardbin B. Comis D. Midwest water quality project matures[J]. Agri Res,1993,41:4
    [200]张春玲,李娅呢.陕西省丹汉江流域水质现状及防护对策[J].水资源与水工程学报,2007,18(3):87-90
    [201]程先富,史学正,于东升,等.基于GIS的土壤全氮空间分布估算-以江西省兴国县为例[J].地理研究,2007,1(26):110-116
    [202]范荣桂,王长春,陈书琴,等.巢湖周边地区表层土壤总氮有机质空间分布特征[J].环境科学与技术,2011,5(34):117-120
    [203]程先富,史学正.亚热带典型地区土壤全氮和地形、母岩的关系研究—以江西省兴国县为例[J].水土保持学报,2004,2(18):137-139
    [204]贺敬滢,张桐艳,李光录.丹江流域土壤全氮空间变异特征及其影响因素[J].中国水土保持科学,2012,3(10):81-86
    [205] Spain A. V. Influence of environmental conditions and some soil chemical properties on thecarbon and nitrogen contents of some tropical Australian rainforest soils[J]. Aust.J.Soil Res.,1990(28):825-839
    [206]王淑平,周广胜,吕育财,等.中国东北样带(NECT)土壤碳、氮、磷的梯度分布及其与气候因子的关系[J].植物生态学报,2002,5(26):513-517
    [207] Neil J. M, Philip J. R. Spatial predicition of soil properties using environmental correlation[J].Geoderma,1999(89):67-94
    [208]王淑英,路苹,王建立,等.不同研究尺度下土壤有机质和全氮的空间变异特征—以北京市平谷区为例[J].生态学报,2008,10(28):4957-4964
    [209] Bloschl G, Sivapalan M. Scale issues in hydrological modelling: A review[J]. HydrologyProcesses,1995,3/4(9):251-290
    [210] Martin Y, Rossiter D. G, Njomgang R. Multi-scale characterization of soil variability within anagricultural landscape mosaic system in southern Cameroon[J]. Geoderma,2005,5(12):117-143
    [211] Wang Y. Q, Zhang X. C, Huang C. Q. Spatial variability of soil total nitrogen and soil totalphosphorus under different land uses in a small watershed on the Loess Plateau, China[J].Geoderma,2009,1/2(150):141-149
    [212]陈伏生,曾德慧,陈广生.土地利用变化对沙地土壤全氮空间分布格局的影响[J].应用生态学报,2004,6(15):953-957
    [213]孙文义,郭胜利.黄土丘陵沟壑区小流域土壤有机碳空间分布及其影响因素[J].生态学报,2011,6(31):1604-1616
    [214]许文强,陈曦,罗格平,等.干旱区三工河流域土壤有机碳储量及空间分布特征[J].自然资源学报,2009,10(24):1740-1747
    [215] D. R. Nielsen, J. Bouma. Soil spatial variability[M]: PUDOC, Wageningen,1985:2-30
    [216] Gao X. J, Hu X. F, Wang S. P, Et Al. Nitrogen losses from flooded rice field[J]. Pedosphere,2002,2(12):151-156
    [217]赵军,刘焕军,隋跃宇,等.农田黑土有机质和速效氮磷不同尺度空间异质性分析[J].水土保持学报,2006,2(20):41-44
    [218]王政权,王庆成.森林土壤物理性质的空间异质性研究[J].生态学报,2000,11(6):945-950
    [219]王政权.地统计学及在生态学中的应用[M]:北京:科学出版社,1999:46-57
    [220]缪驰远,汪亚峰,魏欣,等.黑土表层土壤颗粒的分形特征[J].应用生态学报,2007,9(18):1987-1993
