基于符号有向图和支持向量机的故障诊断方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
符号有向图(Signed Directed Graph, SDG)是在图论的基础上发展起来的一种基于定性分析的故障诊断方法,能够有效地表达复杂系统的各个变量之间的相互关系,具有很强的完备性同时又具有灵活的推理方式和有效的推理算法能够提供故障传播的路径,给出故障发生的详细解释。然而由于SDG是基于定性的故障诊断方法,测量信号中许多有用的定量信息被忽略或无法被考虑,导致故障诊断分辨率不高。支持向量机(Support Vector Machine, SVM)是在统计学习理论的基础上发展起来的一种新的机器学习方法。采用结构风险最小化思想的SVM同时考虑了经验风险和置信区间的最小,能够获得最好的泛化能力,是专门研究小样本情况下机器学习的理论。其次,SVM巧妙地采用“核函数”,将低维非线性空间映射到高维线性特征空间的同时,并没有增加求解最优分类面的复杂度,解决了高维空间中计算带来的“维数灾难”问题。SVM以其深厚的数学基础和极强的泛化能力,被认为是十几年来机器学习和模式识别领域最有影响的成果之一。本文将SDG和SVM有机结合起来,利用SDG的完备性和推理机制,找到故障传播的相容通路,提取故障发生时的上要相关变量;利用SVM优良的分类性能对相关的主要变量进行训练,根据训练获得的最优分类面进行故障诊断。本文主要内容包括两大部分:一是基于“去心法”的支持向量预选取方法及其模式识别应用;二是基于SDG和SVM的故障诊断算法及其工程应用,这部分是本文的核心部分。具体内容包括以下几部分:(1)在深入研究支持向量机的理论基础及工作原理的基础上,提出了基于“去心法”(Central Samples Discarded Method,CSDM)的支持向量预选取方法。支持向量是决定最优超平面位置的关键元素,去掉非支持向量,重新对样本进行训练,能够得到相同的最优超平面。基于这个思想,提出了利用标准差去掉各类样本中靠近中心位置的样本,保留边界样本的“去心法”,以此来进行支持向量的预选取,该方法显著提高了SVM的训练速度。和已有的支持向量预选取方法进行对比,论证了该方法的可行性。
     (2)提出了一次相容通路的概念。一次相容通路是指故障发生初期的相容通路。当故障发生时,系统状态变量的响应有3个阶段:初始响应、中间响应和最终响应。故障诊断最主要的性能指标之一是实时性,因此一次相容通路的获取对故障诊断非常重要,可以解决故障发生的不同时期,其相容通路不同而导致的分辨率不高的问题。一次相容通路是符号有向图理论的一个扩充。
     (3)提出了符号有向图和支持向量机相结合的故障诊断方法。利用一次相容通路中的一次相容变量为基础进行SVM的训练,达到了降维的目的,提高训练和诊断速度;利用SVM优良的分类性可以提高故障诊断的准确率。以火电厂除氧器的故障诊断为例验证了该方法的可行性。
     (4)将基于符号有向图和支持向量机的故障诊断方法应用在Tennessee-Eastman Process (TEP)仿真系统的故障诊断中。通过对TEP仿真系统的实验结果分析,对该故障诊断方法的适用范围进行了探讨。
     本文的创新性成果如下
     (1)提出了基于“去心法”的支持向量预选取方法;
     (2)根据故障传播的特点,提出了一次相容通路的概念;
     (3)本文将定性的SDG和定量的SVM有机结合起来,提出了一种基于SDG和SVM的故障诊断算法。
     (4)针对多故障诊断中特征故障的特点,提出了将基于“二叉树”的多类分类算法与基于决策导向无环图(DDAG)的多类分类算法相结合的混合多类分类算法,并应用于除氧器的故障诊断中
     (5)基于一次相容通路的概念,在基于决策导向无环图(DDAG)的多类分类算法中,提出了针对不同的两分类问题,选用不同的变量进行分类器的训练,提高了算法的训练速度。
Signed Directed Graph is a fault diagnosis method developed on the basis of graph theory, and not only can efficiently express the interrelations among variables of complex systems and has strong completeness, flexible reasoning ways and effective reasoning algorithm, but also shows failure propagation paths and faults detailed explanations. However, SDG is an qualitative analysis method, many useful quantitative information in measured signals are ignored or cannot be considered, which leads to low fault resolution. Support Vector Machine (S VM) is a new kind of machine learning method developed on the basis of statistical learning theory, which uses structural risk minimization thought. SVM takes the minimum of experience risk and confidence interval into account, and can gain the best generalization ability, and specializes in small sample. Then, SVM ingeniously uses "Kernel function", which can map low-dimensional nonlinear space to higher dimensional linear character space, in the process of which don't increase the complexity of solution of optimal classification, and solve problem of "dimension disaster" brought by calculation in higher-dimensional space. With profound mathematics base and strong generalization ability, SVM is considered to be one of the most influential achievements in pattern recognition and machine learning domain in ten years.
     The qualitative SDG and quantitative SVM are combined in this paper. Mainly related variables in compatible pathways can be got by SDG's completeness and reasoning mechanisms; main variables are trained to acquire optimal hyperplanes.
     This paper mainly includes two parts:first, support vector pre-selected method based on Central Samples Discarded Method is proposed and is applied in Pattern Recognition; second, fault diagnosis algorithm based on SDG and SVM is proposed and applied in engineering fault diagnosis, which is this paper's core.
     The main research and innovative achievements in this paper can be classed as follows:
     (1) On the basis of the thorough research in theoretical basis of support vector machine and the basic principle, support vector pre-selected was proposed based on the method of "Central Samples Discarded Method, CSDM". Support vector is the key elements deciding the optimal hyperplanes location, and removing the non-support vector and restarting training the sample can get the same optimal hyperplanes. Based on thought above, the method of "CSDM", which removes the samples near the center and keeps the boundary samples to have support vector pre-selected, is put forward, thus the purpose of improving the training speed is achieved. Compared with pre-existing support vector pre-selected method, the feasibility is demonstrated.
