聚酯低温等离子体表面改性及喷墨印花应用性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酯纤维经过半个多世纪的发展,已经成为纺织纤维的重要原料,不仅在民用纺织品领域使用广泛,工业方面的应用也日益重要。传统聚酯织物的印花主要使用分散染料色浆进行,印花后要采用高温高压蒸化法、热熔法或常压高温连续蒸化法进行固色,固色后还需水洗去除未固色的染料和印花糊料。不仅耗用大量的染化料、蒸汽和水,环境污染严重,而且加工流程长,对花难度大,易产生搭色、渗化等疵病。采用喷墨印花技术对聚酯织物进行印花,可以减轻废水排放及能源消耗,是一种清洁印花方法,而且对纺织品印花技术的升级换代及整个行业的发展具有非常重要意义,前景广阔。
     目前聚酯织物喷墨印花工艺主要有三种,一种是分散染料直接喷墨印花,另一种是分散染料转移印花,第三种是颜料墨水喷墨印花。分散染料直接喷墨印花生产工艺复杂,织物需要预处理,印花后需要汽蒸、水洗等后处理,存在一定程度的环境污染。分散染料转移印花是将印花图案直接打印在转移纸上,再通过加热使染料从纸上转移到织物上。不需要预处理,也不需要汽蒸、水洗等后处理,没有污水排放,工艺简单。但是染料利用率不高,印制深浓色图案困难。大量使用的转移印花纸同样会对环境产生污染。颜料墨水喷墨印花原则上不需要预处理,但是聚酯分子结构紧密,对称性高,结晶度高,吸湿性低,在进行喷墨印花时图案容易模糊,表面颜色深度差,为了提高喷墨印花效果需要进行预处理。
     聚酯织物颜料墨水喷墨印花的预处理一般采用传统印花糊料(如海藻酸钠、羧甲基纤维素等)或阳离子助剂(如十二烷基三甲基氯化铵、甲基苄基氯化铵、苄基三乙基氯化铵等)进行化学湿加工,存在污染。低温等离子体技术用于织物喷墨印花的预处理加工,不使用水和化学品,仅对纤维材料极浅表面产生作用,纤维整体性能不受影响,是环境友好加工方法。采用不同的等离子体处理方法对聚酯织物进行表面改性,可以提高颜料墨水喷墨印花效果。
     射频辉光放电低温O2等离子体处理能改变聚酯织物的表面性能,作用强度和等离子体操作参数有关,较适处理条件是40Pa、80W、7min。改性后织物润湿性能提高,和未处理织物相比,润湿时间下降到52s左右。ATR FT-IR和XPS结果表明,织物表面元素含量发生变化,含C量由75.9%下降到59.3%,含O量由24.1%增加到40.7%,极性含氧官能团增加。SEM和AFM研究揭示纤维表面发生明显刻蚀,光滑表面变得粗糙,有利吸附更多水分子,改善润湿性能。处理后的织物喷墨印花图案边缘线条界面精细度发生变化,经向和纬向喷墨打印直线宽度分别下降35.3%和43.9%;图案表面颜色深度K/S值则增加约54%;实际喷墨印花图案轮廓清晰,表面颜色较深,质量提高。但射频辉光放电是低气压放电,需要真空设备,能耗和成本高,无法连续化加工,实用性受到一定限制。
     聚酯织物进行常压介质阻挡放电低温等离子体表面改性,通过在空气中进行放电处理可以降低织物表面的疏水性。改变等离子体处理时间及功率,研究相关参数的变化对织物颜料墨水喷墨印花性能的影响。常压介质阻挡放电低温等离子体处理可以对织物产生刻蚀,使之失重,润湿性能提高。在试验范围内较适处理条件是200W、3min,可以使织物失重约0.86%,润湿时间下降到148s左右。SEM和AFM分析显示,低温等离子体处理可以使织物表面形貌发生变化,粗糙度增加;ATR FT-IR和XPS研究表明处理后织物表面C元素含量下降11.7%,O元素含量上升7.4%。处理后织物喷墨印花图案边缘线条清晰,经、纬向喷墨打印直线宽度分别下降34.8%和40.7%,表面颜色深度提高39.5%,打印效果明显提高,其改性效果接近射频辉光放电低温O2等离子体,但由于该放电使用自然状态的空气产生气体放电等离子体,工艺简单方便,成本低。
     等离子体改性后织物表面性能的变化随放置时间延长会逐渐衰退,即具有经时效应。因而织物进行等离子体处理后必须立即喷墨印花,给加工带来很大不便。可以使用等离子体引发亲水性单体表面接枝加以解决。对聚酯织物进行RFGDP表面接枝改性,较适条件为:丙烯酸和丙烯酰胺单体浓度35%,温度30°C,浸渍3h;马来酸酐单体浓度15%,温度70°C,浸渍3h。接枝后的织物表面引入极性羧基或酰胺基,润湿性能提高。经不同单体丙烯酸、丙烯酰胺和马来酸酐接枝后,润湿时间由未处理的大约20min,分别下降到6.44分钟、4.39分钟和2.81分钟;接触角也明显下降。同时对聚酯织物进行APDBDP引发表面接枝改性,改性条件为:丙烯酸和丙烯酰胺单体浓度35%,温度30°C,浸渍3h;马来酸酐单体浓度15%,温度70°C,浸渍3h。改性后织物的润湿性能提高且不随放置时间延长而衰退,效果持久。等离子体表面接枝改性后织物表面形貌发生变化,光滑的表面变得粗糙,喷墨印花时能快速均匀地吸收墨水,使喷墨打印经、纬向直线的宽度减小,表面颜色深度增加,印花图案轮廓鲜明、清晰,喷墨印花质量改善。更为重要的是没有经时效应,可以根据实际使用需要进行后续喷墨印花加工,操作更加方便。
     对聚酯织物等离子体改性的经时效应进行了探讨。结果表明,单独的等离子体表面改性具有明显的经时效应,主要是由于织物表面引入的极性基团从表面向本体反转,反转的难易程度受织物放置环境影响很大。温度和湿度是影响等离子体表面处理效果经时效应的重要因素。放置在温度较高、相对湿度较大的环境中,经时效应较明显。而等离子体表面接枝改性所获得的效果则较稳定,不随放置时间的延长而衰减。
     经等离子体表面及亲水性单体接枝改性后聚酯织物表面性能发生较大变化,光滑的纤维表面由于等离子体的刻蚀作用变得凹凸不平,含氧极性基团的引入使润湿性能提高,从而有利于改善喷墨印花质量,为颜料墨水喷墨印花技术的推广和应用开辟了新途径。
After half a century of development, polyester fiber has become an important raw material of textile industry. Polyester fiber is not only widely used in civilian areas, and industrial applications are increasingly important. In the conventional textile printing of polyester fabric, the disperse dye is applied with other additional chemicals in the form of a print paste. The print is then normally steamed to fix the dye onto the fabric and then washed thoroughly to remove any unfixed dye, chemicals and thickener. It was high consumption of dye, chemicals, water, steam and energy. And also it is ease to produce taking colour and bleeding, and so on. Polyester fabric inkjet printing technology is a clean printing method and it can reduce waste emissions and energy consumption. This technology can also promote the development of the whole textile printing. The prospects are broad.