    [221] Tyler S. W, Wheatcraft S. W. Fractal scaling of soil particle-size distribution: Analysis andlimitations[J]. Soil. Sci.Soc.Am. J.,1992(56):362-369
    [222]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,20(38):1896-1899
    [223]丁敏,庞奖励,刘云霞,等.黄土高原不同土地利用方式下土壤颗粒体积分形特征[J].干旱区资源与环境,2010,11(24):161-165
    [224]孟凤英,丁启朔,鹿飞,等.冲击作用下粘性土壤破碎体的分形维数与影响因素[J].农业机械学报,2009,3(40):108-111
    [225]侯占峰,李林,陈智,等.土壤表面分形表征效果对比[J].农业机械学报,2011,4(42):39-42
    [226] Michel R, Garrison S. Fractal fragmentation, soil porosity and soil water properties Ⅱ:Applications[J]. Soil Science Society of America Journal,1991(55):1239-1244
    [227] Perfect E, Rasiah V, Kay B. D. Fractal dimensions of soil aggregate size distributions calculatedby number and mass[J]. Soil Science Society of America Journal,1992(56):1407-1409
    [228] Scott W. T, Stephen W. W. Fractal scaling of soil particles size distributions: Analysis andlimitation[J]. Soil Science Society of America Journal,1992(56):362-369
    [229]黄冠华,詹伟华.土壤颗粒的分形特征及其应用[J].土壤学报,2002,4(39):490-497
    [230]苏永中,赵哈林.科尔沁沙地农田沙漠化演变中土壤颗粒分形特征[J].生态学报,2004,1(24):71-74
    [231]刘永辉,崔德杰.长期定位施肥对潮土分形维数的影响[J].土壤通报,2005,3(36):324-327
    [232]丁敏,庞奖励,刘云霞,等.黄土高原不同土地利用方式下土壤颗粒体积分形特征[J].干旱区资源与环境,2010,24(11):161-165
    [233]王国梁,周生路,赵其国.土壤颗粒的体积分形维数及其在土地利用中的应用[J].土壤学报,2005,4(42):545-550
    [234]徐国策,李占斌,李鹏,等.丹江鹦鹉沟小流域土壤总氮空间变异特征研究[J].水土保持学报,2011,5(25):59-63
    [235]吴志峰,卓慕宁,王继增,等.珠海正坑小流域土壤与氮、磷养分流失估算[J].水土保持学报,2004,18(1):100-114
    [236]杜伟,遆超普,姜小三,等.长三角地区典型稻作农业小流域氮素平衡及其污染潜势[J].生态与农村环境学报,2010,1(26):9-14
    [237]涂安国,尹炜,陈德强,等.丹江口库区典型小流域地表径流氮素动态变化[J].长江流域资源与环境,2010,8(19):926-931
    [238]陈海洋,滕彦国,王金生,等.晋江流域非点源氮磷负荷及污染源解析[J].农业工程学报,2012,5(28):213-219
    [239]韩建刚,李占斌.紫色土丘陵区不同土地利用类型小流域氮素流失规律初探[J].水利学报,2011,2(42):160-165
    [240]金洁,杨京平.从水环境角度探析农田氮素流失及控制对策[J].应用生态学报,2005,3(16):579-582
    [241]况福虹,朱波,徐泰平,等.川中丘陵区小流域非点源氮素迁移的季节特征—以中国科学院盐亭紫色土农业生态试验站小流域为例[J].水土保持研究,2006,5(13):93-98
    [242]李怀恩,王莉,史淑娟.南水北调中线陕西水源区非点源总氮负荷估算[J].西北大学学报(自然科学版),2010,3(40):540-544
    [243]张水龙.基于流域单元的农业非点源污染负荷估算[J].农业环境科学学报,2007,1(26):71-74
    [244]蔡明,李怀恩,刘晓军.非点源污染负荷估算方法研究[J].人民黄河,2007,7(29):36-39
    [245]李怀恩.估算非点源污染负荷的平均浓度法及其应用[J].环境科学学报,2000,4(20):397-400
    [246]孔刚,王全九,樊军.坡度对黄土坡面养分流失的影响实验研究[J].水土保持学报,2007,3(21):14-18
    [247]傅涛,倪九派,魏朝富,等.不同雨强和坡度条件下紫色土养分流失规律研究[J].植物营养与肥料学报,2003,9(1):71-74
    [248]赵晓丽,张增祥,周全斌,等.中国土壤侵蚀现状及综合防治对策研究[J].水土保持学报,2002,16(1):40-43