     (2) Put forward the concept of Initial Consistent Path. Initial Consistent Path refers to consistent path at the beginning of the faults. When a fault occurs, the response of the system state variables has three stages:the initial response, middle response and eventual response. One of the main performance indexes of fault diagnosis is real-time. Therefore, the gain of consistent path of the initial response phase for fault diagnosis is very important, which can effectively solve the problem that different compatible pathways in different fault period can lead to low resolution. Initial Consistent Path is an extension to SDG.
     (3) Put forward to fault diagnosis method of the combination of SDG and SVM. Proposed compatible pathways can look for fluctuating variables at the begining of the faults occurance. SVM training based on these variables can achieve the purpose of reducing the dimension, improve training and diagnosis velocity; SVM excellent classification can improve fault diagnosis accuracy. Fault diagnosis for deaerator of coal-fired plants demonstrated the feasibility of this method.
     (4) Fault diagnosis method based on SDG and SVM is applied into Tennessee-Eastman Process (TEP) simulation fault diagnosis system. By analyzing the experimental results of the TEP simulation system, this paper discusses the applicable scope of the fault diagnosis method.
     Innovative achievements in this paper can be classed as follows:
     (1) Support vector pre-selected was proposed based on the method of Central Samples Discarded Method.
     (2) Put forward to the concept of Initial Consistent Path by failure propagation characteristics.
     (3) Put forward to fault diagnosis algorithm based on SDG and SVM.
     (4) On account of the characteristics of special faults in multi-fault diagnosis, mix multi-class classification algorithm constituted with the combination of classification algorithms based on binary tree and DDAG are proposed and applied in fault diagnosis for deaerator of power plants.
     (5) In DDAG-classification algorithm, the concept that different variables for classifier training in different two classification problem is put forward base on Initial Consistent Path, which improves training speed of algorithms.
引文
[1]黄启明,钱宇,林伟璐,李秀喜.化工过程故障诊断研究进展[J].化工自动化仪表,2002,27(3):1-5
    [2]周东华,孙优贤.控制系统的故障检测与诊断技术.北京:清华大学出版社,1994
    [3]张洪钺,闻新,周露.国内控制系统故障诊断技术的现状与展望[J].火力与指挥控制,1997,3:1-6.
    [4]Frank, P.M. Fault Diagnosis in the dynamic systems using analytical and knowledge-based fault redundancy-a survey and some new results. Automatica,1990,26:459-474.
    [5]Gentil S., Lesecq S., Barraud A.. Improving decision making in fault detection and isolation using model validity[J]. Engineering Applications of Artificial Intelligence,2009,22(4-5): 534-545.
    [6]Rolf Isermann. Model-based fault-detection and diagnosis-status and applications[J]. Annual Reviews in Control,2005,29(1):71-85.
    [7]Venkat Venkatasubramanian, Raghunathan Rengaswamy, Kewen Yin, et al. A review of process fault detection and diagnosis:Part I:Quantitative model-based methods[J]. Computers & Chemical Engineering,2003,27(3):293-311.
    [8J闻新,张洪钱,周露.控制系统得故障诊断和容错控制[M].北京:机械工业山版社,2000.
    [9]易辉,宋晓峰,姜斌,等.基于结点优化的决策导向无环图支持向量机及其在故障诊断中的应用[J].自动化学报,2010,36(3):427-432.
    [10]Tse P.W., Gontarz S., Wang X.J.. Enhanced eigenvector algorithm for recovering multiple sources of vibration signals in machine fault diagnosis[J]. Mechanical Systems and Signal Processing,2007,21(7):2794-2813.
    [11]杨露,沈怀荣.基于HHT/PNN的故障信息融合诊断方法[J].北京工业大学学报,2010,36(2):152-157.
    [12]Cen Nan, Faisal Khan, M. Tariq Iqbal. Real-time fault diagnosis using knowledge-based expert system[J]. Process Safety and Environmental Protection,2008,86(1):55-71.
    [13]张登峰,费胜巍,刘远伟,等.复杂装备早期维护中故障诊断知识获取方法[J].中南大学学报(自然科学版).2009,40(S 1):284-289.
    [14]甄子洋,F道波,王志胜.基于蚁群优化算法的精密伺服转台故障诊断方法[J].自动化学报,2009,35(6):780-784.
    [15]Venkat Venkatasubramanian, Raghunathan R., Kewen Yin, Surya N. Kavuri. A review of process fault detection and diagnosis Part I:Quantitative model-based methods. Computers and Chemical Engineering,2003(27):293-311.
    [16]Venkat Venkatasubramanian,Raghunathan R.,Surya N. Kavuri.A review of process fault detection and diagnosis Part Ⅱ:Qualitative models and search strategies. Computers and Chemical Engineering,2003(27):313-326.
    [17]Venkat Venkatasubramanian, Raghunathan R., Surya N. Kavuri, Kewen Yin. A review of process fault detection and diagnosis Part Ⅲ:Process history based methods. Computers and Chemical Engineering,2003 (27):327-346.
    [18]邓乃扬,田英杰.数据挖掘中的新方法-支持向量机[M].科学出版社,2004
    [19]Cortes C, Vapnik V. Support vector networks [J]. Machine Learning,1995, (20):273-297.
    [20]Osuna E, Freund R, Girosi F.Training support vector machines:an application to face detection [A]. Proc IEEE Conference on Computer Vision and Pattern Recognition[C]. 1997:17-19.
    [21]Platt J C. Fast training of support vector machines using sequential minimal optimization [A]. Advances in Kernel Methods:Support Vector Learning[C]. Cambridge,MA:MIT Press,1999.185-208.
    [22]Keerthi S S, Shevade S K, Bhattacharyya C, et al. Improvements to Platt's SMO algorithm for SVM classier design [J].Neural Computation,2001,13(3):637-649.
    [23]Kcerthi S S,Gilbert E. Convergence of a generalized SMO algorithm for SVM classifier design[J].Machine learning,2002,46(1/3):351-360
    [24]Joachims T. Making large-scale SVM learning practical [A]. Burges C, Scholkopf B. Advances in Kernel Methods:Support Vector Learning [C]. Cambridge, MA:MIT Press, 1998.
