新型MEMS和NEMS有机气体传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挥发性有机物(Volatile organic compounds,VOC)给人类健康和生态环境带来严重的危害,长期暴露在VOC气体中会引起多种疾病,如呼吸道疾病、眼角膜疾病、神经性疾病、癌症、甚至造成死亡。此外,挥发性有机气体如乙醇、甲醇、汽油等蒸汽与空气混合会形成可爆炸的混合气体,碰到热源或明火有燃烧爆炸的危险,然而这些气体却广泛的存在于石油、化工、燃气、冶金等场所。因此,快速和准确地检测出环境中有机气体的浓度对保护人类的健康和安全具有重要的意义。本文基于聚合物的溶胀效应制备了新型MEMS (Microelectromechanical Systems)和NEMS (Nanoelectromechanical Systems)压阻式有机气体传感器,用于有机气体浓度的检测。本论文的主要研究工作如下:
     1.基于聚合物薄膜的溶胀效应研究了一种新型的MEMS压阻式有机气体传感器,分析了该类有机气体传感器的结构,探讨了传感器的敏感机理,讨论了低气体压力下聚合物敏感膜对目标气体的吸附溶胀特性,研究了聚合物敏感膜参数、MEMS薄膜参数和传感器供电电压对气体传感器输出性能的影响,为制备此类有机气体传感器提供理论指导依据。
     2.基于硅橡胶敏感薄膜实现了新型MEMS有机气体传感器,研究了其对苯蒸气的响应特性;基于环氧丙烯酸酯敏感薄膜制备的MEMS有机气体传感器,实现了对乙醇、甲醇和甲醛等气体的检测。通过实验分别研究了这些气体传感器对不同有机气体的响应特性,如检测灵敏度、线性度、重复性和稳定性。同时通过实验研究了环境温湿度及聚合物敏感膜的参数设置对该类传感器输出性能的影响。此类有机气体传感器可以在常温下工作、具有结构简单、体积小、无加热元件、功耗小、成本低、与CMOS (Complementary Metal Oxide Semiconductor)工艺兼容、易于和信号处理电路集成等特点。
     3.为了提高新型MEMS有机气体传感器的性能,本文基于硅纳米线(SiNWs)的巨压阻效应和超低的功耗,采用同CMOS工艺兼容的自上而下的方法,将p型硅纳米线嵌入NEMS薄膜中作为压敏检测元件,用聚二甲基硅氧烷(Polydimethylsiloxane, PDMS)为敏感薄膜制备了基于硅纳米线的NEMS有机气体传感器,实现了对氯仿气体的检测。试验结果表明,与MEMS有机气体传感器相比,该传感器具有更小的体积、更高的检测灵敏度、更低的工作电压和更低的功耗。
     4.为进一步优化基于硅纳米线的NEMS有机气体传感器的性能,运用有限元方法分析并优化了p型硅纳米线的设置位置,通过实验优化了p型硅纳米线的掺杂浓度和NEMS薄膜介电层的设计参数;同时提出采用聚合物的热膨胀来模拟聚合物吸附气体的溶胀过程,以此为基础在有限元模型中分析了传感器敏感膜的溶胀应变及其与NEMS薄膜相互作用的过程,得到该有机气体传感器对气体响应的仿真输出,通过仿真优化了该气体传感器敏感薄膜的设计参数,为下一步制备具有更优输出性能的NEMS有机气体传感器提供了参考依据。
Volatile organic compounds (VOC) can cause seriousoutcome to both environment and health of human beings. Exposure to VOC vapors for a long time could result in some diseases such as conjunctiva inflammation, eyesight disturbance, nerve disease and even death. In addition, combining with oxygen or air, some organic vapor such as ethanol, methanol and gasoline can create explosive gas mixture when exposing to heat producer or fire. These gases are widely existed in in many workplaces like petroleum, petrochemical and metallurgy etc, which severely endanger lives and safety of human beings. Therefore, accurate and real-time detection of VOC concentration have a very important significance to protect human health and safety. In this thesis, a novel MEMS and NEMS piezoresistive vapor sensor based on the swelling effect of polymer film to detect organic vapor are presented. The main research contents are as follows:
     1. The novel MEMS piezoresistive vapor sensor based on the swelling effect of polymer film is studied. The structure of novel sensor is clarified. Then we discuss the sensitive mechanism of the MEMS vapor sensor and the swelling property of the polymer layer due to the absorption of vapor molecules under low vapor pressure. In addition, we also analyze the influence of the structural parameters and the supply voltage on the output performance of vapor senor.
