钩叶藤材的基本性能及增强增韧改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棕榈藤材是仅次于木材和竹材的重要非木材林产品,具有较高的经济价值。我国藤产业95%以上的原材料依赖进口。近年来,由于主要产藤国家采取严格的限制原藤出口政策,商业用藤原材料严重短缺。同时,藤产品在使用过程中常常因为气候、外力等原因产生脆裂,使得产品的使用寿命缩短。如何解决藤材在使用中的脆裂问题,使其保持良好的韧性,扩大藤产品使用范围,已成为藤加工企业亟待解决的实际问题。
     本论文以国产钩叶藤材为研究对象,全面分析了其解剖构造、物理力学性质和化学成分;运用线弹性断裂力学的理论对其断裂韧性的测试方法进行了探索性研究;以甲基丙烯酸甲酯(MMA)和甲基丙烯酸缩水甘油酯(GMA)为改性剂,采用加压浸渍的方法对钩叶藤材进行增强改性研究,同时以体视显微镜和扫描电镜为手段,观察改性前后试样的破坏断面,探讨钩叶藤材的断裂破坏机理;通过对改性后钩叶藤材力学性能进行综合评价,探讨其作为藤家具类框架和结构用材的可行性,以期为藤材力学研究提供基础数据,为劣质藤材优化提供切实可行的方案。
     论文的主要研究结论如下:
     (1)钩叶藤材是一种梯度材料,藤芯、藤皮的性质差异大。维管束在藤皮处排列紧密,在藤芯处排列稀疏,只含有一个韧皮部和一个后生木质部导管。维管束大小在径向由外向内增大,分布密度随藤茎高度的增加而增大。基本密度为0.27g/cm3;微纤丝角平均为31.05°,相对结晶度为23.47%。抗弯强度和模量分别为31.05MPa和1.04GPa,压缩强度和模量分别为17.87MPa和831MPa。综纤维素含量为66.51%~72.96%;木质素含量为16.73%~22.03%。
     (2)从藤芯处预制的裂纹能用应力强度因子K准则判断,试验测得其名义断裂韧性值为0.476MPa·m1/2;从藤皮处预制的裂纹需用能量释放率G准则进行判断,试验测得其名义断裂韧性值为0.263MPa·m1/2。
     (3)含水率对从藤芯处预制裂纹试样的断裂韧性有显著影响,气干状态下的断裂韧性显著高于绝干和饱水状态的断裂韧性,气干状态下的断裂韧性为0.476MPa·m1/2,饱水状态下的断裂韧性为0.189MPa·m1/2,绝干状态下的断裂韧性为0.154MPa·m1/2。
     (4)MMA和GMA对钩叶藤材的改性效果明显。通过力学性能的综合评价获得的最佳改性工艺为浸渍液浓度100%MMA,浸渍压力常压,固化温度60℃,浸渍时间4h。改性后抗弯模量增加了127%,抗弯强度增加了200%;压缩模量增加了146%,压缩强度增加了119%;断裂韧性增加了231%。
     (5)钩叶藤素材三点弯曲断裂过程中裂纹沿预制裂纹面扩展,在薄壁组织中较平整的横向扩展,遇纤维鞘阻隔后发生偏转,总体呈阶梯型断裂;改性剂的添加改变了钩叶藤材的破坏路径,改性材中裂纹沿着预制裂纹方向扩展,总体呈一字型断裂。断裂韧性与维管束分布密度呈线性正相关。
Rattan is regarded as the important non-wood forestry products and has higher economicvalue. Nearly95%of rattan resources are imported from abroad. In recent years, due to theoriginal rattan export ban restrictions, shortage of raw materials has become the key issuesconstraining the development of Chinanese rattan industry. Meanwhile, the life of rattanproducts is shortened largely by brittle ruptures always caused by climate change and externalforces. How to prevent the rattan products from brittle ruptures, how to keep its highertoughness and how to enlarge its application extent has become an urgent problem to besolved.