    [25]粟塔山等著.最优化计算原理与算法程序设计.国防科技大学出版社,2001,1
    [26]Vapnik V The Nature of Statistical Learning Theory. Springer-Verlag, New York.1995
    [27]许建华,张学工译,Vladimir N. Vapnik著.统计学习理论.电子工业出版社,2004,6
    [28]Friess T, Cristianimi N., Camplell,C. The Kernel Adatron Algorithm:A Fast And Simple Learning Procedure For Support Vector Machines.In Proceeding of 15th Intl. Conf. Machine Leaming,Morgan Kaufman Publishers,1998
    [29]Mangasarian O.L, Musicant D.R. Successive Overrelaxation For Support Vector Machines. IEEE TRANS ON NETWORK,1999,10(5),1032-1037.
    [30]B.Scholkopf, A.Smola,R.C.Williamson,and P.L.Bartlett. New support vector algorithms. Neural Computation,2000,Vol.12:1207-1245
    [31]Lee T.J., Mangasarian O..RSVM:Reduced Support Vector Machines. In Proceeding of the First SLAM International Conference On Data Mining,2001
    [32]Suykens J A K, Vandewalle J. Least square support vector machines classifiers[J]. Neural Network Letters,1999,19(3):293-300.
    [33]Keerthi S S, Shevade S K, Bhattacharyya C, et al. A fast iterative nearest point algorithm for support vector machine classifier design[J].IEEE Transactions on Neural Networks, 2000,11(1):124-136.
    [34]Hong-Gunn Chew, David J, Crisp, Robert E. Bogner, Cheng-Chew Lin. Target Detction In Radar Imagery Using Support Vector Machines With Training Size Biasing. In Proceeding of 6th International Conference On Control, Automation, Robotics And Vision, Singapore,2000
    [35]张铃.支持向量机理论与基于规划的神经网络学习算法[J].计算机学报,2001,24(2):113-118.
    [36]Yang M H,A huja N. A geometric approach to train support vector machines[A]. Proceedings of CVPR 2000[C]. Hilton Head Island,2000.430-437.
    [37]张文生,丁辉,王钰.基于邻域原理计算海量数据支持向量的研究[J].软件学报,2001,12(5):712-720.
    [38]汪西莉,焦李成.一种基于马氏距离的支持向量快速提取算法[J].西安电子科技大学学报(自然科学版),2004,31(4):639-643.
    [39]焦李成,张莉,周伟达.支撑矢量预选取的中心距离比值[J].电子学报,2001,29(3):383-386.
    [40]李青,焦李成,周伟达.基于向量投影的支撑向量预选取[J].计算机学报,2005,28(2):145-152.
    [41]Weston J, Watkins C. Multiclass support vector machines TR CSDTR9804[Z]. Department of Computer Science Egham.Surrey TW20 OEX, England,1998.
    [42]Vapnik V.Statistical learning theory[M].New York:Springer-Verlag,1998.
    [43]Knerr S, Personnaz L,Dreyfus,G. Single-layer learning revisited:a stepwise procedure for building and training a neural network[A].Neurocomputing:Algorithms, Architectures and Applications[C]. NATO ASL Springer,1990.
    [44]Platt J, Cristianini N, Shawe-Taylor J. Large margin DAGs for multiclass classification [A]. Advances in neural information processing systems[C]. Massachusetts:MIT Press,2000, 547-553.
    [45]安金龙,王正欧,马振平.一种新的支持向量机多类分类方法[J].信息与控制,2004,33(1):262-267.
    [46]Joachims T.Web Page on SVMlight:http://www-ai.cs.uni-dortmund.de/SOFTWARE /SVM_LIGHT/svin_light.eng.html.
    [47]Lin C.J. On the convergence of the decomposition method for support vector machines[J].IEEE T.Neural Networks,2001,12(6):1288-1298.
    [48]Chang C.C., Lin C.J.LIBSVM:A Library for Support Vector Machines(Version 2.3).2001.http://www.csie.ntu.edu.tw/-cjlin/papers/libsvm.pdf.2001.
    [49]Oren M.,Papageorgiou C. and Sinha P. et al. Pedestrian Detection Using Wavelet Templates. Proceedings Of CVPR'97,1997,Puerto Rico
    [50]Hearst M.A. Scholkopf B.and Dumais Setal. Trends and controversies support vector machines. IEEE Intelligent Systems,1998,13(4):18-28
    [51]马勇,丁晓青.基于层次型支持向量机的人脸检测[J].清华大学学报(自然科学版),2003,43(1):35-38.
    [52]叶航军,白雪生,徐光祐.基于支持向量机的人脸姿态判定[J].清华大学学报(自然科学版),2003,43(1):67-70.
    [53]Chikahito N, Massimiliano P, Bernd H, et al. Full-body person recognition system [J]. Pattern Recognition,2003,36(9):1997-2006.
    [54]Wan V. and Campbell W.M.Support vector machines for speaker verification and identification. Proceedings of the 2000 IEEE signal Processing Society Workshop on Neural Networks for Signal Processing,2000,2(2):775-784
    [55]Xin Dong and Wu Zhaohui. Speaker recognition using continuous density support vector machines. Electronics Letters,2001,37(17-16):1099-1101.
    [56]Gordan,M., Kotropoulos C and Pitas I. Application of support Vector machines classifiers to visual speech recognition. Proceedings.2002 International Conference On Image Processing,2002,3:129-132
    [57]忻栋,杨莹春,吴朝晖.基于SVM-HMM混合模型的说话人确认[J].计算机辅助设计与图形学学报,2002,14(11):1080-1082.
    [58]张凡,贺苏宁.基于支持向量机的多种语言语音识别研究[J].计算机应用,2004,24(6):282-284.