     2. As a novel and sensitive vapor sensor, silicion rubber was used to detect benzene vapors and epoxy acrylate was used to detect benzene vapors and using epoxy acrylate as sensitive film to detect ethanol and methanol vapors. This proposed vapor sensor has simply structure, small size, no heating elements, low power consumption and CMOS compatibility etc. The output characteristics of the sensor for various vapors are investigated, such as, linearity, sensitivity, selectivity, reproducibility and response time etc. We also investigate the influence of ambient temperature and humidity and the influence of the parameters of the polymer layer on the output performance of the vapor sensor, which will be useful to impove the output performance of the vapor senor. The experimental results show that this MEMS vapor sensors have good linearity, sensitivity, selectivity and reproducibility.
     3. To improve the sensitivity and reduce the power consumption of vapor sensor the MEMS vapor sensor, the novel NEMS vapor sensor based on giant piezoresistive effect of silicon nanowriers (SiNWs) is fabricated using CMOS-IC process. The SiNWs are embedded into NEMS diaphgram as piezoresistor and the polydimethylsiloxane (PDMS) are coated on NEMS diaphragm as film. We investigate the characteristics of this novel NEMS vapor for chloroform vapor. Compared with MEMS piezoresistive vapor sensor, the NEMS vapor sensor has smaller size, higher sensitivity, lower supply voltage and ultra-low power consumption (less than1μW).
     4. To further optimize the performance of the NEMS vapor sensor, the location parameters of the SiNWs are optimized using finite element analysis (FEA). The doping concentration of SiNWs and the design parameters of multi-layered NEMS diaphragm structure are optimized by experiment. Meanwhile, a simulation method for novel piezoresistive NEMS vapor sensor using thermal expansion effect of polymer to simulate swelling effect of polymer absorbing vapor in FEA is presented. The simulation output of the NEMS vapor sensor is obtained. Then, the design parameters of polymer of the NEMS vapor are optimized using this simulation method.
引文
[1]董仕林,室内装饰材料污染物及其检测方法,安徽预防医学杂志,9(5),2003,pp.331-335.
    [2]L. C. Holcomb and B. S. Seabrook, Indoor concentrations of volatile organic compounds:implications for confort, health and regulation, Indoor Environ, 4(1),1995, pp.7-26.
    [3]Guerra, A. lemma, D. Lerda, C. Martines, G. Salvi and M Tamponi, Benzene emissions from motor vehicle traffic in the urban area of Milan:Hypothesis of health impact assessment, Atmospheric Environment,29(23),1995, pp.3559-3569.
    [4]张凤维,李耀庄,杨志,易燃易爆气体泄漏的危险性分析,工业安全与环保,34(1),2008,pp.30-32.
    [5]李晓黎,室内空气污染物的来源危害与控制,内蒙古环境与科学,21(1),2009,pp.100-104.
    [6]魏传宇,QCM甲醛传感器的有机敏感薄膜研究[硕士学位论文].辽宁:大连理学工大学,2005.
    [7]中华人民共和国国家标准.室内空气质量标准,GB/T18883-2002.北京:中国标准出版社,2003.
    [8]李连山,马春莲,陈寒玉,室内甲醛污染的分析调查,环境科学与技术,25(3),2002,pp.44-46.
    [9]K. C. Gupta, A. G. Ulsamer, P. W. Preuss, Formaldehyde in indoor air:sources and toxicity, Environ. Int.,1982,8(1-6), pp.349-358.
    [10]M. A. Jochmann, X.Yuan, T. C. Schmidt, Determination of volatile organic hydrocarbons in water samples by solid-phase dynamic extraction, Analytical and Bioanalytical Chemistry,387(6),2007, pp.2163-2174.
    [11]贾如升,我国室内苯系物污染危害与防治现状,环境与职业医学,27(1),2010, pp.56-57.
    [12]庄晓红,胡傲敏,卢晓军,室内空气中甲醛,苯系物污染特征分析,环境与职业医学,18(5),2008,pp.97-101.
    [13]许建华,薛光濮,杨莉丽,新装饰装修房屋内空气中的苯系物污染物调查,防治污染技术,20(4),2007,pp.48-49.
