硅溶胶强化杨木复合材的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木材无机质功能性复合化制备的复合材料,具有阻燃和耐腐和天然无毒等优良性能,且产品价格低廉而日益受到人们的关注,但由于其力学性能除硬度和耐磨性得到提高以外,冲击韧性、抗弯强度、抗弯弹性模量都有不同程度的降低。为此,本文以人工林杨树木材为研究对象,在总结国内外该领域的研究进展和先进研究方法的基础上,在不削弱木材多孔性结构的前提下,以强化细胞壁为主要目标开展了硅溶胶强化杨木复合材的制备与性能研究,为赋予人工林杨树木材高强度、高性能,拓宽其应用范围提供技术支持,为人工林木材高效利用开辟新的途径,具有重要的科学意义和实用价值。
     本文以人工林杨树木材为研究对象,硅溶胶作为浸渍处理液,采用真空加压复合工艺路线开展强化低密度杨树木材的制备及其结构和性能的研究。论文的主要研究结论如下:
     (1)相同工艺参数下,液压浸渍工艺制备的复合木材其各项性能明显优于气压浸渍工艺制备复合木材的性能。就增重率而言,卸压之前的抽真空处理可以有效地增加复合材的增重率,卸压之后的真空处理对增重率的影响不明显,但可以除去处理材表面多余的浸渍液,使复合木材表面清洁又不致减少复合木材的增重率。
     (2)满细胞法浸渍硅溶胶可以最大程度地提高木材的增重率、抗弯弹性模量、抗弯强度。研究表明,复合木材的抗弯弹性模量与增重率存在线性关系,而复合木材的抗弯强度与硅溶胶进入木材内部的位置和深度有关,简单的物理填充不改变复合木材的抗弯强度。
     (3)硅溶胶浸渍处理的杨树木材,其抗弯强度的平均值为87.70 MPa,抗弯弹性模量的平均值为12.41 GPa,端面、弦面和径面的硬度分别提高了34.62%,49.15%和53.45%,顺纹抗压强度没有得到改善,基本保持不变或略有下降。浸渍硅溶胶处理后,木材在三个方向上都有不同程度的膨胀,弦向、径向和纵向尺寸分别增加了1.64%、0.55%和0.80%。延长前真空时间可以有效提高增重率和复合木材的力学性能,但对于木材的尺寸稳定性有不利的影响。因此,在保证复合木材力学性能达标的前提下要缩短前真空时间。对于杨树这样的软质木材,最优的浸渍工艺参数是:前真空时间20 min,浸渍压力1 MPa,浸渍时间30 min,后真空时间20 min。
     (4)硅溶胶浸渍处理不会影响木材的胶合性能。复合木材的胶合强度和木破率与未处理材差异不大,都达到了JAS标准。热重分析表明,复合木材较未处理材的热稳定性得到了改善,使得复合木材有一定的阻燃性能;并且随着增重率的增加,燃烧后残余物的重量随之增加,阻燃性能也随之提高。硅溶胶浸渍处理复合木材在弦向、径向和纵向的尺寸稳定性都得到了改善,且其尺寸稳定性的提高与增重率有关,改善的程度基本在25%至35%之间。润湿性研究指出,硅溶胶浸渍处理制备的复合木材产生了显著的接触角增大作用,表现出良好的表面疏水性能。
     (5)通过光学显微镜和扫描电镜观察,复合木材中存在块状聚集的二氧化硅,其分布情况是:横切面>径切面>弦切面;且径切面和弦切面均有SiO2薄层与细胞壁组织紧密相联,基本保持了木材的多孔性结构。荧光显微镜观察结果表明,在横切面上,二氧化硅主要以物理填充为主;在径切面和弦切面上,细胞壁物质不同程度地与二氧化硅发生了化学键合。
     (6)X射线能谱仪检测指出,硅元素在木材中的分布是不均匀的,主要分布在导管、木纤维、木射线和胞间层中。在浸渍过程中硅溶胶可以通过物理渗透方式进入木材内部的空隙。研究发现,木纤维和射线细胞的细胞壁上均有较高含量的硅,这是因为木纤维和射线的细胞腔相对小,在真空加压过程中,硅溶胶更容易进入细胞腔相对小的木材组织。杨树木材富含大量的纹孔,纹孔是实现浸渍处理液横向渗透的主要途径,因此,纹孔的硅含量较高。纤维细胞壁上有大量的纹孔,硅溶胶可以进入纤维中,导致木材纤维细胞壁上的硅浓度也较高。
     (7)XRD衍射峰的位置没有改变,说明硅溶胶复合木材的晶胞参数没有改变。红外光谱分析表明硅溶胶聚合后的二氧化硅与木材的骨架物质发生了作用;通过对素材和复合材的光谱图的对比,其主要特征峰没有明显变化,只有复合材中的Si-O-Si反对称伸缩振动峰向高频方向移动,Si-O-Si的弯曲振动也有小的位移,这主要是与氢键的形成有关。
Wood inorganic functional composite in their excellent fire-retardant, decay resistance, natural drug-free and low prices, has attracted increasing attention. However, except hardness and abrasion resistance, its mechanical properties, such as toughness, modulus of rupture (MOR), modulus of elasticity (MOE), have decreased in some degrees. Summing up the research progress and advanced research methods at home and abroad in this field, on the premise of no weakened porous structure of poplar wood, this study aimed to strengthen the cell wall to prepare wood-inorganic composite,which will make the plantation wood have high intensity and high performance, and will provide technical supports for widening the application field of plantations, also will open up new avenues for the efficient use of plantations. It will be of important scientific significance and practical value. In this paper, plantation of poplar wood is selected for study; silica sol as impregnating solution. Poplar-solica sol composite was prepared through vacuum-pressive process. The main research results are as follows:
