乌兰布和沙漠东北部绿洲化过程生态效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乌兰布和沙漠东北部的磴口人工绿洲历史悠久,新中国成立后,国家投入大量人力、物力,经历多次大规模沙荒土地的整治与开发,建成了大面积的人工灌溉绿洲,区域生态环境发生了深刻的变化。研究该人工绿洲系统的生态效应及其动态变化,对维护绿洲的可持续发展提供科学依据具有重要的现实意义。
     本文以人工绿洲的生态效应为切入点,采用点面结合的方法,以磴口县区域生态环境为面,以沙漠林业实验中心实验场新建人工绿洲为点,通过野外调查和室内测试相结合、定位观测与半定位观测相结合的方法,并运用3S技术,对人工绿洲生态效应系统进行的多层次及不同空间、时间尺度分析和研究,初步结果如下:
     (1)新中国成立后,磴口县沙荒土地经历了多次的大规模绿洲开发建设,在长期大规模的人工绿洲化过程中,由于资源的不合理利用,产生了一系列的生态问题。近年来(1990年和2003年),磴口县绿洲化与荒漠化相关景观格局的相互转化明显。研究表明:磴口县区域生态环境仍处在局部改善,整体恶化之中。流动沙地的面积显著增加,对绿洲最具生态保护功能的覆盖度高的天然灌丛植被—固定沙地面积显著减少,人工绿洲的扩展主要建立在破坏自己天然保护屏障的基础之上,这种潜在的生态危机,将会给人工绿洲的持续发展带来威胁。
     (2)不论绿洲内部,绿洲边缘、还是绿洲外围,在区域干旱气候的共同背景下,由于受人工绿洲灌溉水分水平运动影响强度的不同,其植被的组成种类、盖度及多样性特征存在着比较大的差异,因而造成其生态功能的显著差别。绿洲外缘天然灌草及人工植被由于其结构差异,造成地表粗糙度明显不同,其防蚀、阻沙、固沙作用也有明显的差别。流动沙地表现为强风蚀、强堆积,而高盖度天然灌丛植被区表现弱风蚀、弱堆积特点。从绿洲边缘向远处沙漠的水平梯度上,不同下垫面的沙尘沉降量差异显著,随着植被盖度的增大,沙尘沉降量显著减少,并且,同一下垫面的垂直梯度上沙尘沉降量的差异也十分显著。
     (3)对绿洲典型研究区人工绿洲幼龄林后期、中龄林、成熟林3个阶段的小气候效应的研究表明(与荒漠相比):生长季绿洲降低气温和地表温度的作用明显;增加降水的作用显著,3个阶段降水增长率分别为8.3%、20.3%、67.1%;提高空气湿度,3个阶段分别提高4.5%、4.7%、2.7%,作物生长季节,绿洲内比荒漠提高约6~9%;抑制蒸发作用明显,3个阶段从人工绿洲的蒸发量分别减少为24.4%、32.2%、12.7%,最热月7月降幅最大,为40.2%;降低风速明显,3个阶段的防风效能分别为41.5%、47.2%、37.1%。
     人工绿洲成熟林阶段,除年降水量有明显增加外,其它多项小气候因子的变化幅度减小,特别是人工绿洲成熟龄林阶段在非生长季的防风效能高于幼龄林后期阶段,而在生长季的防风效能正好相反的现象,正好说明人工绿洲的防风效应完全决定于其防护林,其防风作用的减弱,表明进入成熟期后,生态功能呈下降趋势,可作为防护林更新的理论依据。
     人工绿洲在24年的绿洲化进程中(1980~2004年),绿洲土壤质量得到明显改善,土壤的全量养分、速效养分总体上都呈增加趋势,表层土壤含盐量和PH值均下降明显,土壤质量的改善,为人工绿洲农业产业高产稳产及持续经营奠定了基础。
     (4)通过对不同时间序列多种结构林带(网)无叶期防风作用的系统的研究,农田防护林防风效能,主要决定于林带结构。单一树种的防护林带,防风效能主要决定于主林带间距、树种的冠型特征和造林密度,两树种混交林带,防风效能关键决定于树种搭配,对此在防护林设计上应予以高度重视。林带的防风效能与其宽度关系不大,为窄林带设计提供了依据。
     干旱沙区人工绿洲营建农田防护林具有稳产高产的作用,与无林网保护的农田相比增产作用显著,增产率在25.0%~155.7%,且在防护林网内农作物的质量性状也有改善。结构合理的农田林网其自身的增产作用大于胁地作用,以玉米为例,林网自身对农作物的实际增产率为3.6%。
     二白杨农田防护林23a时,立木材积增长和防风效能同时进入显著下降阶段,说明此期的二白杨防护林进入了成熟期,可作为采伐更新的年龄,年龄为23a。
     (5)区域防护林体系建设能有效抑制和减弱风沙天气,随着“三北”防护林工程建设,抑制风沙天气形成的作用趋势显著提高。1970年至2000年,磴口县年均大风日数、扬沙日数和沙尘暴日数总体上呈明显的下降趋势,在不同建设阶段各指标均明显下降,尤其是第3阶段,风沙天气各指标下降幅度可达73.0~94.0%。风沙天气指标(年均大风日数、扬沙日数和沙尘暴日数)与防护林体系的面积和蓄积量有显著的负相关关系。人工绿洲典型研究区监测研究表明,防护林体系对灾害性天气具有明显
    的降减作用与区域防护林体系的作用结果相一致。同时,防护林体系可有效地降减沙
    尘天气,使得绿洲内降尘量减少,沙尘天气的程度和强度有所缓解。
The artificial oasis of Dengkou, in the northeast of Ulan Buh Desert, has a long reclamation history. Since the founding of New China, the governments has plough into a large amount of manpower and materials for management and exploitation of sandy wastelands, a large-scale irrigated oasis has been established, leading to the great change of local eco-environment. Studies on ecological effects and dynamic changes of the artificial oasis are of great realistic significance to maintain the sustainable development of the oasis.
    Taking the ecological effects of artificial oasis system as starting point, serving the prevention and control of sand blown disaster, using an integrated method that combined positioning experiments, regional survey and laboratory analysis, the ecological functions of oasis system, that consist of the peripheral natural desert vegetation, in sight of sand-fix shrubs, as well as wind-break forest and farmland within oasis etc., were studied in different spatial scales, and the preliminary results of study were achieved as follows :