     The technology of polyester fabric inkjet printing is usually classified into three categories: disperse dye inkjet printing, disperse dye transfer printing and pigment inkjet printing. It is necessary for disperse dye inkjet printing to undertake special pretreatment on the fabric before printing, and the final products must be achieved by steaming and washing. Disperse dye transfer printing is to print directly in the transfer paper, and then the dye transferred from paper to polyester fabric by heat sublimation. The technology has no pretreatment, steam washing and other post-treatment. There is no sewage disposal, and it is a simple process. But the dye utilization is not high and there are some difficulties in printing deep color patterns. A large amount of transfer printing paper will produce the pollution. Pigment-based inks printing undertake no special pretreatment on the fabric before printing. But the molecular structure of the poly(ethylene terephthalate) lacks polar groups, which causes it to have low surface free energy and poor wettability. When polyester fabric is printed with pigment-based inks, the printed patterns have poor color yield and easily bleeding, especially for thin fabric. As a result, the pretreatment process is necessary for the polyester fabric inkjet printing.
     Traditional pretreatment method was to use printing paste(such as sodium alginate, carboxymethyl cellulose, and so on) or cationic auxiliary (dodecyl trimethyl ammonium chloride, methyl benzyl ammonium chloride, benzyl triethyl ammonium chloride, and so forth). Although chemical modification of the fibers has been somewhat successful, there are environmental concerns related to the disposal of chemicals after treatment. Plasma treatment of polymeric fibers only affects their surface layer, and does not decrease intrinsic mechanical properties of textile materials. Plasma treatment is a clean, dry and environmental friendly physical technique.
     The radio frequency glow discharge low-temperature oxygen plasma treatment can change the surface properties of polyester fabric and the effect of plasma is related to the operating parameters. The optimum treatment condition was as follows: the power 80W, the processing time 7 min, and the pressure 40Pa. Compared to the untreated fabric, the wettability of the modified fabric was improved, and the wetting time was declined to 52s. Attenuated total reflection Fourier infrared spectroscopy (ATR FT-IR) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the element content of the fabric surface was changed. The C element content was decreased from the 75.9% to 59.3%, and the O element content was increased from 24.1% to 40.7%. The polar oxygen group was also increased. These polar groups will incorporate with moisture through hydrogen bonding and help moisture penetration and binding on the fabric surface, which enhances the wettability. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) photographs showed that the surface of fiber was etched and the smooth surface became rough. The warp and weft line width was decreased 35.3% and 43.9%, and the K/S values were increased by approximately 54%. So the pattern effect of ink jet printing was markedly improved. However, the radio frequency glow discharge is low pressure discharge, and it requires vacuum equipment. The energy consumption and costs are high. It is not a continuous process, and the practical applicability is limited.
     The atmospheric pressure dielectric barrier discharge plasma treatment can improve the hydrophilicity of the fabric surface by discharge treatment in air. The plasma treatment time and power was changed, and the performance of the pigment-based ink jet printing fabric was researched. In the experimental range, the optimum processing condition was as follows: the power 200W and the processing time l min. After plasma treatment, the weight loss of fabric was about 0.86%, and the wetting time was about 148s. The wettability of polyester fabric was increased. SEM and AFM photographs showed that plasma treatment caused the increase of surface roughness. XPS analyses revealed that plasma treatment introduced an amount of the oxygen containing polar groups on the fabric surface. At the same time, the warp line width was decreased 34.8%, and the weft line width was decreased 40.7%. Therefore, the inkjet printing performance of the fabric was improved. The surface modification effect and quality of ink jet printing was the same as of radio frequency discharge plasma treatment. The discharge was produced using ambient air and the process is simple and convenient, but also the cost is low.
     Plasma surface modification has obviously aging effect. It is necessary for the fabric to be inkjet printed after treatment. The inkjet printing effect of polyester fabric can be increased after plasma grafting treatment and also there is no aging effect. It is a convenient and simple pretreatment method. The optimum processing condition of RFGEP surface grafting was as follows: The concentration of acrylic acid and acrylamide was 35%, temperature of 30℃, and dipping 3h. The concentration of maleic anhydride was 15%, temperature of 70℃, and dipping 3h. The enhanced wettability was mainly contributed by some polar groups such as carboxyl and hydroxyl groups induced onto fabric surface through plasma grafting treatment. After grafting, the wetting time was decreased from about 20min to 6.44min, 4.39min and 2.81min respectively, and the contact angle was also decreased. The morphology of fiber and the surface chemical composition was changed, respectively. The warp and the weft line width were greatly decreased and the K/S values were enhanced. The inkjet printing performance was improved. APDBDP surface grafting has the same effect as of RFGEP surface grafting.
     In this paper,we also investigate the aging behavior of the plasma treated polyester fabric. The results showed that the surface modification of plasma treatment show the aging process. The fabric surface show a gradual hydrophobicity recovery over the time and the surface properties simultaneously decreases to the original value after plasma treatment. This is due to that the polar groups of the fabric surface were inversed to the body from the surface. The temperature and humidity that the fabric is stored play an important role in the aging process. As the temperature and the humidity are high,the sample exhibits a significant aging process. There is no obviously aging behavior for plasma grafting treated surface. This result indicates that the effect of plasma grafting is more stable than that of plasma surface processing.
     The surface performance of the polyester fabric was changed greatly after the plasma modification and plasma grafting. Due to the plasma etching smooth fiber surface became uneven. The wetting properties of the fabric were improved owing to the introduction of oxygen-containing polar groups. So it can be summarized that plasma treatment can enhance the quality of pigment ink jet printing technology. And also a new way was opened up for the promotion and application of pigment inkjet printing technology.
引文
1.肖为雄.合成纤维改性原理和方法[M].成都:成都科技大学出版社, 1992: 54-55
    2.肖长发.化学纤维概论[M].北京:中国纺织出版社, 2005: 63
    3. Dalo B, Ciaperoni A. the 9th Shirley International Seminar, 1977, 5: 55-84
    4. Pang K, Kotek R, Tonelli A. Review of conventional and novel polymerization processes for polyesters [J]. Progress in Polymer Science, 2006, 31(11): 1009-1037
    5. Tsai P P, Wadsworth L C, Roth J R. Surface modification of fabrics using a one-atmosphere glow discharge plasma to improve fabricwettability [J]. Textile Research Journal, 1997, 67(5): 359-369
    6. Sarmadi A M, Ying T H, Denes F. Surface modification of polypropylene fabrics by acrylonitrile cold plasma [J]. Textile Research Journal, 1993, 63(12): 697-705
    7.王琛,严玉蓉.高分子材料改性[M].北京:中国纺织出版社, 2007:13-16
    8.张瑜,闫卫东,朱美芳,等.化学纤维共混改性技术及其应用[J].合成纤维, 2000, 29(2): 14-16
    9.武荣瑞,张天骄.成纤聚合物的合成与改性[M].北京:中国石化出版社, 2003: 49-52
    10.陈衍夏,兰建武.纤维材料改性[M].北京:中国纺织出版社, 2009: 18
    11. Cho K, Jeong S. Bundle strength of polyester fibers [J]. Journal of Materials Science, 2005, 40(20): 5341-5347
    12. Iwata T. Strong fibers and films of microbial polyesters [J]. Macromolecular Bioscience, 2005, 5(8): 689-701
    13.武荣瑞.我国聚酯纤维改性的技术进展[J].高分子通报, 2008, (8): 101-108
    14. Zhang H P, Zang J C, Chen J Y, et al. Effects of solar UV irradiation on the tensile properties and structure of PPTA fiber [J]. Polymer Degradation and Stability, 2006, 91(11): 2761-2767
    15.陈平,李虹,王静,等.等离子体技术对高性能有机纤维表面改性的研究[J].纤维复合材料, 2008, (3): 21-26
    16. Riccardi C, Barni R, Selli E, et al. Surface modification of poly(ethylene terephthalate) fibers induced by radio frequency air plasma treatment [J]. Applied Surface Science, 2003, 211(1-4): 386-397
    17. Wang C, Chen J R. Studies on surface modification of poly(ethylene terephthalate) film by remote and direct Ar plasma [J]. Applied Surface Science, 2008, 254: 2882-2888