     (1)Under the same process parameters, the properties of the composite wood prepared by the liquid pressure impregnating process are better than those of prepared by air pressure impregnation process. As for the weight percentage gain (WPG), the vacuum treatment before the un-pressure can effectively increase WPG of wood composite and vacuum treatment after un-pressure does not have obvious effect on WPG. However, the latter can effectively remove excess impregnating solution on wood surface and does not reduce WPG of wood composite.
     (2)Full-cell pressure method can maximize WPG, MOE and MOR of wood composite. The research also showed that there was a certain linear relationship between the MOE and WPG of wood composite, however, MOR of wood composite was related to the location and depth of the silica sol impregnated inside wood. The simple physical filling will not change MOR of wood composite.
     (3)The average value of MOR of poplar wood impregnated with silica sol was 87.70 MPa, the average value of MOE was 12.41 GPa, the hardness of the end surface, flat surface and edge surface increased by 34.62%, 49.15% and 53.45% respectively, but the compressive strength parallel to grain was nearly changed or declined slightly. After being impregnated with silica sol, polar wood had some expansion along three different directions. Dimension in tangential, radial and longitudinal direction increased by 1.64%, 0.55% and 0.80%, respectively. Although the extension of vacuum time before impregnating can effectively increase WPG and mechanical properties of wood composite, it had a strong negative impact on the stability of wood size. So, the vacuum time before impregnating should be shortened in order that the mechanical properties of wood composite can reach to the standards. The optimal impregnating process parameters for poplar wood, such a soft wood, were as follows: the vacuum time before impregnating was 20 min, impregnating pressure was 1 MPa, impregnating time was 30min and the vacuum time after impregnating was 20 min.
     (4)Bonding properties will not be affected after wood impregnated with silica sol. The bonding strength and wood failure was up to the JAS standards and was similar to that of untreated wood. Thermal analysis result showed that thermal stability of wood composite had improved, which made wood composite have a certain fire-retardant property. And with the increasing of WPG, the remnants weight was increased and burning and fire-retardant property was also improved. By impregnating silica sol into wood, the dimension stability of wood in tangential, radial and longitudinal direction had been improved. And the dimension stability was related to WPG, and the improvement degree was from 25% to 35%. The study of wettability indicated that the contact angle of the wood increased significantly by impregnating with silica sol, and the wood composite showed good surface hydrophobic performance.