     In the present work, the fundamental properties of Plectocomia kerrana Becc, a largediameter non-commercial rattan species, was thoroughly investigated, including (1)Investigating the anatomical structure, physical properties and chemical compositions;(2)Exploring the testing methods of fracture toughness based on linear elastic fracture mechanics;(3) Using methyl methacrylate (MMA) and glycidyl methacrylate (GMA) as modifier to treatthe original rattan by pressure impregnation method;(4) Comparing the fracture plane beforeand after modification by stereomicroscope and scanning electron microscope as well asexploring the possible fracture mechanisms;(5) Comprehensively evaluating the mechanicalproperties of modified products and discussing its applicability as raw materials for frameworkof rattan furniture;(6) Providing basic database for the research area of rattan mechanicalperformance and feasible plan for optimizing inferior rattan.
     The main conclusions are as follows:
     (1) Plectocomia kerrana Becc is a gradient material with large differences in the nature ofcore and cortex. Vascular bundles (Vbs) arrange tightly in cortex and sparsely in core, whichonly contain a phloem and a protoxylem vessel. The dimension of Vbs decrease from cortex tocore direction, while its distribution density increases along with the rattan altitude. The basic density of rattan is0.2746g/cm3. The microfibril angle is31.05°and the relative crystallinity is23.47%. The bending strength and bending modulus is31.05Mpa and1.04Gpa, while thecompressive strength and the compressive modulus is17.87Mpa and831Mpa, respectively.The holocellulose content ranges from66.51%~72.96%, while the lignin content ranges from16.73%~22.03%.
     (2) The crack prefabricated from core is determined by the stress intensity factor K, whilethe crack prefabricated from cortex is determined by energy release rate G. The value ofnominal fracture toughness is0.476MPa·m1/2and0.263MPa·m1/2, respectively.
     (3) The modification effect proves to be obvious when treated with MMA and GMA. Theoptimized modification process is A1B1C2D2, that is, impregnation concentration100%MMA,atmospheric pressure, curing temperature60℃, impregnation time4h. For the modifiedproducts, the bending modulus, the bending strength, the compressive modulus, compressivestrength and fracture toughness increases by127%,200%,146%,119%and231%,respectively.
     (4) When the rattan is bended, the crack in the rattan extends along with the crack planeprefabricated. Within the parenchymatic tissue, the crack extends transversely and changes itsdirection when the crack stretches into fiber sheath. The crack edge shows a ladder type. Afterimpregnating with modifier, the fracture route of rattan changes. The crack stretches along withthe direction of crack prefabricated. The crack edge displays a linear type. Moreover, thereexists a positive linear correlation between fracture toughness and Vbs distribution density.