    (1) Since the founding of New China, the sandy wasteland in Dengkou Oasis has experienced several large-scale reclamations. Because of the expansion of oasis and the immoderate utilization of water resources, a series ecological problem has occurred. From 1996 to 2003, the landscape pattern of Dengkou region, related to the oasis-making and desertification, has changed significantly. The study indicates that ecological condition in Dengkou region is still deteriorated on the whole although improved partially. The area of shifting sands increased largely, and the area of natural shrub vegetation decreased simultaneously. The expansion of artificial oasis directly lead to the destruction of their natural vegetation that oasis is protected from sand blown. The potential ecological crisis is threatening the sustainable development of artificial oasis.
    (2) The study showed that the vegetation species composition, coverage and diversity evidently differed from each other, accordingly resulted in notable difference of their ecological function under the common background of regional arid climate whether in the Oasis and on the edge of oasis or in the
    periphery of oasis, as different influencing intensity of irrigation water horizontal movement of artificial oasis. The structural difference of natural shrub and herbage and artificial vegetation cause significantly different surface roughness, consequently anti-erosion,sand blocking and sand fixing also has a marked difference. Mobile sandy land characterizes as strong wind erosion, strong deposition while natural shrub vegetation area with high coverage characterizes as weak wind erosion and weak deposition. The depositing quantity of different underlying surfaces at different levels gradients varies range from the edge of the oasis to distant desert .With vegetation coverage increasing, the dust depositing quantity significantly reduced, while the dust depositing quantity of the same underlying surface at different height changes significantly, the dust depositing quantity at 0.5m is significantly greater than that at 1.5m.
    (3) The research on climate ecological effects of typical artificial oasis in 3 stage of from young-late age plantation and middle-age plantation to near-maturation plantation middle age shows that (compared with the desert) : artificial Oasis can reduce air temperature and surface temperature; artificial Oasis can increase precipitation and the growth rate of precipitation of three stages were 8.3%,20.3%,67.1%; artificial Oasis can improve air humidity which respectively increases by 4.5%,4.8%,3.7%. The air humidity in oasis is higher about 6-9% than that in desert during growing season.; artificial Oasis can efficiently restrain evaporation, and the rate of evaporation fell by 40.2% in July — the hottest month of the year; artificial Oasis can reduce the speed of wind, the wind protective effect of the three phases respectively is 41.5%,47.2%,37.1%. The ecological function of a number of climatic factors decline obviously from 2003 to 2005 in artificial oasis, which indicates the mature stage of shelter-forest seems to be the appropriate updating age of farmland shelterbelts.