     (5)By the optical microscope and scan electron microscopy, there was mass silica accumulated in wood composite, and the distribution is: cross section > radial section > tangential section. Thin layer of SiO2 was found to be closely linked to the cell walls in radial section and tangential section, and the porous structure of wood was basically kept. The results from fluorescent microscope showed that SiO2 in cross section existed as physical filling; and that in radial and tangential section SiO2 had a chemical bond with cell wall in different levels.
     (6)The distribution of silicon elements in timber was uneven detected by X-ray spectrometer. Silicon was mainly distributed in tracheid, wood fiber, wood ray and intercellular layers. In the process of impregnation, silica sol penetrated into the wood gap through physical infiltration. It was found that more silicon appeared in the cell wall of wood fibers and wood rays. Because the cell chambers of the wood fibers and ray cells were relatively small, during the vacuum and pressure process, the silica sol can easily soak into wood organization. Poplar wood has a large number of pits, which is the major channel to realize transverse infiltration. Therefore, the pits had high content of silicon. Cell wall of wood fibers has a large number of pits, so that silica sol can easily be impregnated into the wood fiber.
     (7)Unchanged XRD diffraction peak position indicated that the lattice parameters of wood composite has not changed. IR spectrum analysis showed that SiO2 gained from silica sol polymerization interacted with wood frame materials. According to composite spectrum and untreated wood spectrum, it was found that the main characteristic peak has not changed significantly, but just the Si-O-Si antisymmetric stretching vibration peak of composite moved to the high-frequency direction, and the Si-O-Si bending vibration peak also had small displacement, this’s mainly related with the formation of hydrogen bonds.
引文
[1]吕建雄.紧紧围绕国家目标,加强开展人工林木材的研究.人造板通讯,2002,(10):3-5
    [2]何洪城,胡伟,陈泽君.我国人工林木材深加工利用技术现状及发展趋势.林业经济问题,2005,25(6):364-367
    [3]张久荣,吴玉章.人工林杨木利用现状及前景.中国林业产业,2006,(11):24-26
    [4]鲍甫成,江泽慧.中国主要人工林树种木材性质.北京:中国林业出版社,1997
    [5]李坚.走向21世纪的木质复合材料,世界林业研究,1995,3:34-40
    [6]王恺,傅峰.当代木材加工技术发展态势.木材工业,1997,11(5):12-15
    [7]邱坚,李坚.木材-无机质复合材料的基本内涵.中国木材,2003,(1):34-34
    [8]李坚,吴玉章.无机质复合木材与人造板.北京木材工业,1995,(2):15-17
    [9]李坚,邱坚.日本在无机质复合材领域的研究.世界林业研究,2003,16(4):54-56
    [10]吕宁.溶胶-凝胶法制备木材/无机复合材料.北京林业大学硕士学位论文,2004
    [11]吕文华.木材蒙脱土纳米插层复合材料的制备.北京林业大学博士学位论文,2004
