白腐真菌的固定化及其处理DDNP生产废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以自行选育培养的白腐真菌W.X和起爆药二硝基重氮酚(DDNP)生产废水为研究对象,研究了白腐真菌的培养、驯化和固定化,以及利用固定化白腐真菌处理经铁碳微电解预处理的DDNP生产废水,重点研究了白腐真菌W.X的固定化以及固定化白腐真菌W.X对DDNP生产废水的处理条件和降解能力。
     选育、培养和驯化了能有效降解DDNP生产废水的白腐真菌W.X,通过实验确定了W.X菌的生长周期;固定化实验确定了海藻酸钠包埋法和聚乙烯醇(PVA)交联法固定化白腐真菌的最佳条件:
     (1)海藻酸钠包埋法的最佳条件:3%海藻酸钠、0.3%硅藻土和3%菌液混合,用恒流泵(12mL·min~(-1))滴加到3%CaCl_2溶液中,pH值取自然状态。
     (2)PVA交联法的最佳条件:8%PVA和3%菌液混合,用恒流泵(8mL·min~(-1))滴加到含2%CaCl_2的饱和硼酸溶液中,用Na_2CO_3调节交联剂的pH值至6.7,PVA中的添加剂有:0.8%海藻酸钠、0.8%活性碳粉、0.3%CaCO_3、2%SiO_2。固定化白腐真菌W.X对铁碳微电解预处理后DDNP废水的实验条件为:进水浓度
     (COD)≤800mg·L~(-1)、pH=5、固定化小球投加量200g·L~(-1)、RT=5d、30℃恒温振荡摇床(140rpm)处理;五种固定化方法对DDNP处理效果的优劣是:活性炭固定化> PVA固定化>花生壳固定化>海藻酸钠固定化>木屑固定化;5d后COD去除率可达83.7%,脱色率达92.5%。
     经过中和销爆—水解酸化—铁碳微电解—调节生化进水浓度—固定化W.X菌处理,DDNP废水色度由62500倍降到100倍左右,脱色率达99.9%,COD由原水的29481.6m·L~(-1)降到129.9mg·L~(-1)~180.9mg·L~(-1),COD去除率也可达99%,pH约为6,出水水质基本满足《兵器工业水污染物排放标准(火工药剂)》(GB14470.2—2002)中规定的DDNP废水排放标准。
     本研究为生化法处理DDNP生产废水及其他炸药生产废水提供了应用基础,也为白腐真菌固定化技术在火炸药生产废水等高浓度难降解有机废水方面的应用提供了借鉴。
In this paper, self-breeding culture of white rot fungi WX and explosivediazodinitrophenel (DDNP) wastewater as the research object, studied the white rot fungusculture, domestication and immobilized, and treatment the pretreatment DDNP wastewater bythe Fe-C micro-electrolysis using of immobilized white-rot fungus, focusing on theimmobilized of white-rot fungi WX and the treatment conditions and degradation of theDDNP wastewater by the immobilized white-rot fungi WX.
     Breeding out, cultivated and domesticated of white rot fungus WX which could beefficiently degrade DDNP wastewater, determined the growth cycle of W.X fungi by theexperiment; Immobilized experiments confirmed the optimal conditions of sodium alginateembedding method and polyvinyl alcohol (PVA) crosslinking method immobilized white-rotfungus:
     (1)The optimal conditions of sodium alginate embedding method:
     3% sodium alginate, 0.3% diatomite and 3% fungi mixed with each other, then trickledonto the 3% CaCl_2 solution with constant flow pump(the flow rate was12mL·min~(-1)) , naturalstate of pH value.
     (2)The optimal conditions of polyvinyl alcohol (PVA) crosslinking method:
     8% polyvinyl alcohol and 3% fungi mixed with each other, then trickled onto thesaturated boric acid solution contained 2% CaCl_2 with constant flow pump (the flow rate was8mL·min~(-1)), adjusting the pH value of crosslinker to 6.7 using of Na_2CO_3, the additives ofPVA contained 0.8% sodium alginate, 0.8% active carbon powder, 0.3%CaCO_3、2%SiO_2.
     The experiment conditions of treatment the pretreatment DDNP wastewater by the Fe-Cmicro-electrolysis using of immobilized white-rot fungus were: influent concentration (COD)≤800mg·L~(-1), pH = 5, immobilized globule dosage 200g·L~(-1), RT = 5d, 30℃constanttemperature oscillation shaker (the revolution of shaking table was 140rpm) treatment; the quality of the effect on DDNP treatment by the five immobilization method was: activatedcarbon immobilized>PVA immobilized>peanut shell immobilized>sodium alginateimmobilization>sawdust immobilized; After five days, COD removal rate reached 83.7%, thedecolorization rate was 92.5%.