    In the process of Oasis development last over 20 years, soil quality of newly constructed artificial oasis had been remarkably improved, the total soil nutrients and available soil nutrient increased on the whole while the salt content and the PH value in the top layer of soil surface decreased significantly. The improvement of soil quality laid foundation for highly stable yielding and sustainable management of oasis agricultural industry.
    (4) Major disaster of artificial oasis is Sand drift in the North- East of the Ulan Buh Desert Area and farmland shelterbelts is primarily looked forward to reducing the wind speed. Study on shelterbelts (networks) with different structure and a variety of time sequence and without leaf shielding effect
    shows that spacing distribution for shelterbelt is the key factor to the wind protective effect of farmland shelterbelts. The wind protective effect of monospecies shelterbelts is mainly due to spacing distribution for prior shelter belt, canopy features and planting density while the shelterbelt mixed two species mainly due to combination between kinds of trees , which must be highly valued. The wind protective effect of Shelterbelt has little to do with the width, which has great significance.
    The shelter forest in arid desert can ensure high and stable yield of farmland , and the growth rate is between 5.0%~155.71% ; The quality and properties also improve clearly with protective forest. Shelter forest with rational structure has less effect on yield of farmland. Taking corn as example, the crop yield increase rate by shelter forest is up to 3.6%.
    The increase of timber volume of Alamo shelter forest(23a) is descending, while function for wind break became poor, which indicates that Alamo shelter forest is come into mature stage and should be renewal.
    (5) Along with implementation of the "Three North" shelter forest project, regional shelter systems can effectively restrained and weakened sandstorm. The annual average of wind days blowing sand and dust storm days totally decline from 1970 to 2000. Every index descends markedly , especially in the third stage it fell by 73.0~ 94.0%, which indicates the indices (average number of days of strong wind, blowing sand and dust storm days )is linearly related to the area and timber volume of regional shelter system .Monitoring typical artificial oasis shows that shelter system can decrease significantly the harm of disastrous weather, which accords with regional shelterbelt systems. Simultaneously, shelterblet systems can efficiently reduced sand-dust, yield at certain extent.
引文
1.A.P.康斯坦季诺夫(闻大中译,1983).林带与农作物产量[M].中国林业出版社,1974.
    2.包耀贤.乌兰布和东北部沙区绿洲生态农业可持续发展[J].干旱区研究,2000,17(4):76-79.
    3.慈龙骏.新疆防护林体系建设[M].新疆人民出版社,1980:44-48.
    4.曹新孙等.农田防护林学[M].中国林业出版社,1983.
    5.陈隆亨.荒漠绿洲的形成条件和过程[J].干旱区资源与环境,1995,9(3):49-55.
    6.陈炳浩,郝玉光,陈永富.乌兰布和沙区域性防护林体系气候生态效益评价的研究[J].林业科学研究,2003,16(1):63-68.
    7.董光荣,等.巴盟河套西部防沙林带防风阻沙效益的初步观测[J].中国沙漠,1983,3(1):9-19.
    8.董光荣,李保生,高尚玉,等.鄂尔多斯高原第四纪古风成沙的发现及其意义[J].科学通报,1983,28(16):998-1001.
    9.董治宝,董光荣,陈广庭.以北方旱作农田为重点开展我国的土壤风蚀研究[J].干旱区资源与环境,1996,10(2):31~37
    10.范志平,上官周平.东北地区农田防护林高效多功能经营的指标体系及标准研究[J].应用生态学报,2001,12(5):701-705
    11.樊自立.塔里木盆地绿洲形成与演变[J].地理学报,1993,48(5):421-426.
    12.封玲.历史时期中国绿洲的农业开发与生态环境变迁[J].中国农史,2004,(3):123-129.
    13.傅伯杰.黄土区农业景观空间格局分析[J].生态学报,1995,15(2):113-120
    14.郭雨华,等.灌木林盖度对风沙土风蚀作用的影响[J].水土保持研究,2006(13)5:245-251.
    15.关文彬,范志平.林带疏透度数字化测度方法的改进及其应用研究[J].应用生态学报,2002,13(6):651-657
    16.高华君.我国绿洲的分布和类型[J].干旱区地理,1987,10(4):25-29.
    17.高尚武,程致力,等.大范围绿化工程对环境质量作用的研究[J].林业科学研究,1990,3,spp:1-20
    18.何洪鸣,周杰.防护林对沙尘阻滞作用的机理分析[J].中国沙漠,2002,22(2):197-200
    19.胡海波1,王汉杰2,鲁小珍1,邱志军1中国干旱半干旱地区防护林气候效应的分析[J].南京林业大学学报,2001,25(3):77-82.