    [59]Ahmad A.R., Khalid M.and Yusof R. Kernel methods and support vector machines for handwriting recognition. SCOReD 2002. Student Conference On Research and Development,2002:309-312
    [60]Bahlmann C, Haasdonk B. and Burkhardt H. On-line handwriting recognition with support vector machines-a kernel approach. Proceedings of Eighth International Workshop on Frontiers in Handwriting Recognition,2002:49-54
    [61]贺海军,王建芬,周青,等.基于决策支持向量机的中文网页分类器『J].计算机工程,2003,29(2):47-48.
    [62]Pontil M. and verri A. Support vector machines for 3D object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(6):637-646
    [63]Roobaert D. and Van Hulle M.M. View-based 3D object recognition with support vector machines. Proceedings of the 1999 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing IX,1999:77-84
    [64]Schwenker E, Kestler H.A. and Simon S.3D object recognition for autonomous mobile robots utilizing support vector classifiers. Proceedings 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation,2001:344-349
    [65]Reyna R.A, Hernandez N., Esteve D. et al. Segmenting images with support vector machines. Proceedings of International Conference On Image PrcIcessing,2000,1(1):820-823
    [66]Keren D., Osadchy M.and Gotsman C.Antifaces:A novel, fast method for image detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(7):747-761
    [67]Vailaya A., Zhang H., Zhang HongJiang et al. Automatic image orientation detection. IEEE Transactions on Image Processing,2002,11(7):746-755
    [68]H.Drucker, C.J.C.Burges, L.Kaufman, A.J.Smola, V.N.Vapnik. Support vector regression machines. In M.C.Mozer, M.I.Jordan, and T.Petsche, editors,Advances in Neural Information Processing Systems 9. pages 155-161, Cambridge, MA,1997. MIT Press.
    [69]V.N.Vapnik, S.Golowich, A.J.Smola. Support vector method for function approximation,regression estimation,and signal processing. In M.C.Mozer, M.I.Jordan, and T.Petsche, editors,Advances in Neural Information Processing Systems 9, pages 281-287, Cambridge, MA,1997. MIT Press.
    [70]A.Chalimourda, B.Scholkopf, A.J.Smola. Experimentally optimal v in support vector regression for different noise models and parameter settings,NeuralNetworks. 2004,17(1):127-141.
    [71]V.Cherkassky, X.H.Shao, EM.Mulier, V.N.Vapnik. Model complexity control for regression using VC generalization bounds, IEEE Trans. Neural Networks,1999,10(5):1075-1089.
    [72]C.C.Chuang, S.F.Su, J.T.Jeng, C.C.Hsiao. Robust support vector regression networks for function approximation with outliers.IEEE Trans. Neural Networks,2002,13(6):1322-1330.
    [73]S.K.Shevade, S.S.Keerthi, C.Bhattacharyya, K.R.K.Murthy. Improvements to the SMO algorithm for SVM regression. IEEE Trans. Neural Networks,2000,11 (5):1188-1193.
    [74]M.Palaniswami, A.Shilton. Adaptive support vector machines for regression, Proc.of the 9th Int. Conf. Neural Information Processing,2002,vol.2:1043-1049.
    [75]J.B.Bi, K.P.Bennett. A geometric approach to support vector regression. Neurocomputing, 2003,55(1-2):79-108.
    [76]M.W.Chang, C.J.Lin,R.C.H.Weng. Analysis of switching dynamics with competing support vector machines, IEEE Trans. Neural Networks,2004,15(3):720-727.
    [77]崔万照,朱长纯,保文星,等.混沌时间序列的支持向量机预测[J].物理学报,2004,53(10):3303-3310.
    [78]张林,刘先珊,阴和俊.基于时间序列的支持向量机在负荷预测中的应用[J].电网技术,2004,28(19):3841.
    [79]Musicant D.R.,Alexander F. Active set support vector regression[J].IEEE T.Neural Networks,2004,15(2):268-275.
    [80]Na M.G,Upadhyaya B.R. Model predictive control of an SP-100 space reactor using support vector regression and genetic optimization[J].IEEE T.Nucl.Sci.,2006,53(4):2318-2327.
    [81]Muller K.R., Smola A.J., Ratsch Get al. Prediction time series with support vector machines[C]. Proceeding of the International Conference on Artificial Neural Networks.Lausaunne,Switzerland:Springer,1997:999-1004.
    [82]J.A.K.Suykens. Support vector machines:a nonlinear modelling and control perspective. European J.Control,2001,7(2-3):311-327.
    [83]J.A.K.Suykens, J.Vandewalle, B.De Moor. Optimal control by least squares support vector machines.Neural Networks,2001,14(1):23-35.
    [84]B.J.de Kruif, T.J.A.de Vries. On using a support vector machine in learning feed-forward control, Proc. of IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics,2001,vol.1:272-277.
    [85]B.J.de Kruif, T. J. A. de Vries. Support-vector-based least squares for learning non-linear dynamics. Proc of 41st IEEE Conf. Decision and Control,2002,vol.2:13434-1348.
    [86]张浩然,韩正之,李昌刚.基于支持向量机的未知非线性系统辨识与控制[J].上海交通大学学报,2003,37(6):927-930.
    [87]王宇红,黄德先,高东杰,金以慧.基于LS-SVM的非线性预测控制技术,控制与决策,2004,19(4):383-387.
    [88]D.X.Bi, Y.F.Li, S.K.Tso, GL.Wang. Friction modeling and compensation for haptic display based on support vector machine.IEEE Trans Industrial Electronics,2004,51(2):491-500.
    [89]GL.Wang, Y.F.Li, D.X.Bi. Support vector machine networks for friction modeling,IEEE/ASME Trans.Mechatronics,2004,9(3):601-606.
    [90]许光,俞欢军,陈德钊.基于支持向量机的柠檬酸发酵过程统计建模[J].化学反应工程与工艺,2004,20(1):59-63.
    [91]邵信光,杨慧中,石晨曦.e不敏感支持向量回归在化工数据建模中的应用[J].东南大学学报(自然科学版),2004,34(增):215-218.
    [92]李元诚,方廷健.一种基于粗糙集理论的SVM短期负荷预测方法[J].系统工程与电子技术,2004,26(2):187-190.
    [93]吴重光.系统建模与仿真[M].清华大学出版社.清华大学出版社,北京:2008.