引文
[1]江泽慧.中国林业工程[M].济南出版社,2002
    [2]江泽慧.我国林业生物产业发展战略[J].林业经济,2011,(7):7-9,22
    [3]江泽慧.中国林产品发展的现状与前景[J].木材工业,2006,(2):10-13
    [4]江泽慧.发展低碳经济建设低碳林业[J].世界林业研究,2010,(3):3-8
    [5]江泽慧.世界竹藤[M].辽宁科学技术出版社,2002,425
    [6]许煌灿,尹光天,曾炳山.棕榈藤的研究[M].广州:广东科技出版社,1994,1-29
    [7]李荣生,许煌灿,尹光天,等.世界棕榈藤资源、产业及其前景展望[J].世界竹藤通讯,2003,1(1):1-5
    [8]江泽慧,王慷林.中国棕榈藤[M].科学出版社,2013,100
    [9]江泽慧,吕文华,任海青,等.棕榈藤材性研究综述[J].世界林业研究,2007,20(4):35-40
    [10]竺肇华.中国热带地区竹藤发展[M].北京:中国林业出版社,2001
    [11]蔡则谟,许煌灿,尹光天,等.棕榈藤利用的研究与进展[J].林业科学研究,2003,16(4):479-487
    [12]李玉敏,高志民.菲律宾棕榈藤业发展现状及启示[J].热带农业科学,2011,31(3):76-80
    [13]吕文华,江泽慧,任海青,等.藤材的防护和综合利用[J].世界竹藤通讯,2007,5(2):9-11
    [14]李玉敏.全球棕榈藤贸易现状与趋势[J].世界竹藤通讯,2011,9(2):1-3
    [15]许煌灿,尹光天,李意德,等.我国棕榈藤天然分布及其利用研究[J].林业科学研究,1993,6(4):380-389
    [16]刘杏娥,江泽慧,吕文华.我国主要商用棕榈藤资源状况[C].第三届全国生物质材料科学与技术学术研讨会,2009:5-7
    [17]吕文华,江泽慧,费本华,等.棕榈藤材的制备和加工[J].木材加工机械,2007,(2):41-44
    [18] Weiner G, Liese W. Anatomical structure for identification of rattan[C]. In Rao A N and Vongkaluang I.(Eds.) Recent Research on Rattans, Chiangmai.1989:107-119
    [19] Weiner G, Liese W. Genetic structures and differences of rattan genera from south Asia [J]. TropicForestry Science,1993,14(1):55-61
    [20] Teoh B W. An exploratory anatomical survey of some Malayan rattans[R]. School Biologic ScienceUniversity. Malaya,1978
    [21] Yudodibroto H. Anatomy, strength properties and the utilization of some Indonesian rattan species [C].In Proceeding of The Rattan Seminar, Kuala Lumpur.1984. edited by K. M. Wong and N. Manokaran.The Rattan Information Centre, Forest Research Institute. Kepong.1985:117-122
    [22] Bhat K M, Liese W. Anatomy and identification of South Indian rattans (Calamus species)[J]. IAWAJournal,1993,14(1):63-76
    [23] Tomlinson P B, Fisher J B, Spangler R E, et al. Stem vascular architecture in the rattan palm calamus(Arecaceae-Calamoideae-Calaminae)[J]. American Journal of Botany,2001,88:797-809
    [24] Tomlinson P B, Spangler R E. Developmental features of the discontinuous stem vascular system in therattan palm Calamus (Arecaceae-Calamoideae-Calaminae)[J]. American Journal of Botany,2002,89:1128-1141
    [25]林文豹.白藤茎的解剖观察[J].热带林业科技,1983,(3):6-11
    [26]蔡则谟.四种藤茎维管组织的分布[J].植物学报,1989,31(8):569-575
    [27]蔡则谟.四种藤茎几项特性的变异[J].林业科学,1992,28(1):70-74
    [28]蔡则谟,刘英,文方彬.藤茎的导管分子研究[J].林业科学,1993,29(4):293-297
    [29]蔡则谟,刘英.小钩叶藤茎解剖特性的变异[J].广西植物,1994,14(1):60-64
    [30]蔡则谟.棕榈藤茎的解剖特性及商用藤归类[J].林业科学,1994,30(3):209-213
    [31]刘成刚,胡玉熹,林金星.棕榈藤茎的表皮特征及其分类意义[J].植物分类学报,1998,36(6):503-510
    [32]腰希申,李砀,许煌灿,等.棕榈藤的电镜观察[J].林业科学,1998,34(3):104-109
    [33]江泽慧,吕文华,费本华,等.3种华南商用藤材的解剖特性[J].林业科学,2007,43(1):121-126
    [34]安琪,张国学,杨宇明,等.版纳省藤与盈江省藤藤材特性的解剖研究[J].林业调查规划,2010,35(3):23-28
    [35] Ebanyenle E, Oteng-Amoako A A. Variation in some anatomical and physical properties of stems of fiverattan palm species of Ghana[J]. Bamboo and Rattan. VSP, Utrecht, Netherlands.2005,4(2):125-142