    20.黄培祐.再论荒漠—绿洲建立统一观与干旱荒漠生态系统的持续发展[J].新疆环境保护,1998,20(3):1-8.
    21.黄培祐.沙漠化的活跃地带—绿洲界外区研究[J].中国生态学会通讯,1990,(4):12
    22.韩清.乌兰布和沙漠的土壤地球化学类型特征[J].中国沙漠,1982,2(3):24-31
    23.韩德林.绿洲系统与绿洲地理建设[J].干旱区地理,1992,15(增刊):5-11.
    24.韩德林.绿洲稳定性初探[J].宁夏大学学报,1999,20(2):136-139.
    25.韩德林,陈正江.试论新疆绿洲生态经济的发展[J].干旱区地理,1992,15(增刊):19-28.
    26.黄妙芬,周宏飞.荒漠绿洲交界处近地面层风速和温度的铅直变化规律[J].干旱区地理,1991,14(2):60-65.
    27.黄妙芬.绿洲—荒漠交界处辐射差异对比分析[J].干旱区地理,1996,19(3):72-79.
    28.黄妙芬.绿洲农田作物的显热与潜热输送[J].干旱区地理,1996,19(4):68-74.
    29.郝玉光,卢平.乌兰布和沙人工绿洲农田防护林小气候效益与作物产量关系研究[J].林业科学研究,1997,10(1):19-23.
    30.郝玉光,丁国栋,等.乌兰布和沙漠东北缘防护林体系建设对风沙灾害性天气影响的数量化研究[J].中国水土保持科学,2004,2(1):79-82.
    31.韩太平等.乌兰布和沙漠区水土资源开发现状与持续性发展对策[J].水土保持通报,1998,18(6):39-41.
    32.侯仁之.乌兰布和沙漠北部的汉代垦区[A].治沙研究,第七号.北京:科学出版社,15-34
    33.侯仁之,俞伟超.乌兰布和沙漠的考古发现和地理环境变迁[J].考古,1973(2):92-107.
    34.贾宝全,慈龙骏.干旱区绿洲研究回顾与问题分析[J].地球科学进,2000,15(4):381-388.
    35.贾宝全.绿洲景观若干理论问题的探讨[J].干旱区地理,1996.19(3):58-64.贾宝全,慈龙骏,杨晓辉.人工绿洲潜在景观格局及其与现实格局的比较分析[J].应用生态学报,2000,11(6):912-916.
    36.姜凤岐 朱教君.防护林阶段定向经营研究Ⅰ.理论基础[J].应用生态学报,2002,13(10):1352-1355.
    37.蒋学玮,吴发启,冯建菊,程奇.新疆南疆绿洲区土壤风蚀现状及其防治[J].水土保持通报,2003,23(1):62-65.
    38.金绍龄、马永泰长期施用不同肥料对作物产量和土壤肥力的影响[A].见:林葆,林继雄
    39.李家康.长期施肥的作物产量和土壤肥力变化[C].北京:中国农业科技出版社,1996:153-159.
    40.季国良,邹基玲.干旱地区绿洲和沙漠辐射收支的季节变化[J].高原气象,1994,13(3):323-329.
    41.贾铁飞,何雨,裴冬.乌兰布和沙漠北部沉积物特征及环境意义[J].干旱区地理,1998,21(2):36-42.
    42.贾铁飞,赵明,包桂兰,等.历史时期乌兰布和沙漠风沙活动的沉积学记录与沙漠化防治途径分析[J].水土保持研究,2002,9(3):51-54.
    43.贾铁飞,石蕴宗,银山.乌兰布和沙漠形成时代的初步判定及意义[J].内蒙古师大学报 (自然科学版),1997,(3):46-49.
    44.贾铁飞.中国北方季风气候与内陆气候过渡地带全新世环境演变[J].内蒙古师大学报(自然科学版),1995(1):64-70.
    45.姬宝霖.治理开发乌兰布和沙地,建立新型的沙产业经济开发区[J].干旱区资源与环境.1999,13(2):74-78.
    46.芦满济,杨生茂,胡新元,邱进怀.张掖市绿洲农田土壤养分特征及其变化研究[J].甘肃农业科技,2001(2):37-39.
    47.郎奎健,唐守正.IBMPC系列程序集[M].北京:中国林业出版社,1989.
    48.刘玉平.荒漠化评价的理论框架[J].干旱区资源与环境,1998,129(3):74-82
    49.刘秀娟.对绿洲概念的哲学思考[J].新疆环境保护,1994,16(4):13-18.