    [12]邱坚,李坚,刘迎涛.无机质复合木材研究进展.东北林业大学学报,2004,32(1):64-67
    [13]张明华,张美琴,尹子康.溶胶-凝胶法制备木材-无机质复合材料(之一);具有多孔结构的无机质复合木材.吉林建材,1999,4:38-43
    [14]张明华,张美琴,尹子康.溶胶-凝胶法制备木材-无机质复合材料(之二);超声波处理对制备木材—无机质复合材料的影响.吉林建材,2000,1:42-48
    [15]张明华,李敬博,尹子康.溶胶-凝胶法制备木材-无机质复合材料(之三);化学改性木材-无机质复合材料.吉林建材,2000,2:39-44
    [16]张明华,张美琴,尹子康.溶胶-凝胶法制备木材-无机质复合材料(之四);木材和无机物质之间的化学键对提高性能的影响.吉林建材,2000,3:38-43
    [17]马荣,乔冠军,金志浩.木材陶瓷.兵器材料科学与工程,1998,21(6):45-48
    [18]谢绍安,晓晨.生物拟态可将木材转化为陶瓷.激光与光电子学进展,1998,(3):40
    [19]马荣,乔冠军,金志浩.木材陶瓷的制备与性能研究.西安交通大学学报,1998,32(8):57-61
    [20]吕文华,赵广杰.木材蒙脱土纳米插层复合材料的制备构想.林业科学,2005,41(1):181-188
    [21]袁光明,刘元,胡云楚,吴志平.木材/无机纳米复合材料研究现状与展望.中南林学院学报,2005,25(3):111-116
    [22]刘元,胡云楚,袁光明.纳米科技与纳米木材学的发展方向.中南林学院学报,2004,24(5):143-146
    [23]赵广杰.木材中的纳米尺度、纳米木材及木材无机纳米材料.北京林业大学学报,2002,24(5):204-207
    [24]李坚,邱坚.纳米科技及其在木材科学中的应用前景(Ⅱ);纳米复合材料的结构、性能和应用.东北林业大学学报,2003,31(2):1-4
    [25]邱坚,李坚.纳米科技及其在木材科学中的应用前景(Ⅰ);纳米材料的概况、制备和应用前景.东北林业大学学报,2003,31(1):1-5
    [26]李笃信,贾德民.聚合物/无机物纳米复合材料研究进展及应用前景.高分子材料科学与工程,2003,19(4):22-26
    [27]胡显奎,林少全,刘振兴.聚合物基无机纳米粒子复合材料的制备技术及其应用展望.材料导报, 2000,14(10):62-63
    [28] T.Furuno,T.Uehara,S.Jodai. Combination of wood and silicate(Ⅰ). Impregnation by water glass and application of aluminum sulfate and calcium chloride as reactants. Mokuzai Gakkaishi,1991,37(5):462-472
    [29] T.Furuno,K.Shimada,T.Uehara,et.al. Combination of wood and silicate(Ⅱ). Water-mineral composites using water glass and reactants barium chloride, boric acid and borax and their properties. Mokuzai Gakkaishi, 1992, 38(5):448-457
    [30] T.Furuno,T.Uehara,S.Jodai. Combination of wood and silicat(eⅢ). Some properties of wood–mineral composites using the water glass-boron compound system. Mokuzai Gakkaishi,1993,39(5):561-570
    [31] H Yamaguchi. Properties of solicit acid compounds as chemical agents for impregnation and fixation of wood. Mokuzai Gakkaishi,1994,40(8):830-837
    [32] H Yamaguchi. Preparation and physical properties of wood fixed with silicic acid compounds. Mokuzai Gakkaishi,1994,40(8):838-845
    [33]陈子达.溶胶-凝胶法在制备生物材料方面的应用.生物医学工程学杂志,2001,18(4):629-632
    [34]张剑峰,郑强、高长有,益小苏.溶胶—凝胶法制备高分子/无机复合材料.功能材料,2000,31(4):357-360
    [35]符连社,张洪杰,邵华,等.溶胶-凝胶法及其在生物材料方面的应用.化学通报,1998,12:26-31
    [36]符韵林,赵广杰.溶胶-凝胶法在木材/无机纳米复合材料上的运用.林产工业,2005,30(1):6-9
    [37] S. Saka,M. Sasaki,M.Tanahashi. Wood-inorganic composites prepared by the sol-gel process (I). Wood-inorganic composites with porous structure. Mokuzai Gakkaishi,1992,38(11):1043-1049
    [38] Koji Ogiso,S. Saka. Wood-inorganic composites prepared by sol-gels process (Ⅱ). Effect of ultrasonic treatments on preparation of wood-inorganic composites. Mokuzai Gakkaishi,1993,39(3):301-307