    [94]S.A.Lapp, G.J.Powers. Computer-aided Synthesis of Fault-trees[J].IEEE Transactions on Reliability,1977,26(2):2-12
    [95]M.Iri, K. Aoki, E.O'shima and H.Matsuyama. An Algorithm for Diagnosis of System Failures in The Chemical Process[J]. Computer & Chemical Engineering,1979,3:489-493
    [96]M.Iri, K. Aoki, E.O'shima and H.Matsuyama. A graphical approach to the problem of locating the origin of the system failure. Journal of the Operations Res. Soc. of Japan 1980,23(4):295-311.
    [97]T.Umeda and T.Kuriyama. A Graphical Approach to Cause and Effect Analysis of Chemical Processing Systems[J]. Chemical Engineering Science,1980,35:2379-2388
    [98]J. Shiozaki, H. Matsuyama, K. Tano and E.O'shima. Fault Diagnosis of Chemical Processes by the use of Signed, Directed Graphs. Extension to Five-range Patterns of Abnormality[J]. International Chemical Engineering,1985,25(4):651-659
    [99]Y. Tsuge, J. Shiozaki, H. Matsuyama, K. E.O'shima, Y. Iguchi, M. Fuchigami, and M. Matsushita. Fesibility Study of a Fault-diagnosis System for Chemical Plants[J]. International Chemical Engineering,1985,25(4):660-667
    [100]M. A. Kramer, B. L. Palowitch. A Rule-Based Approach to Fault Diagnosis Using the Signed Directed Graph[J]. AIChE Journal,1987,33(7):1607-1078
    [101]J. Shiozaki, B. Shibata, H. Matsuyama, and. E. O'shima. Fault Diagnosis of Chemical Processes Utilizing Signed Direted Graphs-Improvement by Using Temporal InformationfJ]. IEEE Transactions on Industrial Electronics,1989,36(4):469-474
    [102]C. C. Chang and C. C. Yu. On-Line Fault Diagnosis Using the Signed Directed Graph[J]. Ind. Eng. Chem. Res.,1990,29(7):1290-1299
    [103]R. Vaidhyanathan and V. Venkatasubramanian. Experience with an Expert System for Automated HAZOP Analysis[J]. Computers Chem. Engng.,1996,20:1589-1594
    [104]H. Vedam and V. Venkatasubramanian. Signed Digraph Based Multiple Fault Diagnosis[J]. Computers Chem. Engng.,1997,21:655-660
    [105]D. Mylaraswamy and V. Venkatasubramanian. A Hybrid Framework for Large Scale Process Fault Diagnosis[J]. Computers Chem. Engng.,1997,21:935-940
    [106]S. Dash and V. Venkatasubramanian. Challenges in the Industrial Applications of Fault Diagnostic Systems[J]. Computers Chem. Engng.,2000,24:785-791
    [107]V. Venkatasubramanian, J. Zhao, and S. Viswanathan. Intelligent System for HAZOP Analysis of Complex Process PlantsfJ]. Computers Chem. Engng.,2000,24:2291-2302
    [108]X. Z. Wang, S. A. Yang, S. H. Yang and C. Mcgreavy. The Application of Fuzzy Qualitative Simulation in Safety and Operability Assessment of Process Plants[J]. Computers Chem. Engng.,1996,20:671-676
    [109]C. C. Yu and C. Lee. Fault Diagnosis Based on Qualitative/Quantitative Process Knowledge[J]. AIChE Journal,1991,37(4):617-628
    [110]Han, C, Shih, R.,& Lee, L. Quantifying signed directed graphs with the fuzzy set for fault diagnosis resolution improvement. Industrial and Engineering Chemistry Research 1994.33 (8),1943-1954.
    [111]E. E. Tarifa and N. J. Scenna. Fault Diagnosis, Direct Graphs, and Fuzzy Logic[J]. Computers Chem. Engng.,1997,21:649-654
    [112]Shih, R.,& Lee, L. Use of fuzzy cause-effect digraph for resolution fault diagnosis for process plants (1):Fuzzy cause-effect digraph. Industrial and Engineering Chemistry Research 1995,34 (5),1688-1702.
    [113]Shih,R.F.,Lee,L.S.,Use of fuzzy cause-effect digraph for resolution fault diagnosis for process plants(2):Diagnostic algorithm and applications, Industrial and Engineering Chemistry Research,1995,34(5):1703-1717.
    [114]Kim, H.,& Lee, K. Fuzzy implications of fuzzy cognitive map with emphasis on fuzzy causal relationship and fuzzy partially causal relationship. Fuzzy Sets and Systems.1998, 97(3),303-313.
    [115]Enrique E. Tarifa, Nicolas J. Scenna.Fault diagnosis for MSF dynamic states using a SDG and fuzzy logic. Desalination,2004,8(166):93-101.
    [116]Jung Yang Chena, Chuei-Tin Chang. Development of fault diagnosis strategies based on qualitative predictions of symptom evolution behaviors Journal of process control, 2009,5(19):842-858.
    [117]Wang,X.,Yang,S.,Veloso,E.,. Qualitative process modeling-a fuzzy signed directed graph method. Computers and Chemical Engineering.1995,19:735-740.
    [118]Hiranmayee Vedam, Venkat Venkatasubramanian. PCA-SDG based process monitoring and fault diagnosis. Control Engineering Practice.1999,7(21):903-917.
    [119]Maurya M. R., Rengaswamy R., Venkatasubramanian V. Incipient fault diagnosis of tennessee eastman flowsheet using signed Directed Graph and Trend Analysis. Proceedings of the 12th European Symposium on Computer Aided Process Engineering(ESCAPE-12), 2002.
    [120]M.R. Mauryal, R. Rengaswamyand V. Venkatasubramanian. A signed directed graph and qualitative trend analysis-based framework for incipient fault diagnosis. Chemical engineering research and design,2007,10(85):1407-1422.
    [121]Maurya M. R., Rengaswamy R., Venkatasubramaniana V. Application of Signed Digraphs based Analysis for Fault Diagnosis of Chemical Process Flowsheets. Engineering Applications of Artificial Intelligence,2004.17:501-518.