    50.刘钰华.新疆绿洲防护林体系[J].干旱区资源与环境,1995,9(4):187-192.
    51.刘芳.乌兰布和沙区的植物资源[J].内蒙古师大学报,2000,29(3):215-220.
    52.刘广.论辽西北风沙干旱区农田防护林体系更新[J].防护林科技,2004,59(2):36-37.
    53.李祥贵 连玉武.福清市东风洋海岸林带农田林网综合防护效益定点观测试验[J].福建林业科技 1993,(20)4:12-17.
    54.李彦,黄妙芬.绿洲-荒漠交界处蒸发与地表热量平衡分析[J].干旱区地理,1996,19(3):80-87.
    55.李新.塔里木盆地绿洲边缘农田小气候特征分析[J].干旱区地理,1992,15(2):25-30.
    56.李新.塔里木盆地绿洲蒸散量的日变化规律分析[J].干旱区地理,1994,17(4):23-29.
    57.李振武,夏阳.绿洲外围植被生态防护效益研究[J].干旱区研究,1995,12(4):20-24.
    58.李德毅,李浩等.苏北沿海农场护田林带防护效果的研究[J].南林学报,1959(2)58-62
    59.李成烈等.半干旱地区防护林综合效应研究报告[J].防护林科技,1991(1):65-68
    60.李玉宝.干旱半干旱区土壤风蚀评价方法[J].干旱区资源与环境,2000,14(2):49-52.
    61.李国兴.河西走廊绿洲灌淤土的初步研究[J].干旱区资源与环境,1995,9(4):180-185.
    62.李福兴,姚建华主编.河西走廊经济发展与环境整治综合开发[M].北京:中国环境科学出版社,1998.
    63.李玉宝.内蒙古磴口县土地资源人口承载力的研究[J].干旱区资源与环境.1992,6(2):35-45.
    64.卢奇等.中国治沙启示录[M].北京:科学出版社,2004.
    65.李家春等.干旱区陆面过程野外观测研究[J].中国沙漠,2001,21(3):254-259.
    66.李哈滨,武业钢.景观生态学的数量研究方法[A].见:刘建国主编,当代生态学博论[C].北京:中国科学技术出版社,1992,209-233
    67.吕世华,陈玉春.绿洲和沙漠下垫面状态对大气边界层影响的数值模拟[J].中国沙漠,1995,15(2):116-123.
    68.罗格平,许文强,陈曦.天山北坡绿洲不同土地利用对土壤特性的影响.地理学报,2005,60(5):779-790.
    69.马义娟,苏志珠.晋西北土地沙漠化问题的研究[J].中国沙漠,1996,16(3):300-305.
    70.May R M.(孙儒泳等译)理论生态学[M].北京:科学出版社.1982,144~164.
    71.彭少麟,周厚诚,陈天杏,等.广东森林群落的组成结构数量特征[J].植物生态学与地植物学学报,1989.13(1)12-17.
    72.彭少麟,王伯荪,鼎湖山.森林群落分析(1物种多样性)[J].生态科学,1983,1:11-17.
    73.任世芳.历史时期乌兰布和沙漠环境变迁的再探讨[J].太原师范学院学报,2003,2(3):87-91.
    74.热合木都拉·阿迪拉 塔世根·加帕尔.对“绿洲”概念及分类的探讨[J].干旱区地理,2000,23(2):129-132
    75.沈玉凌.“绿洲”概念小议[J].干旱区地理,1994,17(2):70-73.
    76.桑以琳等,草原化荒漠地带建设人工绿洲土壤肥力的研究[J].内蒙古林学院学报,1995,9(15):9-15.
    77.施雅风.山地冰川与湖泊萎缩所指示的亚洲中部气候干暖化趋势与未来展望[J].地理学报,1990(1):1-9.
    78.苏志珠,董光荣.130ka来黄土高原北部的气候变迁[J].中国沙漠,1994,14(1):45-51.
    79.孙祥彬.塔里木盆地的气候特点.见:李江风主编.中国干旱、半干旱地区气候、环境与区域开发研究[C].北京:气象出版社,1990.131~135.
    80.宋兆民.黄淮海平原综合防护林体系生态经济效益的研究[M].北京农业大学出版社,1990.
    81.申元村,汪久文,武光和,等.中国绿洲[M].河南开封:河南大学出版社,2001.
    82.申元村,杨勤业,景可,许炯心.我国的沙暴、尘暴及其防治[J].中国减灾,2001,11(2):27-30.
    83.苏从先,胡隐樵,张永平.河西地区绿洲的小气候特征和“冷岛效应”[J].大气科学,1987,11(4):390-396.