    [249]李婷,张世熔,廖明辉,等.基于3S和USLE的沱江流域中游土壤侵蚀定量评价[J].水土保持研究,2011,1(18):24-27
    [250]王占礼.中国土壤侵蚀影响因素及其危害分析[J].农业工程学报,2000,4(16):32-36
    [251]彭建,李丹丹,张玉清.基于GIS和RUSLE的滇西北山区土壤侵蚀空间特征分析—以云南省丽江县为例[J].山地学报,2007,5(25):548-556
    [252]庞国伟,谢红霞,李锐,等.70多年来纸坊沟小流域土壤侵蚀演变过程[J].中国水土保持科学,2012,10(3):1-8
    [253] Angima S. D, Stott D. E, O'Neill M. K. Soil erosion prediction using RUSLE for central Kenyanhighland conditions[J]. Agriculture, ecosystems&environment,2003,1/3(97):295-308
    [254] Shi Zhihua, Cai Chongfa, Ding Shuwen. Soil conservation planning at the small watershed levelusing RUSLE with GIS: a case study in the Three Gorge Area of China[J]. Catena,2004,1(55):33-48
    [255]陈燕红,潘文斌,蔡芫镔.基于RUSLE的流域土壤侵蚀敏感性评价—以福建省吉溪流域为例[J].山地学报,2007,4(25):490-496
    [256]高海东,李占斌,李鹏,等.梯田建设和淤地坝淤积对土壤侵蚀影响的定量分析[J].地理学报,2012,67(5):599-608
    [257]章文波,付金生.不同类型雨量资料估算降雨侵蚀力[J].资源科学,2003,1(25):35-41
    [258]谢云,刘宝元.侵蚀性降雨标准研究[J].水土保持学报,2000,4(14):6-11
    [259] Arnoldus H. M. J. Methodology used to determine the maximum potential average soil loss due toSheet and Rill Erosion in Morocco[J]. FAO Soil Bulletin,1977(34):39-51
    [260]陆建忠,陈晓玲,李辉,等.基于GIS/RS和USLE鄱阳湖流域土壤侵蚀变化[J].农业工程学报,2011,2(27):337-344
    [261]郭兵,陶和平,刘斌涛,等.基于GIS和USLE的汶川地震后理县土壤侵蚀特征及分析[J].农业工程学报,2012,14(28):118-126
    [262] Smith D. D. Wischmeier W H. Predicting Rainfall Erosion Losses: A Guide to ConservationPlanning with Universal Soil Loss Equation (USLE).[M]. Washington, USA, Department ofAgriculture,1978
    [263]刘宝元,谢云,张科利.土壤侵蚀预报模型[M]:北京:中国科学技术出版社,2001:90-113
    [264] D. K. McCool, L. G. Brown, Foster G. R, Et Al. Revised slope steepness factor for the UniversalSoil Loss Equation[J]. Trans. ASAE,1987(30):1387-1396
    [265]蔡崇法,丁树文,史志华,等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报,2000,14(2):19-23
    [266]吴成基,甘枝茂.陕南河流泥沙输移比问题[J].地理科学,1998,1(18):39-44
    [267]闫宝伟,郭生练,肖义.南水北调中线水源区与受水区降水丰枯遭遇研究[J].水利学报,2007,10(38):1178-1185
    [268]李怀恩,史淑娟,党志良,肖燕.南水北调中线工程陕西水源区生态补偿机制研究[J].自然资源学报,2009,10(24):1765-1771
    [269]彭少麟.恢复生态学与植被重建[J].中国科学院院刊,2000,3(8):188-192
    [270]解明曙,庞薇.关于中国土壤侵蚀类型与侵蚀类型区的划分[J].中国水土保持,1993(5):8-10
    [271]王汉存.水土保持原理[M].北京:水利电力出版社,1992
    [272]张春玲,周晓强.陕西省汉丹江流域水资源质量近年变化分析与保护对策研究[J].陕西水利,2011(5):21-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700