    [122]Lee G, Song S O, Yoon E. Multiple-fault Diagnosis Based on System Decomposition and Dynamic PLS. Ind Eng Chem Res 2003.42:6145-6154.
    [123]Sung Joon Ahn, Chang Jun Lee, et al. Fault diagnosis of the multi-stage flash desalination process based on signed digraph and dynamic partial least square. Desalination, 2008,228(1-3):68-83.
    [124]Tsuge Y, Hiratsuka K., Takeda K., et al. A fault detection and diagnosis for the continuous process with load-fluctuations using orthogonal wavelets [J]. Computers and Chemical Engineering,2000,24(2-7):761-767.
    [125]黄卫东,王克昌.基于定性和定量关系的液体火箭发动机故障诊断[J].航空动力学报,1996,11(3):281-284
    [126]黄卫东,王克昌.基于深层知识规则的液体火箭发动机故障诊断[J].宇航学报,1997,18(4):61-65
    [127]王文辉,周东华.基于定性和半定性方法的故障检测与诊断技术[J].控制理论与应用,2002,19(5):653-666
    [128]吴重光,夏涛,张贝克.基于符号定向图(SDG)深层知识模型的定性仿真[J].系统仿真学报,2003,15(10):1351-1355
    [129]夏涛,张贝克,吴重光.石油化工SDG故障诊断系统仿真实验系统[J].系统仿真学,2003,15(10):1377-1380.
    [130]张贝克,夏涛,吴重光.SDG标准测试图及推理引擎论证[J].系统仿真学报,2003,15(10):1369-1373.
    [131]张贝克,许欣,马昕.一种新型SDG故障诊断推理算法及其应用[J].仪器仪表学报,2008,29(S4):329-332.
    [132]李安峰,夏涛,张贝克等.化工过程SDG建模方法[J].系统仿真学报.2003,15(10):1364-1368.
    [133]张钊谦.基于符号定向图模型的故障树自动建树研究[D].北京化工大学,2005.
    [134]吴重光,张贝克,夏涛.具有误操作自诊断的高效过程系统仿真平台[J].系统仿真学报,2003,15(10):1385-1387.
    [135]张贝克,夏涛,吴重光.集成化SDG建模、推理与信息处理软件平台.系统仿真学报,2003,15(10):1360-1363.
    [136]牟善军,姜春明,吴重光.SDG方法与过程安全分析的关系[J].系统仿真学报, 2003(10):1381-1384.
    [137]李安峰,夏涛,张贝克等.基于SDG的计算机辅助危险与可操作性分析[J].系统真学报,2003,15(10):1394-1397.
    [138]夏涛,张贝克,吴重光,等.石油化工危险、安全与控制仿真试验平台的结构设计[J].系统仿真学报,2003,15(10):1369-1373.
    [139]张卫华,王春利,吴春光等.石化装置故障诊断技术的发展及应用[J].系统仿真学报,2009,21(21):6811-6816
    [140]李安峰,夏涛,张贝克,等.化工过程SDG建模方法[J].系统仿真学报,2003,15(10):1364-1368.
    [141]张钊谦,张贝克,夏涛,吴重光.一种新的计算机辅助故障树生成方法[J].计算机仿真,2005,(10).
    [142]张钊谦,夏涛,张贝克,李安峰,吴重光.SDG自动生成故障树软件的研究与开发『J].系统仿真学报,2003,(10).
    [143]吴春光,张卫华等.故障诊断模型的检验和验证[J].北京化工大学学报,2009,36(6):105-110.
    [144]卢秉南,张贝克,等.基于SDG模型的控制系统故障诊断方法[J1.化工学报,2009,60(9):2243-2251.
    [145]刘长龙,马听,张贝克.基于SDG模型的故障诊断专家系统[J].计算机工程,2009,35(19):232-253.
    [146]许欣.原油蒸馏装置SDG故障诊断应用研究[D].北京化工大学,2008.
    [147]卢秉南.原油蒸馏装置SDG故障诊断应用研究[D].北京化工大学,2009.
    [148]刘玥,张贝克,吴重光.基于模糊推理的SDG故障诊断新方法[J].计算机应用,2006,25(11):2661-2664.
    [149]王春利,张卫华,吴重光.模糊SDG故障诊断及推理方法研究[J].计算机与应用化学,2010,27(10):1370-1374.
    [150]张卫华,王春利,吴重光,任伟.PCA-SDG技术在化工过程故障诊断中的应用[J].系统仿真学报,2009,21(S2):101-105.
    [151]GAO Dong, WU Chongguang, ZHANG Beike, MA Xin. Signed directed graph and qualitative trend analysis based fault diagnosis in chemical industry. PROCESS SYSTEMS ENGINEERING Chinese Journal of Chemical Engineering,2010,18(2)265-276.
    [152]张海洋,张贝克,吴重光.用于监测复杂系统的计算机辅助定性趋势分析[J].计算机工:程与应用,2007,(17).
    [153]张卫华,吴重光,王春利,李传坤.基于神经网络的化工过程故障诊断[J].计算机与应用化学,2010,22(7):987-991.
    [154]王强,吴重光,张贝克等.基于SDG故障诊断的传感器分布优化设计[J].计算机仿真,2006,23(7):308-312.
    [155]王强,吴重光,张贝克等.基于SDG的传感器分布优化设计[J].江南大学学报(自科学版),2006,5(4):391-393
    [156]曹文亮,王兵树,马良玉,张冀,高建强,.基于改进SDG的电站热力系统故障诊断方法研究[J].中国电机工程学报,2005,(23).
    [157]曹文亮,王兵树,马永光,马良玉.基于SDG深层知识模型的电站热力系统故障诊断方法[J].华北电力大学学报,2005,(5).
    [158]曹文亮,王兵树,马良玉,张冀.主元统计法与符号有向图模型相结合的故障诊断方法[J].动力工程,2005,25(6):870-875.