    [36] Bhat K M, Liese W, Schmitt U, et al. Structural variability of vascular bundles and cell wall in rattanstem[J]. Wood Science and Technology,1990,24:211-224
    [37]刘杏娥,汪佑宏,江泽慧,等.黄藤材发育过程中维管束的变化[J].西北林学院学报,2010,25(2):152-155
    [38]刘杏娥,汪佑宏,江泽慧,等.黄藤材生长发育过程中导管的变化[J].林业实用技术,2010,(1):52-54
    [39]蔡则谟.钩叶藤属和省藤属导管分子的比较研究[J].广西植物,1995,15(1):39-42
    [40]王玉荣,任海青,赵荣军,等.棕榈藤纤维和导管长度的近红外光谱预测研究[J].光谱学与光谱分析,2011,31(4):966-969
    [41]汪佑宏,刘杏娥,江泽慧,等.黄藤材纤维形态特征的变异和评价[J].林业科学研究,2010,23(3):443-447
    [42]徐鑫,汪佑宏,刘杏娥,等.黄藤和单叶省藤纤维形态特征的研究[J].安徽农业大学学报,2010,37(3):512-516
    [43] Abasolo W P, Yoshida M, Yamamoto H, et al. Internal stress generation in rattan canes[J]. IAWA Journal,1999,20(1):45-58
    [44] Abasolo W P, Yoshida M, Yamamoto H, et al. Microfibril angle determination of rattan fibers and itsinfluence on the properties of the cane[J]. Holzforschung,2000,54(4):437-442
    [45]汪佑宏,刘杏娥,江泽慧,等.利用X射线衍射技术分析辐照处理对黄藤材晶体尺寸影响[J].光谱学与光谱分析,2010,30(8):2285-2288
    [46]汪佑宏,刘杏娥,江泽慧,等.利用X射线衍射技术分析黄藤材微纤丝角、结晶度及γ射线的影响[J].光谱学与光谱分析,2010,30(5):1404-1407
    [47]李旸,腰希申,许煌灿,等.棕榈藤的电镜观察[J].林业科学,2002,38(1):173-174
    [48]郭丽秀,卫兆芬.国产省藤属植物的叶表皮形态学[J].热带亚热带植物学报,2005,13(4):277-284
    [49] Tesoro F O. Rattan Processing and Utilization Research in the Philippines[C]. In:Rao A N, VongkaluangI. Proceeding of International Rattan Seminar. Thailand Chiangmai.1987:169-177
    [50]吴顺昭,王义仲.外国五种藤材之物理性质与机械性质研究[J].林产工业,1994,13(2):240-250
    [51]吴顺昭,王义仲.马来西亚产商用藤材之物理性质与机械性质研究[R].台湾大学实验林业研究报告,1995,9(1):13-31
    [52] Chung H H, Chen Y S. Anatomical properties of Papua New Guinea rattans[J]. Taiwan,1994
    [53]袁哲,强明礼,徐忠勇.用剖面密度分析仪测试藤材横截面密度研究[J].西南林学院学报,2010,30(4):75-77
    [54]王玉荣,江泽慧,费本华,等.近红外光谱预测棕榈藤藤条基本密度研究[J].光谱学与光谱分析,2008,28(10):119-120
    [55]王玉荣,费本华,任海青,等.6种棕榈藤藤芯密度的近红外光谱分析[C].全国第一届近红外光谱学术会议论文集,2006
    [56] Bhat K M, Mohan Verghese. Anatomical basis for density and shrinkage behaviour of rattan stem[J].Journal of the Institute of Wood Science,1991,12(3):123-130
    [57] Bhat K M, Thulasidas P K. Strength properties of ten South Indian canes[J]. Tropical Forest Science,1992,5(1):26-34
    [58] Sekhar A C, Rawat B S. Strength tests on Indian Canes(i) Calamus tenuis. Indian Forester,1965,91:70-72
    [59] Tumpugi K. Pengaruh perlakuan pemutihan dengan belerang dan kalsium hipokhlorit terhadap kualitasRotan Tohiti, Ombol dan Tinti Buku. Tesis Sarjana.Fakultas kehutanan, University Gadjah Mada,Yogyakarta,1979
    [60] Alcachupas P L. Study on the properties and uses of unexploited rattan species. Terminal Report[R].PCARRD-IDRC Project No.3-P0182. FPRDI Libarary.1985
    [61] Hadikusumo S A. Rattan(Indonesia): properties and potential uses of unexploited rattan[R]. Faculty offorestry Gadjah Mada University, Yogyakarta, Indonesia.1988