    [14]Y. Gurbuz, W. P. Kang, J. L. Davidson, D. L. Kinser, D. V. Kerns, Diamond microelectronic gas sensor for detection of benzene and toluene, Sensors and Actuators B,99(2-3),2004, pp.207-215.
    [15]张又铭,李文德,氯仿对人体的危害,职业与健康,8(4),1992,pp.44-45.
    [16]Abdolreza Mirmohseni, Ali Oladegaragoze, Determination of chlorinated aliphatic hydrocarbons in air using a polymer coated quartz crystal microbalance sensor, Sensor Actuators B,102(2),2004, pp.261-270.
    [17]Huarong Tang, Yaming Li, Chengbin Zheng, Jun Ye, Xiandeng Hou, Yi Lv, An ethanol sensor based on cataluminescence on ZnO nanoparticles, Talanta, 72(4),2007, pp.1593-1597.
    [18]J. W. Judy, Microelectromechanical systems (MEMS):fabrication, designed and application, Smart Mater Structure,10(5),2001, pp.1115-1134.
    [19]潘小青,刘庆成,气体传感器及其发展,华东理工学院学报,27(1),2004,pp.89-94.
    [20]张海霞,郭辉,张大成,集成化MEMS工艺设计技术的研究,纳米技术与精密工程,2(3),2004,pp.229-233.
    [21]王淑华,MEMS传感器现状及应用,MEMS与传感器,48(8),2011,pp.516-522.
    [22]AndrasMiklos, Peter Hessa, Zoltan Bozoki, Application of acoustic resonators in photo acoustic trace gas analysis and metrology, Review of Scientific Instruments,72(4),2010, pp.1937-1955.
    [23]李珂,于世洁,尤政,赵贾昊,基于MEMS技术的气体传感器,传感器与微系统,27(11),2008,pp.5-7.
    [24]Ried, Robert P, White, Richard M, Piezoelectric cantilever microphone and microspeaker, Journal of microelectromechanical systems,5(4),1996, pp.238-242.
    [25]S. L Firebaugh, K. F Jensen, Miniaturization and integration of photoacoustic detection, Journal of Applied physics,92(3),2002, pp.1555-1563.
    [26]T Kuusela, J Peura, B. A Matveev, M. A Remennyy, Photoacoustic gas detection using a cantilever microphone and Ⅲ-Ⅴ mid-IR LEDs, Journal of microelectromechanical systems,51(2),2009, pp.289-293.
    [27]A Keller, M Ruegg, M Forster, M Loepfe, Open photoacoustic sensor as smoke detector, Sensors and Actuators B,104(1),2005, pp.1-7.
    [28]纪新明,MEMS红外光声气体传感器系统的研究[博士学位论文].上海:复旦大学,2005.
    [29]Gerhard Lammel, Sandra Schweizer, Sebastien Schiesser, et al., Tunable optical filter of porous silicon as key component for a MEMS spectrometer, Journal of Microelectromechanical Systems,11(6),2002, pp.815-827.
    [30]莫祥霞,温志渝,张智海,郭媛君,MOEMS微镜面阵光谱仪的优化与设计光谱学与光谱分析,31(12),2011,pp.3412-3416.
    [31]亢敏,光离子气体传感器的测试基础及测试系统设计,硅谷,15(3),2010,pp.14-15.
    [32]Robert D. Cox, Ronald F. Earp, Determination of trace level organics in ambient air by high-resolution gas chromatography with simultaneous photoionization and flame ionization detection, Analytical chemistry,54(13), 1982, pp.2265-2270.
    [33]W. Nutmagul and D. R. Cronn, Determination of selected atmospheric aromatic hydrocarbons at remote continental and oceanic locations using photoionization/flame-ionization detection, Journal of Atmospheric Chemistry, 2(4),1985, pp.415-433.
    [34]程建功,贺庆国,曹慧敏,封松林,黄正义,朴龙,庄汉林,荧光共轭聚合物传感器技术及其在炸药探测方面的应用,技术与应用,9,2009,pp.58-63.
    [35]靳伟,廖延彪,张志鹏,导波光学传感器:原理与技术.科学出版社,1998,262.
    [36]C. Barinain, I.R. Matias et al.,Optical fiber sensor based on lutetium bisphthalocyanine for the detection of gases using standard telecommunication wavelengths, Sensors and Actuators B,93(1-3),2003, pp.153-158.