    18.陈杰瑢.等离子体清洁技术在纺织印染中的应用[M].北京:中国纺织出版社, 2005: 9,12–15
    19.李定,陈银华,马锦绣.等离子体物理学[M].北京:高等教育出版社, 2006, 5: 1
    20. Boenig H V. Plasma science and technology [M]. United Kingdom: Cornell University Press, 1982: 14
    21. Tonks L. Langmuir I. Oscillations in ionized gases [J]. Physics Review, 1929, 33(2): 195-210
    22. Langmuir I. Oscillations in ionized gases [J]. Proeeedings of the National Academy of Sciences, 1928, 14: 628.
    23. Roth J R. Industrial plasma engineering [M]. Bristol: IoP Publishing Ltd., 1995: 76-78
    24. Eliezer Y, Eliezer S. The fourth state of matter [M]. Bristol: AdamHilger, 1989: 123-125
    25. Matzing H. Chemical kinetics model of SO2/NOX removal by eleetron beam [J]. Non-Thermal Plasma Techniques For Pollution Control. Part A: Overview, Fundamentals and Supporting Technologies, 1993, 34: 59-64
    26. T J M博伊德等.等离子体动力学[M].戴世强等译.北京:科学出版社, 1977: 98-102
    27. Fridman A, Chirokov A, Gutsol A. Non-thermal atmospheric pressure discharge [J]. Journal of Physics D: Appllied Physics, 2005, 38: 1-24
    28. Grochulska J. Thermal plasma dynamical interaction between the plasmasphere and the ionosphere at mid-latitudes [J]. Acta Geophysica Polonica, 1981, 29: 251-273
    29. Gott Y. Ion thermal-conductivity in a tokamak plasma for the nonneoclassical distribution function [J]. Plasma Physics Reports, 1995, 21(8): 621-633
    30. Frolov M, Ionin A, Kotkov A. Theoretical studies on kinetics of singlet oxygen in non-thermal plasma [J]. High-power Laser Ablation, 2004, 5448: 294-306
    31. Oda T, Takahashi T, Yamaji K. TCE decomposition by the nonthermal plasma process concerning ozone effect [J]. IEEE Transactions on Industry Applications, 2004, 40: 1249-1256
    32. Hlina J, Sonsky J. Recurrent properties of coherent structures in a thermal plasma jet [J]. 2008 IEEE 35th International Conference on Plasma Science. 2008, 1: 435-439
    33.赵化侨.等离子体化学与工艺[M].合肥:中国科学技术大学出版社, 1993: 125-129
    34. Annemie B, Erik N, Renaat G, et al. Gas discharge plasma and their applications [J]. Spectrochemica Acta Part B, 2002, 57: 609-658
    35.许根慧,姜恩永,盛京.等离子体技术与应用[M].北京:化学工业出版社, 2006: 30
    36.宋心远,沈毓如.新型染整技术[M].北京:中国纺织出版社, 1999: 1
    37.金佑民,樊友三.低温等离子体物理基础[M].北京:清华大学出版社, 1983: 62-65
    38.彭国贤.气体放电-等离子体物理的应用[M].上海:知识出版社, 1988: 289-292
    39.江南,范晓峰.无声放电等离子体的光谱诊断[J].真空科学与技术, 2000, (2): 108-110
    40.赵青,刘述章,童洪辉.等离子体技术及应用[M].北京:国防工业出版社, 2009: 3
    41. J R罗思.工业等离子体工程[M].吴坚强等译.北京:科学出版社, 1998: 105-108
    42.胡征.等离子体化学基础[J].化工时刊, 1999, (11): 39-41
    43.李静海.展望21世纪的化学工程[M].北京:化学工业出版社, 2004: 278-281
    44. Polack L. Plasma chemistry [M]. London: Cambridge international scientific publishing, 1998: 87-90
    45.过增元,赵文华.电弧和热等离子体[M].北京:科学出版社, 1986: 34-38
    46. Yang S, Gupta M C. Surface modication of polyethyleneterephthalate by an atmospheric-pressure plasma source [J]. Surface & Coating Technology, 2004, 187: 172-176
    47. Venugopalan M. Reactions under plasmaconditions [M]. New York: John Eiley and Sons, 1971: 103-112
    48. Yasuda H. Plasma polymerization [M]. New York: Academic Press Inc, 1985: 48-23
    49. Shishoo R. Plasma technologies for textiles [M]. Cambridge: Woodhead Publishing Limited in association with The Textile Institute, 2007: 48-51
    50. Carneiro N, Souto A P, Silva E, et al. Dyeability of corona-treated fabrics [J]. Coloration Technology, 2001, 117: 298
    51. Morent R, Geyter N De, Verschuren J, et al. Non-thermal plasma treatment of textiles [J]. Surface and Coatings Technology, 2008, 202: 3427-3449
    52. Ferrero F. Wettability measurements on plasma treated synthetic fabrics by capillary rise method [J]. Polymer Testing, 2003, 22(5): 571-578
    53. Le C V, Ly N G, Stevens M G. Measuring the Contact Angles of Liquid Droplets on Wool Fibers and Determining Surface Energy Components [J]. Textile Research Journal, 1996, 66(6): 389-397
    54. Akishev Y, Kroepke S, Behnisch J, et al. in: Wagner HE, Behnke JF, Babucke G., eds. Proceedings of 7th International Symposium on High Pressure Low Temperature Plasma Chemistry. Germany, Greifswald: 2000. 481.