    [39] S.Saka,Y.Yakake. Wood-inorganic composites prepared by sol-gel process(III). Chemically-modified wood-inorganic composites. Mokuzai Gakkaishi,1993,39(3):308-314
    [40] Koji Ogiso,Shiro Saka. Wood-inorganic composites prepared by sol-gel process (IV). Effects of chemical bonds between wood and inorganic substances on property enhancement. Mokuzai Gakkaishi,1994,40(10):1100-1106
    [41] Hisashi Miyafuji , Shiro Saka. Wood-inorganic composites prepared by sol-gel process (V). Fire-resisting properties of the SiO2-P2O5-B2O3 wood-inorganic composites. Mokuzai Gakkaishi,1996,42(1):74-80
    [42] S. Saka,F. Tanno. Wood-inorganic composites prepared by sol-gel process (VI). Effects of a property-enhancer on fire-resistance in SiO2-P2O5 and SiO2-B2O3 wood-inorganic composites. Mokuzai Gakkaishi,1996,42(l):81-86
    [43] H.Miyafuji,S. Saka. Fire-resisting properties in several TiO2 wood-inorganic composites and their topochemistry. Wood Science and Technology,1997,31:449-455
    [44] Hisashi Miyafuji,Shiro Saka,Akira Yamamoto. SiO2-P2O5-B2O3 wood-inorganic composites prepared by metal alkoxide oligomers and their fir-resisting properties. Holzforchung,1998,52:410-416
    [45] T. Fumie,S. Saka. Antimicrobial TMSAH-added wood-inorganic composites prepared by the sol-gel process. Holzforchung,1998,52:365-370
    [46] H.Miyafuji,S.Saka. SiO2-P2O5-B2O3 wood-inorganic composites prepared by metal alkoxide oligomers and their fire-resisting properties. Holzforchung,1998,52:410-416
    [47] Li Jianzhang,Takeshi Furuno,Sadanobu Katoh. Preparation and properties of acetylated and propionylated wood silicate composites. Holzforschung,2001,55:93-96
    [48]彭海源,崔永志,孙铁华,等.速生杨木增硬处理初报.东北林业大学学报,1985,1(13):144-148
    [49]邱玉玲,董岩,姜日顺.稀土改性杨木材质初探.东北林业大学学报,1993,21(1):85-89
    [50]王西成,田杰.陶瓷化木材的复合机理.材料研究学报,1996,10(4):435-439
    [51]王西成,程之强,莫小洪,等.用化学方法制备木材/二氧化硅原位复合材料界面的研究.材料工程,1998,(5):16-18
    [52]孙立,莫小洪,程之强,等.用化学方法制备木材二氧化硅纳米复合材料.中国建材科技,1998,7(3):23-25
    [53]王西成,史淑兰,程之强,等. (Si-Al-)陶瓷化木材的化学方法.材料研究学报,2000,14(1):51-55
    [54]周平,张志毅,梁树平.毛白杨无机复合木材研究.北京林业大学学报,2000,22(6):39-42
    [55]刘磊,朱玮,赵砺.杨木/无机硅化物复合材处理工艺初探.木材工业,2001,3(15):8-11
    [56]廖秋霞,卢灿辉,许晨.原位溶胶-疑胶制备木材-PMMA-SiO2复合材料及其显微结构.福建化工,2001,(1):21-23
    [57]陈志林,王群,左铁镛,等.无机质复合木材的复合工艺与性能.复合材料学报,2003,20(4):128-132
    [58]李建章,周文瑞,张德荣,等.木材改性的基础与理论模式.国际木业,2002,32(3):17-19
    [59]陈志林.陶瓷化复合木材复合方法与性能的基础性研究.北京工业大学博士学位论文,2003
    [60]邱坚,李坚.超临界干燥制备木材-SiO2气凝胶复合材料及其纳米结构.东北林业大学学报,2005,33(3):3-4
    [61]李坚,邱坚.硅气凝胶在木林纳米无机质复合材料中的应用.中国林学会木材科学第九次学术年会论文集,哈尔滨:2003,12:474-477