    [37]John D. Gordon, Tyson L. Lowder et al., Optical D-fiber-based volatile organic compound sensor, Applied Optics,46(32),2007, pp.7805-7810.
    [38]高磊,高场不对称波形离子迁移谱仪(FAIMS)关键技术初步研究[硕士士学位论文].太原:中北大学2007.
    [39]陈池来,赵聪等,基于MEMS的新型高场不对称波形离子迁移谱仪,MEMS与传感器,48(2),2011,pp.112-117.
    [40]林丙涛,高场不对称波形离子迁移谱[博士士学位论文].安徽:中国科技大学,2010.
    [41]李庄,用于高场不对称波形离子迁移谱的MEMS振簧式静电设计研究[博士学位论文].安徽:中国科技大学,2010.
    [42]Miller R. A, Eiceman G. A, Nazarov E. G, et al., A MEMS radio -frequency ion mobility spectrometer for chemical agent detection, Sensors and Actuators A, 91(3),2001, pp.307-318.
    [43]H. Borsdorf, T. Mayera, M. Zarejousheghani, G. A. Eiceman, Recent developments in ion mobility spectrometry, Applied Spectroscopy Reviews, 46(6),2011, pp.472-521.
    [44]Ashley Wilks, Matthew Hart, Andrew Koehl, John Somerville, Billy Boyle, David Ruiz-Alonso, Characterization of a miniature, ultra-high-field, ion mobility spectrometer, International Journal for Ion Mobility Spectrometry, 25(3),2012, pp.199-222.
    [45]李华,王晓浩,唐飞,张亮等人,一种微型FAIMS传感器芯片的研制,物理化学学报,26(5),2010,pp.1355-1363.
    [46]张东风,孔德义,梅涛,陶永春,离子迁移谱微型化的现状与进展,仪器仪表学报,27(2),2006,pp.199-204.
    [47]李庄,林丙涛,孔德义,陈池来等,痕量挥发性有机物的高场不对称波形离子迁移谱研究,光谱学与光谱分析,31(1),2011,pp.12-15.
    [48]郭会勇,何秀丽,贾建,高晓光,李建平,基于微热板表面离子化的离子迁移谱仪研究,分析化学,36(11),2008,pp.1597-1600.
    [49]程沙沙,陈创,王卫国,杜永斋,李海洋等,一种基于离子迁移谱的气相色谱检测器及其应用,色谱,29(9),2011,pp.901-907.
    [50]C. L. Johnson, K. D. Wise, M. Gaitan et al., A Thin-film gas detector for semiconductor process gases, IEDM Technical Digest,11-14 Dec, San Francisco,1988.
    [51]魏广芬,基于微热板式气体传感器的混合气体检测及分析[博士士学位论文].大连:大连理工大学,2005.
    [52]J.S. Suehle, R.E. Cavicchi, M Gaitane et al., Tin oxide gas sensor fabricated using CMOS Micro-hotplates and In-Situ processing, IEEE Electron Device Letters.14(3),1993, pp.1078-1080.
    [53]W.Hellmich, G.Miiller, C.B.Braunmuhl et al., Field-effect-induced gas sensitivity changes in metal oxides, Sensors and Actuators B.43(1-3),1997, pp.132-139.
    [54]F. Solzbacher, C. Imawan, H. Steffes, E. Obermeier, H. Moller, A modular system of SiC-based microhotplates for the application in metal oxide gas sensors, Sensors and Actuators B,64(1-3),2000, pp.95-101.
    [55]M.C Horrillo, I Sayago, L Ares et al., Detection of low NO2 concentrations with low power micromachined tin oxide gas sensors, Sensors and Actuators B.58(1-3),1999, pp.325-328.
    [56]刘博,王兢,气敏元件电极设计、仿真及工艺实现,仪器仪表学报,31(8),2010,pp.337-338.
    [57]Z.A Tang, S.K.H Fung, D.T. Wong et al., An integrated gas sensor based on Tin Oxide thin film and improved micro-hotplate, Sensors and Actuators B. 46(3),1998, pp.174-179.
    [58]吕品, 唐祯安,魏广芬,基于微气体传感器阵列和神经网络的VOCs的辨别,传感技术学报,20(8),2007,pp.1712-1716.