    55. Temmerman E, Leys C. Surface modification of cotton yarn with a DC glow discharge in ambient air [J]. Surface & Coatings Technology, 2005, 200(1-4): 686-689
    56. Akishev Y S, Grushin M E, Monich A E, et al. One-atmosphere argon dielectric-barrier corona discharge as an effective source of cold plasma for the treatment of polymer films and fabrics [J]. High Energy Chemistry, 2003, 37: 286
    57. Negulescu I I, Despa S, Chen J, et al. Characterizing Polyester Fabrics Treated in Electrical Discharges of Radio-Frequency Plasma [J]. Textile Research Journal, 2000, 70(1): 1-7
    58. Wróbel A M, Kryszewski M, Rakowski W, et al. Effect of plasma treatment on surface structure and properties of polyester fabric [J]. Polymer, 1978, 19(8): 908-912
    59. Costa T H C, Feitor M C, Alves C, et al. Effects of gas composition during plasma modification of polyester fabrics [J]. Journal of Materials Processing Technology, 2006, 173(1): 40-43
    60. Borcia G, Anderson C A, Brown N M D. Dielectric barrier discharge for surface treatment:application to selected polymers in film and fibre form [J]. Plasma Sources and Science Technology, 2003, 12(3): 335-344
    61. Borcia G, Anderson C A, Brown N M D. Surface treatment of natural and synthetic textiles using a dielectric barrier discharge [J]. Surface & Coatings Technology, 2006, 201(6): 3074-3081
    62. Bhat N V, Nadiger G S. Effect of nitrogen plasma on the morphology and allied textile properties of tasar silk fibers and fabrics [J]. Textile Research Journal, 1978, 48(12): 685
    63. Wong K K, Tao X M, Yuen C W M, et al. Low temperature plasma treatment of linen [J]. Textile Research Journal, 1999, 69(11): 846-855
    64. Vander W L C, Ostenson M, Gatenholm P, et al. Surface modification of cellulosic fibers using dielectric-barrier discharge [J]. Carbohydrate Polymers, 2006, 65(2): 179-184
    65. Rahel J, Simor M, Cernak M, et al. Hydrophilization of polypropylene nonwoven fabric using surface barrier discharge [J]. Surface & Coatings Technology, 2003, 169-170: 604-608
    66. Pappas D, Bujanda A, Demaree D, et al. Surface modification of polyamide fibers and films using atmospheric plasmas [J]. Surface & Coatings Technology, 2006, 201(7): 4384-4388
    67. Sharnina L V. Low-temperature plasma as the basis for creation of modern textile chemical technologies [J]. Fibre Chemistry, 2004, 36(6): 431-436
    68. ?ktem T, Ayhan H, Seventekin N, et al. Modification of polyester fabrics by in situ plasma or post-plasma polymerization of acrylic acid [J]. Journal of the Society of Dyers & Colourists, 1999, 115(9): 274-279
    69. ?ktem T, Seventekin N, Ayhan H, et al. Improvement in surface-related properties of poly(ethylene terephthalate)/cotton fabrics by glow-discharge treatment [J]. Indian Journal of Fibre & Textile Research, 2002, 27(2): 161-165
    70. Ferrero F, Tonin C, Peila R, et al. Improving the dyeability of synthetic fabrics with basic dyes using in situ plasma polymerization of acrylic acid [J]. Coloration Technology, 2004, 120(1): 30-34
    71. Iriyama Y, Mochizuki T, Watanabe M, et al. Plasma treatment of silk fabrics for better dyeability [J]. Journal of Photopolymer Science Technology, 2002, 15(2): 299-306
    72. El-Nagar K, Saudy M A, Eatah A I, et al. DC pseudo plasma discharge treatment of polyester textile surface for disperse dyeing [J]. Journal of the Textile Institute, 2006, 97: 111
    73. Raffaele-Addamo A, Selli E, Barni R, et al. Cold plasma-induced modification of the dyeing properties of poly(ethylene terephthalate) fibers [J]. Applied Surface Science, 2006,252(6): 2265-2275
    74. Jin J C, Dai J J. dyeing behaviour of nitrogen low-temperature glow discharge treated wool [J]. Indian Journal of Fibre & Textile Research, 2003, 28(4): 477-484
    75. Jocic D, Vilchez S, Topalovic T, et al. Effect of low-temperature plasma and chitosan treatment on wool dyeing with Acid Red 27 [J]. Journal of Applied Polymer Science, 2005, 97: 2204-2214
    76. Cai Z S, Qiu Y P, Zhang C Y, et al. Effect of atmospheric plasma treatment of desizing of PVA on cotton [J]. Textile Research Journal, 2003, 73(8): 670-674
    77. Cai Z S, Qiu Y P. The mechanism of air/oxygen/helium atmospheric plasma action on PVA [J]. Journal of Applied Polymer Science, 2006, 99(5): 2233-2237
    78. Keller M, Ritter A, Reimann P, et al. Comparative study of plasma-induced and wet-chemical cleaning of synthetic fibers [J]. Surface & Coatings Technology, 2005(1-4), 200: 1045-1050
    79. Wong K K, Tao X M, Yuen C W M, et al. Effect of plasma and subsequent enzymatic treatments on linen fabrics [J]. Journal of the Society of Dyers & Colourists, 2000, 116(7-8): 208-214
    80. Yoon N S, Lim Y J, Tahara M, et al. Mechanical and Dyeing Properties of Wool and Cotton Fabrics Treated with Low Temperature Plasma and Enzymes [J]. Textile Research Journal, 1996, 66(5): 329-336
    81. Zanini S, Riccardi C, Canevali C, et al. Modifications of lignocellulosic fibers by Ar plasma treatments in comparison with biological treatments [J]. Surface & Coatings Technology, 2005, 200(1-4): 556-560
    82. Shekar R I, Bajpai S K. Effect of oxygen plasma on woolen fabric properties [J]. Indian Journal of Fibre & Textile Research, 2000, 25(3): 229-231
    83. Shen L, Dai J J. Improvement of hydrophobic properties of silk and cotton by hexafluoropropene plasma treatment [J]. Applied Surface Science, 2007, 253(11): 5051-5055
    84. Simor M, Rahel J, Cernak M, et al. Atmospheric-pressure plasma treatment of polyester nonwoven fabrics for electroless plating [J]. Surface & Coatings Technology, 2003, 172(1): 1-6
    85. Ghoranneviss M, Shahidi S, Moazzenchi B, et al. Comparison between decolorization of denim fabrics with Oxygen and Argon glow discharge [J]. Surface & Coatings Technology, 2007, 201(9-11): 4926-4930
    86. Sun D, Stylios G K. Fabric surface properties affected by low temperature plasma treatment [J]. Journal of Materials Processing Technology, 2006, 173(2): 172-177
    87. Rashidi A, Moussavipourgharbi H, Mirjalili M, et al. Effect of low-temperature plasmatreatment on surface modication of cotton and polyester fabrics [J]. Indian Journal of Fibre & Textile Research, 2004, 29(1): 74-78
    88. Malik S K, Kadian M S, Kumar S. Advances in Inkjet Printing Technology of textiles [J]. Indian Journal of Fiber & Textile Research, 2005, 30(1): 99-113
    89. Li X F, Wayne C T. New colorant system for ink-jet printing on textiles [J]. Textile Chemist and Colorists & American Dyestuff Reporter, 1999, 1(3): 37-42
    90. De A Z, Machine R. New developments in digital printing [J]. Textile Panamericanos, 2003, 63(3): 64-65
    91. Wayne C T. Overview of digital printing and print head technologies [J]. AATCC Review, 2003, (7): 4-7
    92. Usha D, Sumit K K. Ink jet printing: A review [J]. Colourage, 2003, 2: 35-38
    93. Grant A. Pigmented jet-links for textile applications [C]. IS&T'S NIP17 International Conference on Digital Printing Technologies. Springfield: Society for imaging science & technology, 2001. 431-434
    94. Zhang Y Q, Cheung V, Westl S. Colour management of a low-cost four-colour ink-jet printing system on textiles [J]. Coloration Technology, 2009, 125: 29-35
    95. Dawson T L, Spots before the eyes: can ink jet printers match expectations? Coloration Technology, 2001, 117: 185-192
    96. Xue C H, Shi M M, Chen H Z. Preparation and application of nanoscale microemulsion as binder for fabric inkjet printing [J]. Colloids and Surfaces A: Physicochemical Engineering Aspects, 2006, 287: 147-152
    97. Wayne C T, Hu Q A, Li X F. Ink jet systems for printing fabric [J]. Textile Chemist and Colorist, 1998, (5): 24-27
    98. Wayne C T. Overview of digital printing and print head technologies [J]. AATCC Review, 2003, (7): 4-7
    99. Jean P S. Jet printing for the textile industry [J]. Textile Chemist and Coiorist, 1996, 28(9): 19-23
    100. Jurgen B, Alex M G. Piezoelectric shear mode drop-on-demand inkjet actuator [J]. Sensors and Actuators A: Physical, 2005, 101(3): 371-382
    101.薛朝华,贾顺田.纺织品数码喷墨印花技术[M].北京:化学工业出版社, 2008: 11
    102. Mills R N. 2nd Annual Large & Grand Format Color Printing Conference. Kingfield: Information Management Institute, 1997.