    84.Vinogrado,V.N.,森林对改善农田防护性能和生产力的作用[A].第九届世界林业大会论文选集.1986.
    85.万子俊,营造常绿针叶林,减弱沙尘暴侵袭[J].陕西林业科技,2006,2:17-20.
    86.汪久文.论绿洲、绿洲化过程与绿洲建设[J].干旱区资源与环境,1995,9(3):1-12.
    87.汪久文.绿洲建设的理论与实践[M].内蒙古出版社,呼和浩特.1994.
    88.王根绪,程国栋.荒漠绿洲生态系统的景观格局分析—景观空间方法与应用[J].干旱区研究,1999,16(3):6-11.
    89.王根绪,郭晓寅,程国栋.黄河源区景观格局与生态功能的动态变化.生态学报,2002,22(10):1587-1598
    90.王涛,薛娴,吴薇,等.中国北方沙漠化土地防治区划(纲要)[J].中国沙 漠,2005,25(6):816-822.
    91.王学全,高前兆,卢琦.内蒙古河套水资源高效利用与盐渍化控制[J].干旱区资源与环境,2005,19(6):195-123.
    92.王式功,董光荣,陈惠忠,等.沙尘暴暴研究的进展[J].中国沙漠,2000,20(4):349-356.
    93.王玉朝,赵成义.绿洲—荒漠生态脆弱带的研究.干旱区地理,2001,24(2):182-188.
    94.王式功,董光荣.中国北方地区沙尘暴变化趋势初探[J].自然灾害学报,1996,5(2)86-94.
    95.汪季,董智.荒漠绿洲下垫面粒度特征与供尘关系的研究[J].水土保持学报,2005,19(6):9-11.
    96.翁笃鸣等.小气候与农田小气候[M].农业出版社,1988.
    97.王俊勤,陈家宜.HEIFE边界层及某些结构特征[J].高原气象,1994,13(3):299-306.
    98.王志刚.乌兰布和沙漠东北部绿洲防护林要素设计研究综述[J]内蒙林业调查设计.1994,2:1-6.
    99.王志刚.乌兰布和沙漠东北部风沙危害与防护林带参数探讨[J].中国沙漠,1995,15(1):79-83
    100.王君厚,司守霞.乌兰布和沙漠东北边缘人工绿洲地下水动态研究[J].干旱区资源与环境.1998a,12(2):19-29.
    101.王君厚,周士威.乌兰布和荒漠人工绿洲小气候效应研究[J].干旱区研究.1998b,15(1):27-32
    102.王葆芳,熊士平.乌兰布和沙地新开发人工绿洲防护林体系综合效益评价[J].林业科学,1998,34(6):12-21.
    103.王葆芳,熊士平.乌兰布和沙地新开发人工绿洲土地优化结构评价[J].干旱区资源与环境.1998,12(3):13-20.
    104.王乃昂.中国的沙漠和绿洲[M].兰州:甘肃教育出版社,1994.
    105.王秀兰,包玉海.土地利用动态变化研究方法探讨[J].地理科学进展,1999,18(1):81-87
    106.文子祥,董光荣.应重视和加强我国沙漠绿洲的研究[J].地理科学进展,1996,11(3):270-274.
    107.吴敬之,王尧奇,等.河西地区黑河流域绿洲蒸发力特征及其计算方法[J].高原气象,1994,13(3):377-381.
    108.吴正主编.风沙地貌与治沙工程学[M].北京:科学出版社,2003.
    109.徐祝龄.农田蒸发与蒸发力的测定和计算方法[J].北京农业大学学报,1990,16(2):235-239.
    110.肖彩虹,王志刚,李永义.关于乌兰布和沙漠综合治理的几点意见[J].内蒙古林业科技,2001,spp:95-98
    111.向开馥.防护林学[M].哈尔滨:东北农业大学出版社.1991.
    112.向开馥.东北西部内蒙古东部防护林研究第一集[A].哈尔滨:东北林业大学出版社,1987
    113.夏训诚,杨根生等著.中国西北地区沙尘暴灾害及防治[M].北京:中国环境出版社,1996
    114.杨生茂,李凤民,索东让,等.长期施肥对绿洲农田土壤生产力及土壤硝态氮积累的影响[J].中国农业科学,2005,38(10):2043-2052.
    115.杨玉坡等.长江中上游防护林体系综合效益评价指标体系的初步研究[J].四川林业科技(增刊).1993,13.
    116.姚洪林,闫德仁主编.内蒙古沙漠化土地动态变化[C].呼和浩特:远方出版社,2002.