    [59]胡小唐,李源,饶志军,胡春光,傅星,纳米机电系统,纳米技术与精密工程,4(1),2004,pp.1-7.
    [60]罗蓉,杨拥军,王维军,刘玉贵,罗四维,基于薄层SOI材料的NEMS结构制备技术,MEMS器件与技术,46(5),2009,pp.301-304.
    [61]Ning Peng, Qing Zhang, Chee Lap Chow, Ooi Kiang Tan and Nicola Marzari, Sensing mechanisms for Carbon Nanotube based NH3 gas detection, Nano Letter,9(4),2009, pp.1626-1630.
    [62]王太宏,赵继刚,傅英,李宏伟,李卫等,纳米器件的表征制备及应用,物理,1,2002,pp.4-6.
    [63]O. H. Elibol, D. Morisette, D. Akin, J. P. Denton and R. Bashir, Integrated nanoscale silicon sensors using top-down fabrication, Applied Physics Letters, 83(22),2003, pp.4613-4615.
    [64]Jing Wan, Shaoren Deng, Rong Yang, Zhen Shu, Bingrui Lu, Shenqi Xie, Yifang Chen, Ejaz Huq, Ran Liu, Xinping Qu, Silicon nanowire sensor for gas detection fabrication by nanoimprint on SU8/SiO2/PMMA trilayer, Microelectronic Engineering,86(4-6),2009, pp.1238-1242.
    [65]S. M. Lee, D. C. Dyer, J. W. Gardner, Design and optimisation of a high-temperature silicon micro-hotplate for nanoporous palladium pellistors, Microelectronics Journal,34(2),2003, pp.115-366.
    [66]Ahmadi S, Hassani F, Korman C, et al. Characterization of multi and single layer structure SAW sensor, Sensors,2004 Proceedings of IEEE,2004, pp.1129-1132.
    [67]H.Wohltjen and R.Dessy, Surface acoustic wave probe for chemical analysis Introduction and instrument description, Analytical chemistry,51(9),1979, pp. 1458-1464.
    [68]Noor Amalina Ramli and Anis Nurashikin Nordin, Design and Modeling of MEMS SAW Resonator on Lithium Niobate, International Conference on Mechatronics (ICOM),17-19 May 2011, Kuala Lumpur, Malaysia,2011.
    [69]Penza M, Aversa P, Cassano G, et al., Layered SAW gas sensorwith single walled carbon nanotube based nanocomposite coating, Sensors and Actuators B,127(1),2007, pp.168-178.
    [70]李顺洲,朱佐刚,刘久玲,刘明华,胡玢,何世堂,与气相色谱仪联用的声表面波传感器,增刊,2009,pp.121-126.
    [71]Watson, G, Horton, W, Staples, E, Gas chromatography utilizing SAW sensors, Ultrasonics Symposium,1991, Precess, IEEE 1991.
    [72]Antonio J. Ricco, Richard M. Crooks, Gordon C. Osbourn, Surface Acoustic Wave Chemical Sensor Arrays:New Chemically Sensitive Interfaces Combined with Novel Cluster Analysis To Detect Volatile Organic Compounds and Mixtures, Accounts of Chemical Research,1998,31(5), pp 289-296.
    [73]袁小平,国内外声表面波传感器开发近况,压电与声光,17(4),1995.pp224-227.
    [74]高伟,董瑛,尤政,微悬臂梁谐振式气体传感器研究进展,传感器与微系统,27(11),2008,pp.1-5.
    [75]曾磊,周嘉,黄维宁,黄宜平,基于微悬臂梁的生化传感器,传感器技术,23(6),2004,pp.76-80.
    [76]Thundat T, Wachter E, Sharp S, et al., Detection of mercury vapor using resonating micro cantilevers, App lied Physics Letters,66(13),1995, pp.1695-1697.
    [77]J Yang, T Ono, M Esashi, Mechanical behavior of ultrathin microcantilever, Sensor Actuators A,82(1-3),2000, pp.102-107.
    [78]V Beroulle, Y Bertrand, L Latorre and P Nouet, Test and Testability of a monolithic MEMS for Magnetic field sensing, Journal of Electronic Testing, 17(5),2001, pp.439-450.
    [79]M. Maute, S. Raible, F. E. Prins et al., Detection of volatile compounds (VOC) with polymer coated cantilever, Sensor and Actuator A,58(1-3),1999, pp. 505-511.