    103. Mills R N. 12th International Conference on Digital Printing Technologies. Springfield: Society for imaging science & technology, 1996. 262
    104. Fujitani S, Kato M. Aqueous pigment dispersions with excellent dispersion stability andstorage stability, JP 09025431.
    105. Hesler, Carl Michael. Aqueous pigment dispersion for bleed-resistant, lightfast inks with improved stability. GB 2305929A1. 1997
    106. Matta, Brucel W, Michael S, et a1. Polymers as dispersants for inorganic pigment dispersions and their preparation WO 9701587, 1997
    107. Ichizawa N, Yui T, Suzuki, et a1. Ink and ink jet printing technique for ink jet printing. JP l1140356.
    108. Sakuma T, Ishii M. Storage-stable water-thinned ink-jet inks and ink-jet printing method. JP 10060327.
    109. Suzuki A, Yui T. Aqueous ink-jet recording ink with good discharge responsibility and discharge stability. JP 11228891, 1998
    110.房宽峻.数字喷墨印花技术[M].北京:中国纺织出版社, 2008: 44-48
    111.王国军,陈瑾,童小甫.棉织物活性喷墨印花前处理工艺探索[J].丝绸, 2001, (C00): 130-132
    112.梁少华,屠天民,蔡忠山.喷墨印花前的预处理条件和染料的选择[J].印染, 2001, 27(12): 8-1
    113. Yuen C W M, Kan C W. Influence of low-temperature plasma on the ink-jet-printed cotton fabric [J]. Journal of Applied Polymer Science, 2007, 104: 3214-3219
    114.陈通炫,李芮,沈安京.低温等离子体改性真丝织物的喷墨印花性能[J].印染, 2008, 22: 10-13
    115. Fang K J, Wang S H, Wang C X, et al. Inkjet printing effects of pigment inks on silk fabrics surface-modified with O2 plasma [J]. Journal of Applied Polymer Science, 2008, 107: 2949-2951
    1.赵青,刘述章,童洪辉.等离子体技术及应用[M].北京:国防工业出版社, 2009: 90
    2.江剑平.阴极电子学与气体放电原理[M].北京:国防工业出版社, 1980: 83-87
    3. Cioffi M O H, Voorwald H J C, Mota R P. Surface energy increase of oxygen-plasma-treated PET [J]. Materials Characterization, 2003, 50:209-215
    4. Claudia R, Ruggero B, Elena S, et al. Surface modification of poly(ethylene terephthalate) fibers induced by radio frequency air plasma treatment [J]. Applied Surface Science, 2003, 211: 386-397
    5. Poletti G, Orsini F, Raffaele-Addamo A, et al. Cold plasma treatment of PET fabrics: AFM surface morphology characterisation [J]. Applied Surface Science, 2003, 219: 311-316
    6. Hossain M M, Hegemann D, Herrmann A S, et al. Contact angle determination on plasma-treated poly(ethylene terephthalate) fabrics and foils [J]. Journal of Applied Polymer Science, 2006, 102: 1452-1458
    7.李阳,许根慧.等离子体技术在催化反应中的应用[J].化学工业与工程, 2002, 19(1): 66
    8. Antonino R A, Elena S. Cold plasma-induced modification of the dyeing properties of poly(ethylene terephthalate) fibers [J]. Applied Surface Science, 2006, (252): 2265-2275
    9.陈杰瑢.低温等离子化学及其应用[M].北京:科学出版社, 2001: 239-241,255
    10. Shahidi S, Ghoranneviss M, Moazzenchi B, et al. Effect of using cold plasma on dyeing properties of polypropylene fabrics [J]. Fibers and Polymers, 2007, 8(1): 123-129
    11. Fang K J, Wang S H, Wang C X, et al. Inkjet printing effects of pigment inks on silk fabrics surface-modified with O2 plasma [J]. Journal of Applied Polymer Science, 2008, 107: 2949-2951
    12. Noureddine A, Eric H. Cotton fabric graft copolymerization using microwave plasmaphysical properties [J]. Journal of Applied Polymer Science, 2005,98: 896-902
    13. Aysun C, Bengi K, Mehmet M. Surface modification of polyester and polyamide fabrics by low frequency plasma polymerization of acrylic acid [J]. Journal of Applied Polymer Science, 2007, 104: 2318–2322
    14.汪昆华,罗传秋,周啸.聚合物近代仪器分析[M].北京:清华大学出版社, 2000: 173-174
    15. Bining G; Quate C F; Gerber C. Physics Review Letters, 1986, 56: 930–933
    16.李康.壳聚糖等离子体处理对棉纤维性能的影响[J].棉纺织技术, 2009, 37(6): 325-327
    17. Behary N, Ghenaim A, El Achari A, et al. Tribological analysis of glass fibers using atomic force microscopy (AFM)/lateral force microscopy (LFM) [J]. Journal of Applied Polymer Science, 2000, 75: 1013–1025
    18. Siegbahn K, Nordling C, Johanson G, et al. ESCA applied to free molecules. London: North-Holland Amsterdam, 1969: 62-74
    19.张美珍.聚合物研究方法[M].北京:中国轻工业出版社, 2000: 53–55
    20.钟海庆.红外光谱法入门[M].北京:化学工业出版社, 1984: 45
    21.薛奇.高分子结构研究中的光谱方法[M].北京:高等教育出版社, 1995: 66-70
    22.金咸穰.染整工艺实验[M].北京:纺织工业出版社, 1990: 130
    23.陈杰瑢.等离子体清洁技术在纺织印染中的应用[M].北京:中国纺织出版社, 2005: 11,12,13-14
    24.许根慧,姜恩永,盛京.等离子体技术与应用[M].北京:化学工业出版社, 2006: 230-231
    25. Wong K K, Tao X M, Yuen C W M, et al. Low temperature plasma treatment of linen [J]. Textile Research Journal, 1999, 69(11): 846-855
    26.李敏,陈杰瑢,韦鹤平,等.氧和氮等离子体改性细旦丙纶的清洁工艺比较[J].环境科学研究, 2000, 13(2): 9-11
    27. Selli E, Mazzone G, Oliva C, et al. Characterisation of poly (ethylene terephthalate) and cotton fibres after cold SF6 plasma treatment [J]. Journal of Materials Chemistry, 2001, 11: 1985.