    [62] Latif M A, Yahaya S N. Anatomical characteristics of five Malaysian canes and their relationships withphysical and mechanical properties[C]. Kerala Forest Research Institute.Rattan (cane) Seminar,1993,207-213
    [63] Wahab R, Sulaiman O, Samsi H W. Basic density and strength properties of cultivated Calamusmanan[J]. Bamboo and Rattan,2004,3(1):35-43
    [64]吕文华,刘杏娥,汪佑宏.棕榈藤材的抗拉强度测试方法[J].木材加工机械,2010,(1):20-23
    [65]吕文华,刘杏娥.棕榈藤材的抗弯强度测试方法[J].木材加工机械,2012,1:1-5
    [66]汪佑宏,王瑞,高龙芽,等.黄藤单纤维力学性能[J].东北林业大学学报,2012,40(12):87-89
    [67]王瑞.四种省藤材纤维形态特征及微力学性能分析[D].安徽农业大学,2011
    [68] Abasolo W P, Yoshida M, Yamamoto H, et al. Thermal softening of rattan canes: influence of thehemi-cellulose-lignin matrix[J]. Journal of Bamboo and Rattan,2002,1(4):317-331
    [69] Mohmod A L, Khoo K C, Kasim J. Physical properties, fiber morphology and chemical constituents offive Malaysian rattans[J]. Tropical Forest Products,1997,2(2):149-159
    [70] Abdel Razak O, Abdel Latif M, Liese W, et al. Planting and utilization of bamboo in PeninsularMalaysia[R]. Research Pamphlet Forest Research Institute Malaysia,1995:117
    [71] Siripatanadilok S. Anatomical characteristics in relating to the quality of large-cane rattan[J]. Kasetsartjournal (Natural Sciences),1996,30(1):118-130
    [72]吴玉章,周宇.3种棕榈藤藤材变色的研究[J].林业科学,2005,41(5):211-213
    [73]吕文华,江泽慧,吴玉章.黄藤藤材的化学组成特性[J].林业科学,2009,45(7):96-100
    [74]王瑞,汪佑宏,刘杏娥,等.黄藤材导管壁木质素分布可见光谱分析[J].东北林业大学学报,2011,39(8):50-51
    [75]汪佑宏,刘杏娥,江泽慧,等.黄藤材薄壁细胞木质素分布的可见光谱分析[J].南京林业大学学报,2012,36(6):140-142
    [76] Atack W. The energy of tensile and cleavage fracture of Black Spruce[J]. Tappi.1961,44(8):555-567
    [77] Porter A. W. On the mechanics of fracture in wood[J]. Forest Products Journal,1964,14(8):325-331
    [78] Larsen H J, Gustafsson P J. The fracture energy of wood intension Perpendicular to the grain[C].23thCIBW18A meeting. Lisbon Portugal,1990:19-23
    [79] Stanzl Tsehegg S E, Tschegg E K, Teisehinger A. Fracture energy of spruce wood after different dryingProeedures[J]. Wood and Fiber Science,1994,26:467-478
    [80] Ewing P D, Williams J G. Thickness and moisture content effect in the fracture toughness of ScotsPine[J]. Journal of Material Science,1979,14(12):2959-2966
    [81] Barrett J D, Foschi R O. Mode Ⅱ Stress-Intensity Factors for Cracked Wood Beams[J]. EngineeringFracture Mechanics,1977,9:371-378
    [82]邵卓平,江泽慧,任海青.线弹性断裂力学原理在木材中应用的特殊性及木材顺纹理断裂.林业科学,2002,38(6):110-114
    [83] Wu E M. Application of fracture mechanics to anisotropic plates[J]. Journal of Applied Mechan-ics,1967,34:967-974
    [84] Mindness S, Nadeau J S, Barrett J D. Stow crack growth in Douglas-fir[J]. Wood Science,1976,8(1):389-396
    [85] Schnewind A P. Fracture toughness and duration of load factor Ⅱ. Duration factor for crackspropagating perpendicular to grain[J]. Wood and Fiber Science,1977,9(3):216-226
    [86] Smith T W, Penny D T. Fracture mechanics of butt joints in laminated wood beams[J]. Wood Science,1980,12(4):227-235