    [159]曹文亮,王兵树,马良玉,张冀,高建强,.基于改进SDG的电站热力系统故障诊断方法研究[J].中国电机工程学报,2005,(23).
    [160]曹文亮,王兵树,马良玉,张冀.基于SDG推理规则和定量分析的故障诊断技术[J].热能动力工程,2005,(6).
    [161]马良玉.结合仿真技术的电站热力系统故障智能诊断研究[D].华北电力大学(河北),2004.
    [162]曹文亮,王兵树,马进,马良玉,辛宇峰.基于符号有向图节点定量化模型的故障诊断方法[J].中国电机工程学报,2006,26(7):67-71.
    [163]刘敏华,萧德云.基于趋势分析和SDG模型的故障诊断[J].控制理论与应用,2006,23(2):306-310.
    [164]刘敏华,萧德云,.基于SDG模型和模糊融合的故障诊断方法[J].控制工程,2006(1).
    [165]杨帆,萧德云.SDG建模及其应用的进展[J].控制理论与应用,2005,22(5):767-774.
    [166]杨帆,萧德云.大规模复杂系统的定性SDG建模方法[J].化工自动化及仪表,2005,32(5):8-11.
    [167]Fan Yang. Deyun Xiao. SDG-based fault isolation for large-scale complex systems solved by Rough Set theory. Proceedings of the 17th World Congress The International Federation of Automatic Control Seoul, Korea, July 6-11,2008.
    [168]杨帆,萧德云.结构残差在基于SDG故障分离中的应用[J].控制工程,2007,14(3):320-324.
    [169]杨帆,萧德云.概率SDG模型及故障分析推理方法[J].控制与决策.2006,21(5):487-491.
    [170]Fan Yang. Deyun Xiao. Model and fault diagnosis with the framework of probabilistic SDG. 9th International Conference on Control, Automation, Robotics and Vision, ICARCV'06, December 5,2006.
    [171]杨帆,萧德云,吴占松.大规模复杂系统的递阶SDG模型描述及故障分析[J].华中科技大学学报(自然科学版),2009,37(S1):10-14.
    [172]杨帆,萧德云.控制系统的SDG模型描述及故障传播分析[J].控制与决策,2009,27(7):1001-1006.
    [173]Yang Fan, Shah Sirish. Xiao Deyun. SDG model-based analysis of fault propagation in control systems.2009 Canadian Conference on Electrical and Computer Engineering, CCECE'09, May 3, May 6,2009.
    [174]杨帆,萧德云.故障检测的可靠性描述及传感器分布优化算法[J].2006,24(2):125-130.
    [175]杨帆,萧德云.大型复杂系统的动态SDG模型及传感器布置问题[J].2008,25(2):181-186
    [176]宋其江,徐敏强,王日新.基于模糊SD模型的航天器故障诊断方法研究[J].宇航学报,2008,29(6):2073-2077.
    [177]宋其江,徐敏强,王日新.模糊概率SDG模型及故障推理方法[J].2009,24(5):692-696.
    [178]宋其江,王日新,徐敏强.基于FPSDG模型的故障检测传感器的分布优化设计[J].2009,17(10):1895-1897.
    [179]李常有,徐敏强,高晶波,王日新,.基于独立分量分析的滚动轴承故障诊断[J].哈尔滨工业大学学报,2008,(9).
    [180]李常有,徐敏强,郭耸.利用声信号对滚动轴承进行故障诊断的研究[J].应用声学,2008,(4).
    [181]李常有,徐敏强,郭耸.声信号的主分量分析应用于滚动轴承故障诊断[J]声学技术,2008,(2).
    [182]李常有,徐敏强,郭耸.基于改进的Hilbert-Huang变换的滚动轴承故障诊断[J].振动与冲击,2007,(4).
    [183]王秀娥.基于粒推理方法的SDG故障诊断研究及应用[D].太原理工大学,2010.
    [184]Gang Xie, Xiue Wang, Kerning Xie. SDG-based Fault Diagnosis and Application Based on Reasoning Method of Granular Computing.2010 Chinese Control and Decision Conference, CCDC 2010, May 26-28, Xuzhou,China:550-555
    [185]赵静阁.基于粒计算知识约简-SDG故障诊断研究[D].太原理工大学,2010.
    [186]谢刚, 赵静阁, 詹峰, 谢克明.SDG故障诊断规则的知识约简[C]. CRSSC-CWI-CGrC'2010,2010年10月11-14日,重庆.
    [187]Zhan Feng, Xie Kerning, Zhao Jingge, Xie Gang. Fault Diagnosis Based on Granular Matrix-SDG and its Application[C]. The 2009 IEEE International Conference on Granular Computing, August 17-19,2009, Nanchang, China:752-756.
    [188]詹峰.基于信息粒化理论的SDG故障诊断系统及其仿真平台[D].太原理工大学,2010.
    [189]Xie Kerning, Zhan Feng, Zhao Jingge, Xie Gang. GrC and SDG-Based Fault Diagnosis System and its Simulation Platform[C]. The 2010 IEEE nternational Conference on Granular Computing, August 14-16,2010, Silicon Valley, USA:1718-1722
    [190]边肇棋,张学工等.模式识别[M].北京:清华大学山版社,2000.
    [191]Burges C.J.C.A tutorial on support vector machines for pattern recognition [J].Data Min. Knowl.Disc,1998,2(2):121-167.
    [192]U.Kressel. Pairwise classification and support vector machines. In B.Scholkopf et al(Eds.), Advances in kernel Methods-Support vector learning, Cambridge, MA,MIT Press,1999: 255-268.
    [193]李晓黎,刘继敏,史忠植.基于支持向量机与无监督聚类相结合的中文网页分类器[J].计算机学报,2001,24(1):62-8.
    [194]Sohn,S., Dagli,C.H. Advantages of using fuzzy class memberships in self-organizing map and support vector machines in Proceedings of IJCNN'2001.
    [195]丁爱玲,刘芳,曹伟.支撑矢量预选取的自适应投影算法[J].计算机工程与应用,2002,38(19):116-118.