    28. Selli E, Riccardi C, Massafra M R, et al. Surface modifications of silk by cold SF6 plasma treatment [J]. Macromolecular Chemistry and Physics, 2001, 202: 1672
    29. Marcel S, Jozef R, Mirko C. Atmospheric–pressure plasma treatment of polyester nonwoven fabrics for electroless plating [J]. Surface & Coatings Technology, 2003, 172(1): 1–6
    30. Mahlberg R, Niemi H E-M, Denes F S, et al. Application of AFM on the adhesion studies of oxygen-plasma-treated polypropylene and lignocellulosics [J]. Langmuir, 1999, 15: 2985
    31. Beake B D, Ling J S G, Leggett G J. Scanning force microscopy investigation of poly (ethylene terephthalate) modified by argon plasma treatment [J]. Journal of Materials Chemistry, 1998, 8: 1735
    32. Olde Riekerink M B, Terlingen J G A, Engbers G H M, et al. Selective etching of semicrystalline polymers: CF4 gas plasma treatment of poly (ethylene) [J]. Langmuir, 1999, 15: 4847
    33. Borcia G, Anderson C A, Brown N M. Surface treatment of natural and synthetic textiles using a dielectric barrier discharge [J]. Surface and Coatings Technology, 2006, 201(6): 3074-3081
    34. Wang C X, Ren Y, Qiu Y P. Penetration depth of atmospheric pressure plasma surface modification into multiple layers of polyester fabrics [J]. Surface & Coating Technology, 2007, 202(1): 77–83
    35. Yuen C W M, Kan C W. Influence of low-temperature plasma on the ink-jet-printed cotton fabric [J]. Journal of Applied Polymer Science, 2007, 104: 3214-3219
    36.陈通炫,李芮,沈安京.低温等离子体改性真丝织物的喷墨印花性能[J].印染, 2008, 34(22): 10-13
    37.刘艳春.腈纶等离子体抗静电处理[D]: [博士学位论文].上海:东华大学, 2005
    38.姚穆,周瑾芳,黄淑珍,等.纺织材料学[M].北京:中国纺织出版社, 1996: 633
    1. Kogelschatz U. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications [J]. Plasma Chemistry and Plasma Processing, 2003, 23(1): 1-46
    2.徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社, 1996: 221-226
    3.杨津基.气体放电[M].北京:科学出版社, 1983: 235-239
    4. Polak L S, Lebedv Yu A. Plasma chemistry [M]. Cambridge: Cambridge international science publishing, 1998: 215-223
    5. Geyter N De, Morent R, Leys C. Penetrationg of a dielectric barrier discharge plasma into textile structures at medium pressure [J]. Plasma Source Science and Technology, 2006, 15: 78-84
    6. Frederic L, Christine C, Anne P, et al. Atomospheric air plasma treatment of polyester textile materials: textile structure influence on surface oxidation and silicon resin adhension [J]. Surface and Coatings Technology, 2009, 203: 3178-3183
    7. Borcia G, Anderson C A, Brown N M D. Surface treatment of natural and synthetic textiles using a dielectric barrier discharge [J]. Surface & Coatings Technology, 2006, 201(6): 3074-3081
    8. Riccardia C, Barnia R, Selli E, et al. Surface modification of poly(ethylene terephthalate) fibers induced by radio frequency air plasma treatment [J]. Applied Surface Science, 2003,211: 386–397
    9. Rajendra R D, Narendra V B. The mechanism of adhesion and printability of plasma processed PET films [J]. Materials Research Innovation, 2003, 7: 283–290
    10.白秀娥.聚酯纤维的低温等离子体表面改性[J].合成技术及应用,2002, 17(4): 1-3
    11. Blais P, Carlsson D J, Wiles D M. Surface changes during polypropylene photo‐oxidation: A study by infrared spectroscopy and electron microscopy [J]. Journal of Polymer Science: Part A-1, 1972, 10: 1077-1092
    12. Shen M, Bell AT. Plasma polymerization [M]. Washington: American Chemical Society, 1979:185-192
    13. Dilks A, Kay E. A solid state nuclear magnetic resonance investigation of plasma polymerized hydrocarbons [J]. Macromolecules, 1980, 14: 855
    14. Li S F, QI H J. Treatment of PET nonwoven fabric by gas plasma [J]. Journal of Textile Research, 2007, 28(11): 48-51
    15. Wang C X, Qiu Y P. Two sided modification of wool fabrics by atmospheric pressure plasma jet: Influence of processing parameters on plasma penetration [J]. Surface & Coatings Technology, 2007, 201: 6273–6277
    16. Greenwood O D, Boyd R D, Hopkins J, et al. Atmospheric silent discharge versus low-pressure plasma treatment of polyethylene, polypropylene, polyisobutylene and polystyrene [J]. Journal Adhesion Science Technology, 1995, 9: 311
    17. Noeske M, Degenhardt J, Strudthoff S, et al. Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion [J]. International Journal of Adhesion & Adhesives, 2004, 24: 171–177
    18. Borcia G, Anderson C A, Brown N M. Surface treatment of natural and synthetic textiles using a dielectric barrier discharge [J]. Surface and Coatings Technology, 2006, 201(6): 3074-3081
    19. Wang C X, Ren Y, Qiu Y P. Penetration depth of atmospheric pressure plasma surface modification into multiple layers of polyester fabrics [J]. Surface & Coating Technology, 2007, 202(1): 77–83
    20. Shahidi S, Ghoranneviss M, Moazzenchi B, et al. Effect of using cold plasma on dyeing properties of polypropylene fabrics [J]. Fibers and Polymers, 2007, 8(1): 123-129
    21. Kanik M, Hauser P J. Ink-jet printing of cationised cotton using reactive inks [J]. Coloration Technology, 2003, 119:230-234
    22.姚穆,周锦芳.纺织材料学[M].北京:中国纺织出版社, 2000: 182
    23. Zhang J, Radomyselskiy A, et al. Hydrophobic Cotton Fabric Coated by a Thin Nanoparticulate Plasma Film [J]. Journal of Applied Polymer Science, 2003, 88: 1473–1481
    24.杨业智,莫少波,童华,等.低温氧等离子体对棉纤维表面结构的影响[J].高分子材料科学与工程, 1991, 3(2): 91-94
    25.黎志光,冯贤平,施芸诚,等.一种新的等离子体源及其在纺织材料表面改性中的应用[J].东华大学学报, 2004, 30(3): 21-25
    26. Liu C Z, Brown N M D. Effects of DBD plasma operating parameters on the polymer surface modification [J]. Surface & Coatings Technology, 2004, 185: 311–320
    27.赵华侨.等离子体化学与工艺[M].合肥:中国科技大学出版社, 1993: 303
    28.许根慧,姜恩永,盛京.等离子体技术与应用[M].北京:化学工业出版社, 2006: 219
    1. Temmerman E, Leys C. Surface modification of cotton yarn with a DC glow discharge in ambient air [J]. Surface & Coatings Technology, 2005, 200: 686-689
    2. Claudia R, Ruggero B, Elena S, et al. Surface modification of poly(ethylene terephthalate) fibers induced by radio frequency air plasma treatment [J]. Applied Surface Science, 2003, 211: 386–397