    [87] White M S, Green D W. Effect of substrate on the fracture toughness of wood-adhesive bonds[J]. WoodScience,1980,12(3):149-153
    [88] Triboulot P, Jodin P, Pluvinage G. Validity of fracture mechanics concepts applied to wood by finiteelement calculation[J]. Wood Science and Technology,1984,18(1):51-58
    [89]鹿振友.断裂力学在木材加工上的应用[J].北京林业大学学报,1988,10(3):49-56
    [90]范文英,徐虹.木材断裂韧性KIC测定方法的研究[J].南京林业大学学报,1993,17(3):80-82
    [91]邵卓平,任海青,江泽慧.柔度法标定木材断裂韧性的研究[J].林业科学,2001,37(2):112-116
    [92]邵卓平.木材断裂韧性测试研究[J].力学与实践,2002,24(4):49-51
    [93]邵卓平.木材和竹材的断裂与损伤[D].安徽农业大学博士论文,2009
    [94]孙艳玲,鹿振友.用有限元计算水曲柳裂纹尖端应力强度因子[J].北京林业大学学报,1999,21(3):53-57
    [95]郑世强,李明宝,杨建明.基于随机有限元法的木材断裂参数的研究[J].森林工程,2007,23(3):12-15
    [96]邵卓平,童永耀,盛宏玉,等.木材裂纹尖端应力场的有限元分析和开裂方向预测[J].林业科学,2010,46(10):108-113
    [97]孙艳玲,赵东,高继河.数字散斑相关方法在木材断裂力学上的应用分析[J].北京林业大学学报,2009,31(增刊1):206-209
    [98]王丽宇,鹿振友.白桦材LT型裂纹的演化与增长行为的研究[J].北京林业大学学报,2002,24(2):59-61
    [99]江泽慧,胡一贯.木材断裂过程的研究[J].核技术,2000,23(8):572-576
    [100]任海青,江泽慧.人工林杉木、马尾松木材的断裂特性[J].林业科学,2001,37(3):118-121
    [101]巩翠芝,刘一星,崔永志.利用环境扫描电子显微镜原位监测木材的断裂过程[J].东北林业大学学报,2007,35(6):7-9
    [102]任宁,刘一星,巩翠芝.木材微观构造与拉伸断裂的关系[J].东北林业大学学报,2008,36(2):33-35
    [103]费本华,张东升.木材断裂裂纹及应力场的分形研究[J].木材工业,2003,17(3):7-9,12
    [104]费本华,覃道春,杨忠.木材断口分形的初步研究[J].林业科学,2006,42(3):104-107
    [105]季坤,邵卓平,徐斌.基于分形理论的木材顺纹理断裂研究[J].生物数学学报,2009,24(1):177-182
    [106] Amada S, Untao S. Fracture properties of bamboo[J]. Composites: Part B,2001,32(5):451-459
    [107]冼杏娟,冼定国.竹材的断裂特性[J].材料科学进展,1991,5(4):336-341
    [108]邵卓平.竹材的层间断裂[J].林业科学,2008,44(5):122-127
    [109]徐曼琼,赵红平,黄虎,等.竹材断裂特性研究[C].损伤、断裂与微纳米力学学术研讨会,北京,2009:228-232
    [110] Mitch D R. Splitting capacity characterization of bamboo culms[D]. Pittsburgh, PA, USA: Universityof Pittsbergh,2009
    [111]刘焕荣.竹材的断裂特性及断裂机理[D].北京:中国林业科学研究院,2010
    [112] Low I M. Mechanical and fracture porperties of bamboo[J]. Key Engineering Materials,2006,312(15):15-20
    [113]李霞镇,任海青,马少鹏.基于数字散斑相关方法的竹材变形特性[J].林业科学,2012,48(9):115-119
    [114]李霞镇.毛竹材力学及破坏特性研究[D].北京:中国林业科学研究院,2009
    [115]云礼宁,马少鹏,李霞镇,等.用数字散斑相关方法研究竹材在拉伸载荷下的断裂行为[J].北京理工大学学报,2011,31(3):258-261
    [116]田根林,江泽慧,余雁,等.扫描电镜原位拉伸研究竹材增韧机制[J].北京林业大学学报,2012,34(5):144-148
    [117]安晓静,余雁,王汉坤,等.毛竹基体与纤维鞘界面对其横纹断裂力学性能的影响[C].第十届中国林业青年学术年会,南京,2012:77-82
    [118] Solereder H, Meyer F J. Systematische anatomie der Monokotyledonen Heft[C]. Palmae, Berlin,1928:83-88
    [119] Tomlinson P B. Anotomy of the monocotyledons II palmae[M].Clarendon press, Oxford,1961
    [120] Weiner G, Liese W. Anatomic features of rattan[J]. RIC Bulletin,1987,6(2):6-7
    [121] Weiner G, Liese W. Anatomic structures and differences of rattan genera from southeast Asia[J].Journal of Tropic Forestry Science,1988,1(2):122-132
    [122] Weiner G, Liese W. Morphological characterization of the epidermis of rattan palms[J]. Journal ofTropic Forestry Science,1993,6(2),197-201