    [80]Haitao Yu, Xinxin Li, Xiaohua Gan et al., Resonant cantilever bio/chemical sensors with integrated heater for both resonance exciting optimization and sensing repeatability enhancement, Journal of micromechanics and microengineering,19(4),2009,045023.
    [81]Guomin Zuo, Xinxin Li, Peng Li, et al., Trace TNT vapor detection with an SAM functionalized piezoresistive SiO2 microcantilever, IEEE Conference on sensors,5th,2006, pp.749-752.
    [82]Thomas A. Betts, Christopher A. Tipple, Michael J. Sepaniak, Panos G. Datskos, Selectivity of chemical sensors based on micro-cantilevers coated with thin polymer films, Analytica Chimica Acta,422(1),2000, pp.89-99.
    [83]David Snow, Brandon L. Weeks, Dae Jung Kim, Albert Loui, Bradley R. Hart, Louisa J. Hope-Weeks, Static deflection measurements of cantilever arrays reveal polymer film expansion and contraction, Journal of Colloid and Interface Science,316(2),2007, pp.687-693.
    [84]A. Kooser, R.L. Gunter, W.D. Delinger, T.L. Porter, M.P. Eastman, Gas sensing using embedded piezoresistive microcantilever sensors, Sensors and Actuators B,99(2-3),2004, pp.474-479.
    [85]Z immermann M, Vo lden T, K irstein K U, et al., A CMOS-based integrated-system architecture for a static cantilever array, Sensors and Actuators B,131(1),2008, pp.254-264.
    [86]M. Zhang, D. N. Lei, Z. F. Du, X. M. Yin, L. B. Chen, Q. H. Li, Y. G. Wang, T. H. Wang, Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions, Journal of Materials Chemistry,21(6),2011, pp. 1673-1680.
    [87]C. C. Li, X. M. Yin, Q. H. Li, T. H. Wang, Enhanced gas sensing properties of ZnO/SnO2 hierarchical architectures by glucose-induced attachment, CrystEngComm,13(5),2011, pp.1557-1662.
    [88]S. J. Xu, Y. Liu, T.H. Wang and J.H. Li, Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection, Analytical chemistry, 83(10),2011, pp.3817-3823.
    [89]L. M. Li, X. M. Yin, S. Liu, Y. G. Wang, L. B. Chen, T. H. Wang, Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries, Electrochemistry Communications,12(10),2010, pp.1383-1390.
    [90]Quanyi Hao, Shuang Liu, Xiaoming Yin, Zhifeng Du, Ming Zhang, Limiao Li, Yanguo Wang and Taihong Wang, Qiuhong Li, Flexible morphology-controllable synthesis of mesoporous hierarchical α-Fe2O3 architectures and their gas-sensing properties, Crystal Engineer Communication,13(3),2011, pp.806-812.
    [91]Robert Bogue, Nanosensors:a review of recent research, Sensor Review,29(4), 2009, pp.310-315.
    [92]严峻,陈向东,李辉,苏凤,罗雪松,新型MEMS气体传感器及其理论模型,半导体技术,33(5),2008,pp.435-439.
    [93]R. Allan, Silicon MEMS technology is coming of age commercially, J. Electronic Design,45(2),1997, pp.75-88.
    [94]A. Merlos, J. Santander, M. D. Alvarez, et al., Optimized technology for the application of piezoresistive pressure sensors, Journal of Micromechanics and Microengineering,10(2),2000, pp.204-208.
    [95]K. C. Samuel, D. W. Kensall, Pressure sensitivity in anisotropically etched thin-diaphragm pressure sensors, IEEE Transactions on Electronic Device, 1979,26(12), pp.1887-1896.
    [96]A. W. Adamson, Physical chemistry of surface, Fifth edition, New York, John-Wiley.
    [97]V.Ponec, Z.Knor, S.Cerny, Adsorption on Solids, London:Buttenuorth&Co. (Publishers) Ltd.,1974.
    [98]董元彦,李宝华,路福绥,物理化学,北京:科学出版社,1998.
    [99]程传宣,表面物理化学,北京:科学技术文献出版社,1995.
    [100]王平,纳机电系统中气体吸附解吸附问题研究[硕士学位论文].江苏:东南大学,2005.
    [101]陈乐,刘晓勤,姚虎卿,乙烯乙烷分离用络合吸附剂的制备及吸附平衡,化工学报,57(8),2006,pp.1674-1679.