    117.盖钧镒主编.试验统计方法[C].北京:中国农业出版社,1985.6
    118.袁锡祥,李成根.建设农田防护林,促进旱熟夺高产调查报告[C].九三科技.1978.
    119.朱教君.透光分层疏透度测定及其在次生林结构研究中的应用[J].应用生态学报,2003,14(8):1229-1233
    120.朱教君 姜凤岐.防护林阶段定向经营研究Ⅱ.典型防护林种—农田防护林[J].应用生态学报,2002,13(10):1273-1277.
    121.周立三.哈密——个典型的沙漠沃洲[A].见:中国科学院南京地理与湖泊研究所.周立三论文选集[C].合肥:中国科学技术大学出版社,1990.21~29
    122.周宏飞,黄妙芬.绿洲棉田蒸散与土壤水热状况关系分析[J].干旱区地理,1996,19(4):60-6.
    123.周宏飞,李彦.绿洲农田土壤水分平衡及变化特征[J].干旱区地理,1996,19(3):66-71.
    124.赵松乔.人类活动对西北干旱区地理环境的作用:绿洲化或荒漠化[J].干旱区研究,1987,4(3):9-18.
    125.朱俊风,朱震达,等.中国荒漠化防治[M].北京:中国林业出版社,1999.
    126.朱德华.辽宁省西部防护林效益及其营造技术[J].辽宁省林业科技.1979,(1):16-19.
    127.赵宗哲.农田防护林学[M].北京:中国林业出版社,1993.
    128.张大勇,王刚,杜国帧,等.亚高山草甸弃耕地植物群落演替的数量研究(Ⅰ群落组成分析)[J].植物生态学与地植物学学报,1988,12(4):283-291.
    129.张伟华,关世英,李跃进.不同牧压强度对草原土壤水分养分及其地上生物量的影响.干旱区资源与环境,2000,14(4):34-37.
    130.张伟华,武永智,苏晓东.草原土壤质量评价及其应用研究初探.内蒙古农业科技,2000(App):115~118.
    131.赵松乔.人类活动对西北干旱区环境的作用[J].干旱区地理,1987(1):1-9.
    132.赵珍.清代西北地区的农业垦殖政策与生态环境变迁[J].清史研究,2004,1:76-83
    133.朱延曜.防护林体系生态效益及边界层物理特征研究[M].北京:气象出版社,1992.
    134.张强,胡隐樵.绿洲地理特征及其气候效应[J].地球科学进展,2002,17(4):477-486.
    135.张强,于学泉.干旱区绿洲诱发的中尺度运动的模拟及其关键因子敏感性实验[J].高原气象,2001,20(4):58-65.
    136.张林源,王乃昂.中国的沙漠和绿洲[M].兰州:甘肃教育出版社,1994.
    137.郑长禄,耿生莲,杨恒华.沙珠玉农田防护林防护效益研究[J].青海科技,2001,(4)19-20
    138. Abdulkasimov. Zonal differentiation and structure of oasis landscape in Central Asia[J]. Mapping Sciences and Remote Sensing, 1991, 28(1):77-89.
    139. A bd EI-Ghani M M. Flora and vegetation of Gara oasis, Egypt[J]. Phytocoenologia, 1992, 21(1): 1-14.
    140. Anthes R. A. Enhancement of convective precipitation by mesoscale in vegetative coverage in semi-arid regions[J]. Climate. Appl.Meteorol, 1984,3(4):541-551.
    141. Aranbeav M P. The effect of soil cover structure and minerals nutrition leaels on biogocal productivity of agriculture ecosystem inirrition zone of Soviet Central Asia(In Russian) [J]. Izv A kad Nauk Turkm SSR Set Biol Nauk,1977,(2).
    142. Bornkamm R. Flora and vegetation of some small oasis in S-Egypt[J]. phytocoenologia, 1986,14(2): 275-284.
    143. Bressolier C.,Thoms Yves F. Studies on wind and plant interactions on French Atlantic coastal dunes[J]. Journal of sedimentary petrology, 1979,47(1):331-338.
    144. Baker, W. L., A review of models of landscape change. Landscape Eool.,1989,2: 111-113.
    145. ICCD. China country paper to combatdesertification[M]. Beijing: China Forestry Publishing House, 2002.
    146. Loehle C. and Wein G.. Landscape habitate dirersity: a multiscale information theory approach. Eandscape Eool., 1994,73: 311-329.