    [123] Bhat K M, Renuka C. Variation in physical characteristic of kerala grown rattans of peninsular[J]. TheMalaysian Forester,1986,49(2):185-197
    [124]国际竹藤中心,中国林业科学研究院木材工业研究所,安徽农业大学,等. LY/T2220.1-2013棕榈藤材材性试样采集与制备方法——第1部分:物理力学性质[S].北京:中国标准出版社,2013
    [125] Cave I D. Theory of X-ray measurement of microfibril angle in wood.Forestry[J] Pro. J,1966,16(10):37
    [126] Wan R, Wan M, Dransfield J, et al. A guide to the cultivation of rattan[J]. FRIM Malayan ForestRecord,1992(1):51-55
    [127]阮锡根,王婉华,潘彪.应力木纤丝角的研究[J].林业科学,1993,29(6):531-536
    [128]中国林业科学研究院木材工业研究所. GB/T15780-1995竹材物理力学性质试验方法[S].北京:中国标准出版社,1995
    [129] Segal L, Creely J J, Martin J, et al. An empirical methods for estimating the degree of crystallinity ofmative cellulose using X-ray diffractometer[J]. Texile Research Journal,1959,29:786-794
    [130] Roszaini A K. The physical properties of Calamus scipionum and Daemonrops angustifolia at differentages and height[J]. Journal of Tropical Forest Science,1998,4(2):153-158
    [131] Wahab R, Sulaiman O, Samsi H W. Basic density and strength properties of cultivated Calamusmanan[J]. Journal of. Bamboo and Rattan,2004,3(1):35-43
    [132] Lucas E B, Dahunsi B I O. Characteristics of three western Nigerian rattan species in relation to theirutilization as construction material[J]. Journal of Bamboo and Rattan,2004,3(1):45-56
    [133] Kabir M F, Bhattacharjee D K, Sattar M A.Variation of physical and mechanical properties of Calamuserectus[J]. Bangladesh Journal of Forest Science,1994,23(2):43-47
    [134] Kadir R A. The physical properties of Calamus scipionum and Daemonorops angustifolia at differentages and heights[J]. Tropical Forest Products,1998,4(2):153-158
    [135] Tommy Y Lo, Cui H Z, Leung H C. The effect of fiber density on strength capacity of bamboo[J].Materials Letters,2004,58:2595-2598
    [136] Mohd. Ali A R, Mohmod A L, Khoo K C, et al. Physical properties, fiber dimensions and proximatechemical analysis of Malaysian rattans[J]. Thai Journal Forestry,1995,14:59-70
    [137]汪佑宏.黄藤材解剖构造得生物形成研究[D].中国林科院博士后出站报告,2010,63
    [138]邵卓平,任海青,江泽慧.柔度法标定木材断裂韧性的研究[J].林业科学,2001,37(2):5722-5761
    [139]李玲,李大纲,徐平,等.包装箱用竹木复合层合板断裂特性的研究[J].包装工程,2006,27(5):69-71
    [140]王丽宇,鹿振友.含水率与木材的断裂特性[C].第十次全国木材干燥学术讨论会论文集.2005
    [141]夏炎,许俊,章瑞,等.杨木材性对酚醛树脂浸渍改性材的影响[J].林业科技开发,2010,24(2):52-54
    [142] Shams M I, Yano H, Endou K. Compress deformation of wood impregnated with low molecularweight phenol formaldehyde(PF)resin Ⅰ: effects of pressing pressure and pressure holding[J]. Journalof Wood Science,2004,50(4):337-342
    [143] Shams M I, Yano H, Endou K. Compress deformation of wood impregnated with low molecularweight phenol formaldehyde(PF)resinⅡ:effects of pressing parameters[J]. Journal of Wood Science,2004,50(4):343-350
    [144]谭惠芬,郭红霞,杜万里,等.有机/无机复合浸渍液对杨木的改性处理[J].木材工业,2009,23(4):40-42
    [145]杜兰星,孙照斌,张晓燕.脲醛树脂胶浸注毛白杨木材工艺初步研究[J].木材加工机械,2011,4:19-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700