    [102]腾新荣,表面物理化学,北京:化学工业出版社,2009.
    [103]王佑安,矿井瓦斯防治,北京:煤炭出版社,1994.
    [104]黄富昌,徐家俊,陈淳圆等,以高分子聚合物模拟土壤有机质对污染物吸附行为之影响,台湾环境资源永久发展研讨会,2009.
    [105]吴世跃,赵文,含吸附煤层气煤的有效应力分析,岩石力学与工程学报,24(10),2005,pp.1674-1679.
    [106]吴世跃,郭勇义,煤层气体运移特征的研究,煤炭学报,24(1),2005,pp.65-69.
    [107]陈佳明,裴丽霞,周静茹,张立志,气固体吸附模型的研究进展,化工进展,30(10),2011,pp.2113-2119.
    [108]李伟东,吴学忠,李圣怡,一种压阻式微压力传感器,仪表技术与传感器,7,2006,pp.7-10.
    [109]夏文明,硅微微压传感器设计研究[硕士学位论文].江苏:江苏大学,2007.
    [110]刘迎春,叶湘滨,传感器原理设计与应用.长沙:国防科技大学出版社2002.
    [111]袁希光.传感技术手册.北京:国防工业出版社,1986.
    [112]裴素华.半导体物理与器件.北京:机械工业出版社,2008.
    [113]严峻,新型MEMS气体传感器研究[硕士学位论文].四川:西南交通大学,2008.
    [114]R. Buchhold, A. Nakladal, G. Gerlach, P. Neumann, Design studies on piezoresistive humidity sensors, SensorActuators B,53(1-2),1998, pp.1-7.
    [115]R. Singh, L. Lee, A Silicon Piezoresistive pressure Sensor, The First IEEE International Workshop on Design, test and Application,2002, pp.181-184.
    [116]A. A. Barlian, W. T. Park, J. R. Mallon et al., Review Semiconductor piezoresistance for Microsystems, Proceeding of the IEEE,97(3),2009, pp.513-551.
    [117]Huihui Guo, Xiangdong Chen, Yao Yao, A Room Temperature Polymer-Coated Piezoresistive Silicon Bridge Gasoline Vapor Sensor, IEEE Sensor Journal,12(5),2012, pp.926-929.
    [118]Huihui Guo, Xiangdong Chen, Yao Yao, Guangtao Du, Hui Li, Detection of ethanol and methanol vapors using polymer-coated piezoresistive Si bridge, Sensors and Actuators B:Chemical,155(2),2011, pp.519-523.
    [119]关旭东,硅集成电路工艺基础,北京:北京大学出版社,2003.
    [120]L. D. Landau and E. M. Lifshitz, Statistical physics, London, Pergamon, 1958.
    [121]吴启民,关于压力传感器非线性误差计算方法的商榷,航空测量技术,2,1980,pp.1-4.
    [122]Huihui Guo, Xiangdong Chen, Research of Novel Benzene Vapor Sensor and Theoretical Model, IEEJ Transactions on Sensors and Micromachines, 131(2),2011, pp.75-80.
    [123]陈纯洋,单组份加成型绝缘导热硅橡胶的研究[硕士学位论文].哈尔滨:哈尔滨工业大学,2011.
    [124]彭挺,张诚,裴玉龙,酒精摄入对驾驶人驾驶能力的影响分析,交通信息与安全,30(6),2012,pp.43-47.
    [125]张小水,高胜国,古瑞琴,刘红霞,张树金,燃料电池式乙醇气体传感器的研制,仪表技术与传感器,增刊,2009,pp.189-191.
    [126]万丽娟,硅纳米线阵列的制备及其在生化传感器中的应用[博士学位论文].上海:华东师范大学,2010.
    [127]裴立宅,唐元洪,郭池,张勇,陈杨文,一维硅纳米材料的光学特性,人工晶体学报,35(1),2006,pp.36-40.
    [128]Z. G. Bai, D. P. Yu, et al., synthesis and photoluminescence properties of semiconductor nanowires, Mater Science and Engineering B,72(2-3),2000, pp.117-120.
    [129]X. B. Zeng, X. B. Liao, et al., Optical properties of boron-doped Si nanowires, Journal of Crystal Growth,265(1-2),2004, pp.94-98.