    147. Osterhoom M. , Kappelle M. Vegetation structure and compositional along an interior-edge-exterior gradient in a Costa Rican montane cloud forest [J].Forest Ecology and Management, 2000, 126: 291-307.
    148. Wang H. Study on the effects of construction in windbreak and sandfixation system in Jing tai irrigated area [J]. Journal of Gansu Agricultural Univeersity, 1997,32(3): 238-243.
    149. Yu X. Z., Qu B.S.,Shen X. D. Wind tunnel simulation of sheltering effect of shelterbelts on sand[J]. Aerodynamic Experiment and Measurement & Control, 1991, 5(4): 46-52.
    150. Faragalla A. Impact of agro desert on a desert ecosystem[J]. Journal of arid environment,1988,15(1):99~102.
    151. Frank, A. B. etal. Influnce of windbreaks on crop per formance and Snow management in North Dakota, Shelterblets on the GreatPlains[M]. Proceeding of the Synposium. Denver. colorado. 1976,41.
    152. Erdas, Inc., Erdas Field Guide-3rd edition, 1994.
    153. Fryear D W. Soil cover and wind erosion[J]. Transactions of the ASAE, 1985, 28(3): 781~784
    154. Filch SJ. Field windbreaks: Design criteria. Agric Ecosys Environ. 1988, 22/23: 215~228
    155. Wight B. Farmstead windbreaks. Agric Ecosys Environ.l988,22/23:261 —280
    156. Dronen SI. Layout and design criteria for livestock windbreaks. Agr Ecosys Environ. 1988.22/23:231-240
    157. George EJ, Brober D, Worthington EL. Influence of various types of field windbreaks on reducing wind velocities and depositing snow. J For, 1963.61(4):345—349
    158. Fan Z.P., et al. Indices and criteria of highly effective and milti-functional management of windbreak. China J Appl Ecol, 2001.12(5):701 -705
    159. Wasson R J.,Nanninga P M. Estimating wind transport of sand on vegetated surface[J]. Earth surface Processes and Landforms,1986,11(4):505.
    160. Jensen J. L, Sorensen M. Estimation of some saltation transport paramenters: are analysis of Williams data[J]. Sedi-mentology,1986,33:547~555
    161. Iversen J. D., White B. R. Saltation threshold on Earth, mars and Venus[J]. Sedimentology, 1982,29:111-116
    162. Buckely R. The effect of spare vegetation on the transport of dune sand by wind[J]. Nature, 1987,325:426-428
    163.Pankov E I, Kuzmina Z V, Treshkin, S E. The water availiability effect on the soil and vegetation cover of Southern Gobi oases[J]. Water Resource,1994,21(3):358—364
    164. Eimern,J.Van etal. Windbreaks and shelterbelts.W M O Technial Note, 1964,(59).
    165. Bagnold, R. A. The Physics of Blown Sand and Desert Dunes[M], Methuen, London, 1943.
    166. Taichi Maki,1985,Micrometeoroloical improvement of paddy fields by using windbreak nets,Jarq., 19(2):98-102
    167. Cabom,J.M. Shelterbelts and microclimate[M], Bull.For.Comm., 1957,29.
    168. Hayakawa,S.et al. Study on the wind ward and leeward of windbreak structure(1): characteristics of horizontal flow patterns obtained from the simulation of idealized horizontal windbreak structure,J.Agr.Met ,1985,41(1):31-38.
    169. Jensen,M. Shelter effect. Danish Techical Press:Gopenhagen, 1961.
    170. Rogers, C. A. 1993. Describing landscapes: indices of structure. M.S. Thesis, Simon Fraser University, Burnaby, British Columbia. 170 pp.
    171. Skidmore.E.L.et al., Aeria environment andenergy budget as influened by slat-fence windbreak, paper presented before division of climatology, American Society of Agro.Metting,Arizona, 1970,47-61.
    172. Plate,E.J., The aerodynamics of shelter Belts,Agro.Met., 1971,8:203-222.
    173. Seginer,I.,Windbreak drag calculated from thehorizontal velocity field. Boundary-layer.Met.,1972, (3):87-97
    174. Xue,J.K.&Y.Q.Hu. Numercial simulation of oasis-desert interaction. Progress in Natural Seience,2001,11:675-680.
    175. Wilson,J.D., Numerical studies of flow through windbreak, 17th Conference Agricalture and Forest Meterology and Seventh Conference Biometerology and Agribiolog
    176. Zhu J J.,Jiang F Q. Matsuzaki T. Spacing interval for principal tree windbreaks—Based on relationship between windbreaks structure and wind reduction.J.For Res.2002,13(2):83~90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700