    3.宋心远,沈煜如.新型染整技术[M].北京:中国纺织出版社, 1999: 27
    4. Valter C, Enrico F, Leopoldo C, et al. Graft polymerization of functional acrylic monomers onto cotton fibres activated by continous Ar plasma [J]. Plasma Processes and Polymers, 2006, 3: 48-57
    5.许根慧,姜恩永,盛京.等离子体技术与应用[M].北京:化学工业出版社, 2006: 208,210
    6. Chen J P, Chiang Y P. Surface modification of non-woven fabric by DC pulsed plasma treatment and graft polymerization with acrylic acid [J]. Journal of Membrane Science, 2006, 270: 212-220
    7.杨静.用低温等离子体诱导PET织物接枝丙烯酸[J].合成技术及应用, 2008, 23(1): 22-25
    8. Hu J. J, Yin Chao, Mao H. Q, et al. Functionalization of poly(ethylene terephthalate) film by pulsed plasma depositon of maleic anhydride [J]. Anvanced Functioanl Materials, 2003, 13(9): 692-697
    9.陈森,陈英.低温等离子体引发的涤纶织物的接枝改性[J].北京服装学院学报, 2007, 27(3): 6-11
    10.张晓林,马晓光.低温等离子体在PET膜接枝AM中的应用研究[J].印染, 2005, 14: 15-18
    11. Noureddine A, Eric H. Cotton fabric graft copolymerization using microwave plasma.Ⅰ. universial attenuated total reflectance-FTIR study [J]. Journal of Applied Polymer Science, 2004, 93: 145-154
    12. Noureddine A, Eric H. Cotton fabric graft copolymerization using microwave plasma.Ⅱ. physical properties [J]. Journal of Applied Polymer Science, 2005, 98: 896-902
    13. Cernakova L, Kovacik D, Zahoranova A, et al. Surface modification of polypropylene non-woven fabrics by atmospheric-pressure plasma activation followed by acrylic acid grafting [J]. Plasma Chemistry and Plasma Processing, 2005, 25(4): 427-437
    14.张晓林,马晓光.丙烯酸微波低温等离子体引发PET接枝改性的研究[J].纺织学报, 2005, 26(5): 16-19
    15.任忠海,郭雅琳,刘德钧,等.等离子体引发丙烯酸在亚麻织物上的接枝聚合[J].辐射研究与辐射工艺学报, 2004, 22(4): 205-208
    16.宋路明,李淳,任亮.等离子体引发亚麻接枝丙烯酰胺的研究[J].印染, 2005, 1: 5-7
    17. Liu Y C, Lu D N. Surface energy and wettability of plasma-treated polyacrylonitrile fibers [J]. Plasma Chemistry and Plasma Processing, 2006, 26(2):119–126
    18. Osada Y, Takasw M, Ynguang, et al. Plasma polymerization processes [J]. Polymer, 1992, 23(13): 27-57
    19. Yasuda H. Plasma Polymerization [M]. New York: Dekker, 1984: 135-155
    20. Chen H, Belfort G. Surface modification of poly(ether sulfone) ultrafiltration membranes by low-temperature plasma-induced graft polymerization [J]. Journal of Applied Polymer Science, 1999, 72: 1699
    21.田冶,周长忍,杨菊林.壳聚糖膜低温等离子体接枝聚合乙烯吡咯烷酮的表面性能研究[J].材料导报, 2008, 22(1): 141-144
    22.潘祖仁.高分子化学[M].北京:化学工业出版社, 1996: 40-45
    23.天津大学物理化学教研室编.物理化学[M].北京:高等教育出版社, 1994: 305-312
    24. Wang C, Chen J R. Studies on surface graft polymerization of acrylic acid onto PTFE film by remote argon plasma initiation [J]. Applied Surface Science, 2007, 253: 4599-4606
    25. Ren C S, Wang D Z, Wang Y N. Graft co-polymerization of acrylic acid onto the linen surface induced by DBD in air [J]. Surface & Coatings Technology, 2006, 201: 2867-2870
    26. Shin Y, Son K, Yoo D I. Functional finishing by using atmospheric pressure plasma: grafting of PET nonwoven fabric [J]. Journal of Applied Polymer Science, 2007, 103: 3655-3659
    27.蔡再生.纤维化学与物理[M].北京:中国纺织出版社, 2009: 258
    28. Gupta B, Plummer C, Bisson I, et al. Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growthon grafted films [J]. Biomaterials, 2002, 23: 863-871
    29. Kim Y J, Kang K, Huh M W, et al. Surface characterization and in vitro blood compatibility of poly(ethylene terephthalate) immobilized with insulin and/or heparin using plasma glow discharge [J]. Biomaterials, 2000, 21:121-130
    30. Cireli A, Kutlu B, Mutlu M. Surface modication of polyester and polyamide fabrics by low frequency plasma polymerization of acrylic acid [J]. Journal of Applied Polymer Science, 2007,104: 2318-2322
    31. Jasso M, Hudec I, Alexy P, et al. Grafting of maleic acid on the polyester fibres initiated by plasma at atmospheric pressure [J]. International Journal of Adhesion & Adhesives, 2006, 26: 274-284
    1. Lens J P, Harmsen P F H, et al. Immobilization of functionalized alkyl-poly(ethylene oxide) surfactants on poly(ethylene) surface by means of an argonpPlasma treatment [J]. Journal of Biomaterials Science-Polymer Edition, 1997, 18(12):963-974
    2.李永强,刘今强,叶华萍.氩等离子体引发聚酯纤维表面丙烯酸接枝[J].纺织学报, 2005, 26(4): 10-13
    3.周其凤,胡汉杰.高分子化学[M].北京:化学工业出版社, 2001: 79
    4.陈杰瑢.低温等离子化学及其应用[M].北京:科学出版社, 2001: 234
    5. Cernakova L, Kovacik D, Zahoranova A, et al. Surface modification of polypropylene non-woven fabrics by atmospheric-pressure plasma activation followed by acrylic acid grafting [J]. Plasma Chemistry and Plasma Processing, 2005, 4: 427-437
    6. Younsook S, Kyunghee S, Dong I Y. Functional finishing by using atmospheric pressure plasma: grafting of PET nonwoven fabric [J]. Journal of Applied Polymer Science, 2007, 103: 3655-3659
    7.刘营,张传杰,祝侣,等.离子体引发海藻酸酐纤维接枝丙烯酰胺的研究[J].印染助剂, 2009, 26(12): 7-10
    8. Jasso M, Hudec I, Alexy P, et al. Grafting of maleic acid on the polyester fibres initiated by plasma at atmospheric pressure [J]. International Journal of Adhesion & Adhesives, 2006, 26: 274-284
    9. Kogelschatz U, Dielectric-barrier discharges: their history, discharge physics, and industrial applications [J]. Plasma Chemistry and Plasma Processing. 2003, 3: 1–46
    10. Fang Z, Qiu Y, Luo Y. Surface modification of polytetrafluoroethylene film using the atmospheric pressure glow discharge in air [J]. Journal of Physics D: Applied Physics, 2003, 36: 2980–2985
    11.张开.高分子界面科学[M].北京:中国石化出版社, 1997: 157-200
    12. Noureddine A, Eric H. Cotton fabric graft copolymerization using microwave plasma universal attenuated total reflectance-FTIR study [J]. Journal of Applied Polymer Science, 2004, 93: 145-154
    13. Ren C S, Wang D Z, Wang Y N. Graft co-polymerization of acrylic acid onto the linen surface induced by DBD in air [J]. Surface & Coatings Technology, 2006, 201: 2867-2870
    14. Masaaki O, Noboru S, Toshiaki Yamamoto. Development of functional sportswear for controlling moisture and odor prepared by atmospheric pressure nonthermal plasma graft polymerization induced by RF glow discharge [J]. Journal of Electrostatics, 2008, 66: 381-387