    [62]隋淑娟,邱坚,李坚.木材-纳米SiO2气凝胶复合材料结构的FTIR表征.东北林业大学学报,2006,34(5):49-50
    [63] S. Saka. Wood-inorganic composites as by the sol-gel process and its topochemistry on wood property enhancement. Mokuzaikogyo,1995,50(9):400-406
    [64]符韵林,赵广杰,全寿京.二氧化硅/木材复合材料的微细构造与物理性能.复合材料学报,2006,23(4):52-59
    [65]符韵林,赵广杰.木材/二氧化硅复合材料的微细构造.北京林业大学学报,2006,28(5):119-124
    [66]符韵林,赵广杰.二氧化硅/木材复合材料的晶胞与Matrix区域的变化.材料科学与工艺,2007,15(1)
    [67]符韵林,赵广杰.二氧化硅/木材复合材料的应力松弛,北京林业大学学报,2008,30(1):119-123
    [68]王群,郭红霞,李永卿,孙正强.硅溶胶/苯丙乳液杂化复合木材的制备与性能.北京工业大学学报,2006,32(7):638-646
    [69]王群,郭红霞,李永卿,宋晓辉.有机/无机杂化复合木材的制备与性能.化学研究与应用,2006,18(8):939-942
    [70]谢贤清,张荻,蔡建国等.结构功能一体化材料——木质陶瓷的发展及其应用.功能材料,2001,32(2):121-123
    [71]杨勇,朱子康,漆宗能.有机-无机纳米复合材料的研究进展.上海交通大学学报,1998,32(9):130-133
    [72]万其进,张传越.硅溶胶的开发及其应用.湖北师范学院学报,1994,14(3):86-92
    [73]刘德,徐向明.硅溶胶复合涂料技术.化学建材,1993,(3):135-136
    [74]周祚万,卢昌颖.水基性复合高分子涂料.化工建材,1997,(1):18-19
    [75]成俊卿,杨家驹,刘鹏.中国木材志.北京:中国林业出版社,1992
    [76]陆文达.木材改性工艺学.东北林业大学出版社. 1993.8
    [77]侯祝强,庄作峰.木材流体渗透性研究的发展与趋势.世界林业研究,1999,12(1):33-37
    [78] Wardrop AB, Davies GW. Morphological factors relating to the penetration of liquids into wood. Holzforschung, 1961, 15: 129-141
    [79] Bailey PJ, Preston RD. Some aspects of softwood permeability 1: structural studies with Douglas-fir sapwood and heartwood. Holzforschung, 1969, 23(4): 129-141
    [80]侯祝强.木材可压缩流体的流动型态分析.林业科学,1999,35(3):63-68
    [81]侯祝强,鲍甫成.木材可压缩流体的流动型态分析.林业科学,1999,35(3):63-68
    [82]李晓东.木材构造对木材化学浸渍处理方法的影响.广州化工,2005,33(5):57-61
    [83]赵有科,鲍甫成.针叶树木材流体纵向渗透性与其构造关系的理论分析.林业科学,1998,34(18):88-95
    [84]时尽书,李建章,周文瑞,张德荣.脲醛树脂与纳米二氧化硅复合改善木材性能的研究.北京林业大学学报,2006,28(2):123-128
    [85] Furuno T, Imamura Y, Kajita H. The modification of wood by treatment with low molecular weight phonel-formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls. Wood Science and Technology, 2004, 37:349-361
    [86]王凯,汤宜庄,刘燕吉.木材工业大全:木材保护卷.北京:中国林业出版社,215-221.
    [87]刘盛全.长江滩地杨树人工林木材性质与培育及利用的关系研究.中国林业科学研究院博士学位论文,1997
    [88]宋晓辉,高东海,王群.人工林杨树木材液体纵向渗透性研究.林业科技开发,2005,19(4):24-26
    [89]张玉萍.六种人工林木材实木胶合性能的研究.中国林业科学研究院硕士学位论文,2006
    [90] Japan Plywood Inspection Corporation. JPIC-EW. SE00-10, Japanese agricultural standard for structural glued laminated. Tokyo, Japan: Japan Plywood Inspection Corporation. 2000
    [91]阎昊鹏,陆熙娴,秦特夫.热重法研究木材热解反应动力学.木材工业,1997,11(2):14-18
    [92]余玮,吴新华.八种原料及其主要成分热解研究,木材热解机理初探.林产化学工业,1989,9(3):13-22
    [93] Ramiah MV. Thermogravimetric and differential thermal analysis of cellulose, hemicellulose and lignin. Journal of Applied Polymer Science, 1970, 14: 1323-1332.