     After five steps of treatment, which were neutralization and explosion elimination,hydrolytic acidification, Fe-C micro-electrolysis, regulating the influent concentration ofbiochemical treatment (diluted five times), and treatment by immobilized W.X fungi, the colorof DDNP wastewater down to 100 times from 62500 times, decolorization rate was 99.9%,COD down to 129.9mg·L~(-1)~180.9mg·L~(-1) from 29481.6m·L~(-1) of the raw water, CODremoval rate could be reach 99%. pH value was about 6, effluent quality basically meet theDDNP wastewater discharge standards for water pollutants from ordnance industry initiatingexplosive material and relative composition(GB14470.2—2002).
     The research provided the basis of the application for biochemical treatment DDNPwastewater and other explosive wastewater, and it also provide a reference for the applicationof immobilized white-rot fungi technology in explosives and other high-concentration andhardly degradable organic wastewater.
引文
[1]肖鹤鸣.高能化合物的结构和性质[M].北京:国防工业出版社.2004.324-336.
    [2]劳允亮.起爆药化学与工业学(第一版)[M].北京:北京理工大学出版社.1997:311-327
    [3] Rene P. Schwarzenbach, Philip M. Gschwend, Dieter M. Imboden. Environmental organicchemistry[M]. Beijing: Chemical industry press, 2004. 372, 403, 444-445.
    [4]苑宝玲,王洪杰.水处理新技术原理与应用[M].北京:化学工业出版社,2006.36-38.
    [5]王海云,赵仁兴.DDNP废水处理方法研究综述[J].爆破器材,2002,31(5):25-26.
    [6]周受培.二硝基重氮酚生产污水处理研究[J].爆破器材, 1994, 23 (4) : 12-13.
    [7]林凡聪,刘玉存.生物降解火炸药废水研究进展[J].水处理技术,2009,35(12):11-15.
    [8]陈寿兵,张学才等.白腐真菌降解经微电解预处理二硝基重氮酚废水的研究[J].环境污染与防治.2006,28(2):143~146.
    [9]李丽,张学才.白腐真菌处理二硝基重氮酚工业废水的研究[J].安徽理工大学学报(自然科学版), 2007, 27 (1) : 39~42.
    [10]温士武.二硝基重氮酚废水处理方法及设备.[P]C02F 9/00 C02F 1/24 C02F 1/72 C02F1/28.41B.1161940,1997.
    [11]杨士贵,吴南生等.二硝基重氮酚工业废水处理技术.C02F 9/00 C02F 3/30 C02F1/00.41B.1122781,1996.
    [12]陈淮银,梁立达等.二硝基重氮酚起爆药工业废水处理方法.C02F 1/76 C02F1/58.41B.1059506,1992.
    [13]李慧蓉.白腐真菌的研究进展[J].环境科学进展,1996, 4 (6):69-77.
    [14]徐成勇等.白腐菌对染料脱色和降解作用的研究进展[J].生物工程进展,2002,22(l):57-60.
    [15]金敏,李君文.白腐菌处理染料废水的研究进展[J].环境污染治理技术与设备,2003,4(3):54-58.。
    [16]李慧蓉.白腐真菌在石化环保中的应用[J].石油化工环境保护,1996,(1):56-60.
    [17]周申范.白腐真菌及其在有机废水处理中的研究与应用[J].重庆环境科学,1998,20(6):22-25.
    [18]周军,郭新超等.生化法处理炸药废水研究进展[J].中国给水排水, 2000,16:9
    [19]Bhaumik S, et al. Aerobic and anaerobic biodegradation of nitroglycerin batch and packedbed bioreactors [J]. Water Science and Technology, 1996, 36(2~3):16-18.
    [20]黄俊等.白腐真菌生物降解TNI装药废水的研究[J].环境科学与技术,1999, (3):17-19.
    [21]林锦美.白腐菌降解黑索今废水的研究[D].南京理工大学硕士论文, 2005,6
    [22]Steven D. Aust. Degradation of environmental pollutants byPhanerochaetechrysosporium[J]. Microbial Ecology, 1990, 20(1):197-209.
    [23]闫志明,普红平,阳立平.生物固定化技术研究及应用评述[J].四川化工,2004,7(1):12-15.
    [24]林青山,刘超,傅柳松.固定化细胞技术在废水处理中的应用[J].上海环境科学, 2000, 10(19):469-472.
    [25]段明峰,吴卫霞,肖俊霞等.利用固定化细胞技术处理废水研究进展[J].油气田环境保护,2004,9(3):17-20.
    [26]刘蕾,李杰,王亚娥.生物固定化技术中的包埋材料[J].净水技术,2005,24(1):40-42.
    [27]饶应福,夏四清,姜剑.固定化微生物技术在环境治理中的应用[J].能源环境保护,2005,4(2):24-26.
    [28]郭雪琳,王成端.固定化微生物技术在废水处理中的应用[J].广东化工,2007,34(172):6769.