    15.天津大学物理化学教研室编.物理化学[M].北京:高等教育出版社, 1986: 185-193
    16. Sun H X, Zhang L, Chai L, et al. Surface moditication of poly(tetrafluoroethylene) films via plasma treatment and graft copolymerization of acrylic acid [J]. Desalination, 2006, 192: 271-279
    17.陈衍夏,兰建武.纤维材料改性[M].北京:中国纺织出版社, 2009: 45-48
    18. Hu J. J, Yin Chao, Mao H. Q, et al. Functionalization of poly(ethylene terephthalate) film by pulsed plasma depositon of maleic anhydride [J]. Anvanced Functioanl Materials, 2003, 13(9): 692-697
    19. Gupta B, Plummer C, Bisson I, et al. Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smoothmuscle cell growthon grafted films [J]. Biomaterials, 2002, 23: 863–871
    20.崔永芳.实用有机物波谱分析[M].北京:中国纺织出版社, 1994: 30-67
    21.吴桂军,王潮霞.涤纶织物预处理对喷墨印花应用性能的影响[J].印染, 2007, 15: 1-3
    22. Liu C Z, Cui N Y, Brown M D N, et al. Effects of DBD plasma operating parameters on the polymer surface modification [J]. Surface & Coatings Technology, 2004, 185: 311-320
    1. Siow K S, Britcher L, Kumar S, et al. Plasma methods for the generation of chemieally reaetive surfaces for biomolecule immobilization and cell colorization-A review [J]. Plasma Processes and Polymers, 2006, 3(6-7): 392-418
    2. Arpagaus C, Rossi A, Von R P R. Short-time plasma surface modification of HDPE powder in a plasma downer reactor-process, wettability improvement and ageing effects [J]. Applied Surface Science, 2005, 252(5): 1581-1595
    3. Hossain M M, Hegemann D, Herrmann A S, et al. Contact angle determination on plasma-treated poly(ethylene terephthalate) fabrics and foils [J]. Journal of Applied Polmer Science, 2006, 102(2): 1452-1458
    4. Hyun J, Barletta P, Koh K. et al. Effect of Ar+ ion beam in the process of plasma surface modification of PET films [J]. Journal of Applied Polymler Science, 2000, 77(8): 1679-1683
    5. Kim B K, Kim K S, Park C, et al. Improvement of wettability and reduction of aging effect by plasma treatment of low-density polyethylene with argon and oxygen mixtures [J]. Journal of Adhesion Science and Technology, 2002, 16(5): 509-521
    6. Paynter R W. Angle-resolved XPS study of the effect of x-radiation on the aging of polystyrene exposed to an oxygen/argon plasma [J]. Surface and Interface Analysis, 2002, 33(l): 14-22
    7. Sharma R, Holcomb E, Trigwell S. Stability of atmospheric-pressure plasma induced changes on polycarbonate surfaces [J]. Journal of Electrostatics, 2007, 65(4): 269-273
    8. Suzer S, Argun A, Vatansever O, et al. XPS and water contact angle measurements on aged and corona-treated PP [J]. Journal of Applied Polymer Science, 1999, 74(7): 1846-1850
    9. Svorcik V, Kolarova K, Slepicka P, et al. Modification of surface properties of high and low density polyethylene by Ar plasma discharge [J]. Polymer Degradation and Stability, 2006, 91(6): 1219-1225
    10. Garbassi F, Morra M, Occhiello E, et al. Polymer Surfaces: From Physics to Technology [M]. Chichester: John Wiley & Sons, 1995: 58-63
    11. Carrino L, Polini W, SorrentinoL. Ageing time of wettability on polypropylene surfaces processed by cold Plasma [J]. Journal of Materials Processing Technology, 2004, 153-54:519-525
    12. Clemnent F, Held B, Soulem N, et al. A study on the aging process of polystyrene thin films treated under DC pulsed discharges conditions in oxygen and argon-oxygen mixtures [J]. European Physical Journal-Applied Physics, 2003, 21(l): 59-66
    13. Konig U, Nitschke M, Pilz M, et al. Stability and ageing of plasma treated poly(tetrafluoroethylene) surfaces [J]. Colloidsand Surfaces B-Biointerfaces, 2002, 25(4): 313-324
    14. Hillborg H, Gedde U W. Hydrophobicity changes in silieone rubbers [J]. IEEE Transactions on Dielectrics and Electrical Insulation 1999, 6(5): 703-717
    15. Kim B K, Kim K S, Cho K, et al. Retardation of the surfice rearrangement of O2 plasma-treated LDPE by a two-step temperature control [J]. Journalof Adhesion Science and Technology, 2001, 15(14): 1805-1816
    16. Morra M, Occhiello E, Marola R. On the aging of oxygen plasma-treated polydimethylsiloxane surfaces [J]. Journal of Colloid and Interface Science, 1990, 137(l): 11-24
    17. Reijme A, Maas A J H, Viitanen M M, et al. Intramolecular segregation in polylmers and macromolecules studied by low-energy ion scattering [J]. Surface Science, 2001, 482: 1235-1240
    18. St’ahel P, Janca J, Subedi D P. Surface modification of non-fabricated polypropylene textile in low-temperature plasma at atmospheric pressure. 2004 Proceedings of 3rd Indo-Czech Symposium Liberec, Czech Republic.
    19. Temmerman Eef, Leys Christophe. Surface modification of cotton yarn with a DC glow discharge in ambient air [J]. Surface & Coatings Technology, 2005, 200; 686-689
    20. Riccardi Claudia, Barni Ruggero, Selli Elena, et al. Surface modification of poly(ethylene terephthalate) fibers induced by radio frequency air plasma treatment [J]. Applied Surface Science, 2003, 211: 386-397
    21. Hossain M. M., Hegemann D., Herrmann A. S, et al. Contact angle determination on plasma-treated poly(ethylene terephthalate) fabrics and foils [J]. Journal of Applied Polymer Science, 2006, 102; 1452-1458
    22.董涛,赵国巍,王晓丽,等.接枝丙烯酰胺改善聚乙烯膜表面亲水性的研究[J].化学研究与应用, 2007, 19(1): 49-52
    23. Lawton R A, Price C R, Runge A F, et al. Air plasma treatment of submicron thick PDMS Polymer films: effect of oxidation time and storage conditions [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2005, 253(l-3): 213-215
    24. Nakamatsu J, Delgado A L F, Da S R, et al. Ageing of plasma-treatedpoly(tetrafluoroethylene) surfaces [J]. Journal of Adhesion Science and Technology, 1999, 13(7): 753-761
    25.李永强,刘今强,叶华萍.氩等离子体引发涤纶纤维表面丙烯酸接枝[J].纺织学报, 2005, 26(4): 10-13
    26.刘小冲,易佳婷,王琛. Ar等离子体改性PTFE膜接枝丙烯酸研究[J].化工技术与开发, 2006, 35(4): 13-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700