    [94] Kung H.C. A mathematical model of wood pyrolysis. Combustion and Flame, 1972. 18: 185-195
    [95] Milosavljevic I, Suuberg E. M. Cellulose thermal decomposition kinetics: global mass loss kinetics. Industrial & Engineering Chemistry Research, 1995, 34: 1081-1091
    [96] F. L. Browne. Theories of the combustion of wood and its control, a survey of the literature[R]. Report No. 2136, Forest Products Laboratory, 1958
    [97] E.Mougel, Beraldo.A.L. Controlled dimensional variations of wood-cement composites. Holzforchung,1995,49:471-477
    [98]鲍甫成,胡荣.泡桐木材流体渗透性与扩散性的研究.林业科学,1990,26(3):239-246
    [99]臧红霞.接触角的测量方法与发展.福建分析测试,2006,15(2):47-48
    [100] D.Y.Kwok,A.W.Neumann. Contact angle measurement and contact angle interpretation. Advances in Colloid and Interface Science, 1999, 81:167-249
    [101] F.Civan. Model for interpretation and correlation of contact angle measurement. Journal of Colloid and Interface Science, 1997, 192:500-502
    [102] Rivera-Torres F, Vera-Graziano R. Effects of water on the long-term properties of Bis-GMA and Silylated-(Bis-GMA) polymers. Journal of Applied Polymer Science, 2008, 107(2): 1169-1178
    [103] S. Saka,R. Mimori. The distribution of inorganic constitution in while birch wood as determined by SEM-EDAX. Mokuzai Gakkaishi,1994,40(1):88-94
    [104]杨燕,邱坚.浅析硅化物在木材细胞壁中的沉积与运输.林业科技,2006,31(3):59-62
    [105] H. G. Richter. Occurrence, morphology and taxonomic implications of crystalline and siliceous inclusions in the secondary xylem of the lauraceae and related families. Wood Science and Technology, 1980, 14: 35-44
    [106]邱坚,杨燕,欧志翔,闭海松.木材中硅石的形成机理.木材加工机械,2006,(2):1-6
    [107]邱坚,杨燕.木材中硅石初探.福建林学院学报,2006,26(4):380-384
    [108] Y.Haruhiko. Properties of silicic acid compounds as chemical agents for impregnation and fixation of wood. Mokuzai Gakkaishi. 1994,40(8):830-835
    [109]姜笑梅,腰希申.木材的电子显微结构.北京:中国林业出版社
    [110] Jakub Nowak, Marek Florek, Wojciech Kwiatek, et al. Composite structure of wood cells in petrified wood. Materials Science and Engineering, 2005, 25:119-130
    [111] C.Zollfrank. Silyation of solid beech wood. Wood Science and Technology,2001,35:183-189
    [112] Steffen Donath, Holger Militz, Carsten Mai. Wood modification with alkoxysilanes. Wood Science and Technology,2004,38:555-566
    [113] M. TM. Willemse,R.W Denouter. Stem anatomy and cell wall auto fluorescence during growth of three maize cultivars. Acta Bot Need,1988,37:39-47
    [114]蔡宁,马荣,乔冠军,等.木材陶瓷化反应机理的研究.无机材料学报,2001,4(16):763-768
    [115]李坚.新型木材.哈尔滨:东北林业大学出版社,1999. 9
    [116]张明华,赵文静.浅谈木材陶瓷材料的复合机理.吉林建材,2000,3:6-7
    [117]唐建国,胡克鳖.天然植物纤维的改性与树脂基复合材料.高分子通报,1998,6:56-62
    [118] N. Sauvat,R.Sell. A study of ordinary Portland cements hydration with wood by isothermal calorimetry. Holzforchung,1999,53:104-108
    [119]李坚.木材波谱学.北京:科学出版社,2003
    [120] Collier W, Kalasinaky VF, Schultz TP. Infrared study of lignin: Assignment of methoxyl C-H bending and stretching bands. Holzforschung, 1997, 51(2):167-168

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700