    [196]裴继红,杨垣.支撑矢量预选取的双色Voronoi图方法[J].电子与信息学报,2003,25(3):1494-1499.
    [197]Koggalage,R., Halgamuge,S. Reducing the Number of Training Samples for Fast Support Vector Machine C1 assmcation, Neural Information Processing-Letters and Reviews, 2004,Vol,2:58-65.
    [198]阎平凡.对多层前向神经网络研究的进一步看法[J],电子学报,1999,27(5):82-85.
    [199]Steve R.Gunn. Support Vector Machines for Classification and Regression. Technical Report.1998,5.
    [200]蒋浩天(美)等著.工业系统的故障检测与诊断[M].机械工业出版社,2003.
    [201]J.J.Downs, E.F.Vogel.A plant-wide industrial process control problem[J]. Computers and Chemical Engineering,1993 (17):245-255.
    [202]Mao Yong, Pi Daoying, Liu Yuming, Sun Youxian. Accelerated Recursive Feature Elimination Based on Support Vector Machine for Key Variable Identification[J].Chinese Chemical Engineering,2006,14(1):65-72.
    [203]Mano Ram Maurya, Raghunathan Rengaswamy, Venkat Venkatasubramanian. Application of signed digraphs-based analysis for fault diagnosis of chemical process flow sheets[J]. Enginccring Applications of Artificial Intelligence,2004,17:501-518.
    [204]Mano Ram Maurya, Raghunathan Rengaswamy, Venkat Venkatasubramanian. Fault Diagnosis by Qualitative Trend Analysis of the Principal Components[J], Chemical Engineering Research and Design,2005,83(A9):1122-1132.
    [205]Mano Ram Maurya, Raghunathan Rengaswamy, Venkat Venkatasubramanian. A Signed Directed Graph and Qualitative Trend Analysis-Based Frame Work For Incipient Fault Diagnosis. Chemical Engineering Research and Design,2007,85(A10):1407-1422.
    [206]P.R.Lyman,C.Georgakis. Plant-wide control of the Tennessee Eastman problem[J] Computers and Chemical Engineering,1995,19(3):321-331.
    [207]Sarle W S.Neural Network FAQ. ftp://ftp.sas.com/pub/neural/FAQ2.html.
    [208]Oh.Y.S., Mo.K.J., and Yoon.E.S. Fault diagnosis based on weighted symptom tree and Pattern matching[J], Ind Engr. Chem. Res.,1997,36:2672-2678.
    [209]Kassida, A., Taylor,P.A., and MaeGregr, J.F. Off-line diagnosis of deterministic faults in continous dynamic multivariable Processes using speech recognition methods[J].J.Process Control,1998,8:381-393.
    [210]Gertler.J., Li, W., Huang.Y, and McAvoy, T.J. Isolation enhanced Principal component analysis[J], AIChEJ,1999-45:323-334.
    [211]Weilu Lin, Yu Qian, Xiuxi Li. Nonlinear dynamic Principal component analysis of on line Process monitoring and diagnosis[J], Computers and Chemical Engineering,2000, 24:423-429.
    [212]Russel.E.L.,Chiang L.H., and Braatzt.R.D. Fault detection in industrial Processes using canonical variate analysis and dynamic Principal component analysis[J], Chemometrics and Intel Lab.Syst.,2000,51:81-93.
    [213]Chiang, L.H., Russel E.L., and Braatz.R.D. Fault diagnosis in chemical Processes using Fisher discriminant analysis, discriminant partial least squares, and Principal component analysis[J], Chemometrics and Intel Lab.Syst.,2000,50:243-252.
    [214]Kano,M., Hasebe,S. and Hashimoto,I. A new multivariate statistical process monitoring method using principal component analysis[J]. Computers and Chemical Engineering,2001,25:1103-1113.
    [215]Raich,A.,& Cinar,A. Statistical process monitoring and disturbance diagnosis in multivariable continuous processes. AICHE Journal,1996,42,995.
    [216]Raich,A.,& Cinar,A. Diagnosis of process disturbances by statistical distance and angle measures. Computers and Chemical Engineering,1997,21(6),661.
    [217]Kano,M.,Nagao,K.,Hasebe,S.eatl. Comparison of multivariate statistical Process monitoring methods with applications to the Eastman challenge Problem[J], Computer and Chemical Engineering,2002,26:161-174.
    [218]Maurya.M.R., Rengaswamy.R., Venkatasubramaian,V. Application of signed digraphs based analysis for fault diagnosis of chemical flowsheets. Engineering Applications of Artificial Intelligence.2004,17,501.
    [219]叶鲁彬,刘育明,梁军.系统的控制策略对多变量统计监控性能的影响[J].浙江大学(工学版),2009,43(1):47-53,134.
    [220]吴昌应,刘飞.基于小波变换的多尺度独立元分析方法及应用[J].信息与控制.2006,35(6):781-786.
    [221]杨帆,罗键,王华珍,彭彦卿,米红.基于核函数优化的相符预测器在故障检测中的应用. 天津大学学报.2009,42(7):614-621.
    [222]宋凯,王海清,李平.PLS质量监控及其在Tennessee Eastman过程中的应用[J].浙江大学学报(工学版).2005,39(5):657-662.
    [223]肖应旺.基于WTPCA-MSVMs过程监控方法[J].仪器仪表学报.2010,31(3):558-564.
    [224]郭旭红,朱忠奎,刘刚,张娟娟.基于ICA的工业过程监控方法及其在TEP中的应用[J].系统仿真学报.2009,21(8):2331-2334.
    [225]Ignacio Y e lamos, Gerard Escudero, Mois e s Graells, Luis Puigjaner.Performance assessment of a novel fault diagnosis system based on support vector machines[J]. Computers and Chemical Engineering,2009,33:244-255.
    [226]李宝缓,刘志俊用模糊理论测辨系统的模型[J]信息与控制.1980,9(3):32-38.
    [227]陈爱军.最小二乘支持向量机及其在工业过程建模中的应用[D].浙江大学博十学位论文,2006.
    [228]薄翠梅.过程控制系统的故障检测诊断与容错控制[D].南京理工大学2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700