    [29]王建龙.生物固定化技术与水污染控制[M].北京:科学出版社,2002.
    [30]LIAO W L, TSENG D H, TSA I Y C, et a l. Microbial removal of polycyclic aromatichydrocarbons by Phanerochaete chrysosporiu [J]. Water Science Technology, 1997, 35 (8):255-264.
    [31]LEIDIGE, PRUSSEU, VORLOP KD, et al. Biotransformation of Poly R~478 bycontinuous cultures of PVA Lencap sulated Trametes versicolor under nonsterile conditions[J]. Bioprocess Engineering,1999,1:5-12.
    [32]GODJEVARGOVAT, IVANOVAD, ALEXIEVAZ, et al. Biodegradation of toxic organiccomponents from industrial phenol production waste waters by free and immobilizedTrichosporon cutaneum R57[J]. Process Biochemistry,2003,38:915-920.
    [33]RAGHUKUMA, MOHANDASSC, KAMATS, et al. Simultaneous detoxification anddecolorization of molasses spentwash by the immobilized white-rot fungus Flavodon flavusisolated from a marine habitat [J]. Enzyme and Microbial Technology, 2004,35:197-202.
    [34]VENKATADRIR, IRVINERL. Effect of agitation on ligninase activity and ligninaseproduction by Phanerochaete chrysosporium[J].Appl. Environ. Microbiology,1990,56(9):2684-2691.
    [35]李慧蓉,谭晓莲,凌瑞峰.黄孢原毛平革菌细胞固定化技术的比较研究[J].环境科学研究,2001,14(1): 41-44.
    [36]周培国,傅大放.微电解工艺研究进展[J].环境污染治理技术与装备. 2001,2(4):19-23.
    [37]樊金红,徐文英,高廷耀.催化铁内电解法处理硝基苯废水的机理与动力学研究[J].环境污染治理技术与设备,2005,11(6):5-9.
    [38]成华,田凯勋.铁炭内电解法处理2,4-二氯酚研究[J].企业技术开发,2005,24(7):11-12.
    [39]樊金红,徐文英,高廷耀. Fe-Cu微电池电解法预处理硝基苯废水[J].同济大学学报(自然科学版),2005,33(3):334-338.
    [40]王红武,闵乐,马鲁铭等.DO对催化铁内电解预处理混合化工废水的影响[J].中国给水排水,2006,22(17):26-29.
    [41]王连军,黄中华,刘晓东等.染料废水的内电解脱色处理研究[J].重庆环境科学,1999,21(5):27-30.
    [42]郭莲秀,赵旭涛,李贵贤等.混凝-内电解法处理ABS树脂废水的研究[J].兰州理工大学学报,2005,31(5):71-74.
    [43]徐飞高,游达等.固定化细胞小球降解三氟甲苯的特性研究[J].工业安全与环保,2005,31(6):11-13.
    [44]张志刚,徐德强等.固定化菌种降解2,6—二叔丁基酚的研究[J].环境科学与技术,2005,28(3):1-3.
    [45]李峰,吕锡武,严伟.聚乙烯醇作为固定化细胞包埋剂的研究[J].中国给水排水,2000,16(12):14-17.
    [46]闵航,郑耀通,钱泽澎等.聚乙烯醇包埋厌氧活性污泥处理废水的最优化条件研究[J].环境科学,1994,15(5):10-14.
    [47]蒋宇红,黄霞,俞毓馨.几种固定化细胞载体的比较[J].环境科学,1992,14(2):11-15.
    [48]刘立恒. Fe-C/Fe-Cu内电解处理二硝基重氮酚废水研究[D].重庆大学硕士学位论文,2007,10.
    [49]刘元敏.铁屑内电解处理DDNP工业废水工艺设计的研究[D].重庆大学工程硕士学位论文.2005,10.
    [50]张春永.铁炭微电解法废水处理技术研究[D].东南大学硕士学位论文,2004,1.
    [51]张学才,陈寿兵等.微电解法处理二硝基重氮酚工业废水[J].精细化工,2003,20(2):58-61.
    [52]蒋荣光,刘自铴.起爆药[M].北京:兵器工业出版社,2005,138-139.
    [53]孟刚,郑泽根,周小兵等.铁炭微电解-亚铁还原氧化法处理花箐废水的研究[J].感光科学与光化学,2002,20(4):303-312.
    [54]王永广,杨剑峰.微电解技术在工业废水中的研究与运用[J].环境污染治理技术与设备,2001,2(4):18-24.
    [55]David P. Barr, Steven D. Aust. Mechanisms white rot fungi use to degrade pollutants[J].Environ. Sci. Technol, 1994,28 (2):78A–87A.
    [56]芩沛霖,蔡谨.工业微生物学[M].北京:化学工业出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700