    [130]裴立宅,唐元洪,郭池,张勇,陈杨文,硅纳米线的电学特性,电子器件,28(4),2005,pp.949-954.
    [131]Yi Gui, Xiangfeng, Duan, et al., Doping and electrical transport in silicon nanowires, Journal of Physical Chemistry,104(22),2000, pp.5213-5216.
    [132]刘文平,李铁,杨恒,焦继伟,李听欣,王跃林,基于MEMS工艺制作的硅纳米线及其电学性质,半导体学报,27(9),2006,pp.1645-1648.
    [133]Deyu Li, Yi Ying Wu, Li Shi, Peidong Yang, Arun Majumdar, Thermal conductivity of individual silicon nanowires, Applied Physics Letters, 83(14),2003, pp.2934-2936.
    [134]Rongrui He and Peidong Yang, Giant Piezoresistance effect in silicon nanowires. Nature Nanotechnology,1(1),2006, pp.42-46.
    [135]K. Reck, J. Richeter, O. Hansen and E. V. Thomsen, Piezoresistive effect in Top-Down fabrication silicon nanowires, IEEE International Conference on Micro Electro Mechanical System,21th,2008, pp.717-720.
    [136]Liang Lou, Woo-Tae Park, Songsong Zhang, Lishiah, Dim-Lee Kwong and Chengkuo Lee, Characterization of silicon nanowire embedded in a MEMS diaphragm structure within large compressive strain range, IEEE Electron Device Letters,32(12),2011, pp.1764-1766.
    [137]Liang Lou, Songsong Zhang, Woo-Tae Park, J M Tsai, Dim-Lee Kwong and Chengkuo Lee, Optimization of NEMS pressure sensors with a multilayered diaphragm using silicon nanowires as piezoresistive sensing elements, Journal of Micromechanics and Microengineering,22(5),2012,055012.
    [138]J. H. Kim, K. T. Park, H. C. Kim and K. Chun, Fabrication of a piezoresistive press sensor for enhancing sensitivity using silicon nanowire, IEEE International Conference on Solid-state sensors, actuators and Microsystems, 2009, pp.1936-1939.
    [139]Songsong Zhang, Liang Lou and Chengkuo Lee, Piezoresistive silicon nanowire based nanoelectromethanical system cantilever air flow sensor, Applied Physics Letters,100(2),2012, pp.023110-0213113.
    [140]Huihui Guo, Liang Lou, Xiangdong Chen, Chengkuo Lee, PDMS-Coated Piezoresistive NEMS Diaphragm for Chloroform Vapor Detection, IEEE Electron Device Letters,33(7),2012, pp.1078-1080.
    [141]A. N. Chaudhry and N. C. Billing ham, Characterization and oxidative degradation of a room-temperature vulcanized Poly (dimethylsiloxane) rubber, Polymer Degradation Stability,73(3),2001, pp.505-510.
    [142]W. F. Manders, J. M. Bellama, Multiphoton infrared laser-induced degradation of polydimethylsiloxane and hexamethyldisiloxane, Journal of Polymer Science Part A:Polymer Chemistry,23(2),1985, pp.352-357.
    [143]杨建红译,固体电子器件[M],兰州:兰州大学出版社.2005.
    [144]钱劲,刘澄, 张大成,微机械系统中的残余应力问题,机械强度,23(4),2001,pp.393-401.
    [145]朱长纯,赵红坡,韩建强,崔万照,MEMS薄膜中的残余应力问题,微纳电子技术,40(10),2003,pp.30-34.
    [146]J. L. Yang, J. Gaspar, and O. Paul, Fracture properties of LPCVD silicon nitride and thermal oxide thin films from the load-deflection of long Si3N4 and SiO2 Membranes, IEEE Journal of Microelectromechanical Systems, 17(5),2008, pp.1120-1134.
    [147Hatty, V., Kahn, H. and Heuer, A. H, Fracture toughness, fracture strength, and stress corrosion cracking of silicon dioxide thin films, IEEE Journal of Microelectromechanical Systems,17(4),2008, pp.943-947.
    [148]陈耀庭,橡胶的热物理特性,特种橡胶制品,1(10),1980,pp.67-80.
    [149]Grzybowski, Bartosz A, Thermally actuated interferometric sensors based on the thermal expansion of transparent elastomeric media, Review of Scientific Instruments,70(4),1999, pp.2031-2037

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700