一类分数阶非线性种群扩散模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分数阶微积分算子作为研究分形动力学的有力工具,已经成功地应用到了自然科学和技术科学的很多领域。越来越多的研究也表明某些不纯介质中的扩散现象由于本身扩散的复杂性不能用标准的扩散方程来描述。我们将分数阶微积分算子引入到反常扩散中,从而使问题的刻画更具广泛性。
     在国内外相关研究的基础上,本文运用分数阶微积分算子的理论和方法结合种群扩散模型的研究,构建了分数阶非线性单种群扩散模型和分数阶非线性两种群相互作用扩散模型,最后对种群模型的扩展模型Fokker-Planck方程进行了研究。关于分数阶种群扩散模型的研究尚处于初步阶段。本文为分数阶种群模型的分析研究提供了一种新的研究视角。本文完成的工作和主要创新点如下:
     1.建立了时间分数阶单种群Fisher型扩散模型和空间分数阶单种群Fisher型扩散模型,应用同伦扰动法和变分迭代法求得问题的近似解,与整数阶单种群Fisher扩散方程进行了比较。
     2.建立了时间分数阶两种群相互作用模型,利用变分迭代法求解了不同的种群初始值情况下的近似解。并分别讨论了密度制约条件下的两种群捕食与被捕食、相互竞争、互惠共存情况下种群的变化情况,另外也讨论了非密度制约条件下的两种群捕食与被捕食、相互竞争、互惠共存情况下种群的变化情况。
     3.运用数值模拟的方法研究分数阶种群非线性扩散模型,从模拟的结果了解种群数量随时间推移的演化规律以及种群的状态空间分布,并与整数阶模型进行了简单地比较,分数阶种群扩散模型的解是连续依赖于分数阶导数的变化。
     4.建立了含有外力和吸附项推广的非线性Fokker-Planck扩散方程。我们详细讨论了整数阶非线性对流-扩散方程和含外力和吸附项的多分数阶非线性对流-扩散方程,利用q?指数函数和q?对数函数的特性,以及在参量满足某种关系下求得了解析解,研究了模型解的特性。
Fractional calculus operator is a powerful tool to study fractal dynamics,and has been successfully applied to natural science technology and some otherfields. More and more studies show that some diffusion phenomenon in notpure, and the media cannot described by the standard diffusion due to thecomplexity of its diffusion. we introduce the fractional calculus operator intothe anomalous diffusion, thus makes the research problem more universal.
     On the basis of the fractional calculus theory combined with the studyof population diffusion model, fractional nonlinear single population diffusionmodel, fractional nonlinear two populations interaction diffusion model andfractional nonlinear Fokker-Planck equation are introduced in this disserta-tion, And thus some studies of these model are also given. The study of thefractional population diffusion model is still in the initial stage. And this dis-sertation provides a new perspective to study the fractional population model.The main content of this dissertation is as follows:
     Firstly, single time population fractional Fisher type diffusion model andspatial fractional single population Fisher type diffusion model are established,and the approximate solution of these model are obtained by using the homo-topy perturbation method and the variational iteration method. comparisonbetween the integer single population Fisher diffusion are also given.
     Secondly, two population time fractional interaction diffusion model isestablished, and the approximate solution of this model are obtained by usingvariational iteration method in different initial conditions. The tendency oftwo populations of the prey-predator system, mutual competition system andmutual coexistence system between two populations are studied under thedensity dependence and density independence.
     Thirdly, numerical simulation of the fractional nonlinear populationmodel are studied, and the time evolution rule and state space distribution of the population are shown in the simulation results. And the solutions of frac-tional population model is continuous dependent on the change of fractionalorder.
     Finally, a generalize nonlinear Fokker-Planck diffusion equation with ex-ternal force and absorption are established. The solution of the integer non-linear anomalous diffusion with the diffusion coeffcient are obtained by qffexponential function. And the solutions of the multi-fractional nonlinear dif-fusion are also studied in detail. The solutions can have a compact behavioror a long tailed behavior.
引文
[1]陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社,1988.
    [2]马知恩.种群生态学的数学建模与研究[M]. 1996.
    [3]张炳根.生态学数学模型[M].青岛:青岛海洋大学出版社,1990.
    [4] Brauer F. Stability of some population models with delay[J]. Mathemat-ical Biosciences, 1977, 33 (3-4): 345-358.
    [5] May R M. Bifurcations and dynamic complexity in ecological systems[J].Annals of the New York Scademy of Sciences, 1979, 316(1): 517-529.
    [6] Podulubny I. Fractional di?erential equation[M]. Academic Press, NewYork,1999.
    [7] Miller K S, Ross B. An introduction to the fractional calculus and frac-tional di?erential equations[M]. John Wiley Sons, Inc., New York, 1993.
    [8] Samko S G, Kilbas A A, Marichev O I. Fractional integrals and deriva-tives: theory and applications[M]. Gordon and Breach, New York, 1993.
    [9] Kilbasb A A, Srivastava H M, Trujillo J J. Theory and applications offractional di?erential equations[M]. Elsevier, Amsterdam, 2006.
    [10] Oldham K B, Spanier J. The fractional calculus[M]. Academic Press,New York, 1974.
    [11] Ross B. The fractional calculus and its applications[M]. Lecture notes inmathematics, Berlin, Springer Verlag, 1975.
    [12] Mandelbrot B B. The fractial geometry of nature[M]. San Francisco,Freeman, 1982.
    [13] Mandelbrot B B, Frame M. Fractals in encyclopedia of physical scienceand technology[M]. Academic Press, New York, 2002.
    [14] Kolwankar K M. Fractals and di?erential equations of fractional order[J].Indian Institute of Science, 1998, 78(4): 275-291.
    [15] Nonnenmacher T F, Metzler R. On the Riemann-Liouville fractionalcalculus and some recent applications[J]. Fractals, 1995, 3(3):557-566.
    [16] Hilfer R. Fractional di?usion based on Riemann-Liouville fractionalderivatives[J]. Journal of Physical Chemistry B, 2000, 104(16): 3914-3917.
    [17] Matzler R, Barkai E, Klafter J. Anomalous di?usion and relaxation closeto thermal equilibrium: a fracitonal Fokker-Planck equation approach[J].Physical Review Letters, 1999, 82(18): 3563-3567.
    [18]徐明瑜,谭文长.半规管内流体动力学问题[J].中国科学(A辑),2000,30(3): 272-282.
    [19]苏海军.前庭系统数学模型及分数阶微积分的应用: [博士学位论文],济南;山东大学, 2001.
    [20] Srinivas G, Yethiraj A, Bagchi B. Nonexponentiality of time dependentsurvival probability and the fractional viscosity dependence of the rate indi?usion controlled reactions in a polymer chain[J]. Journal of ChemicalPhysics, 2001, 114(20): 9170-9179.
    [21] Nigmatullin R R, Osokin S I. Signal processing and recognition of truekinetic equations containing non-integer derivatives from raw dielectricdata[J]. Signal Processing, 2003, 83(11): 2433-2453.
    [22] Chatterjee A. Statistical origins of fractional derivatives in viscoelastic-ity[J]. Journal of Sound and Vibration, 2005, 284(3-5): 1239-1245.
    [23] Metzler R, Nonnenmacher T F. Fractional relaxation processes and frac-tional rheological models for the description of a class of viscoelasticmaterials[J]. International Journal of Plasticity, 2003, 19(7): 941-959.
    [24] Xu M Y, Tan W C. Representation of the constitutive equation of vis-coelastic materials by the generalized fractional element networks and itsgeneralized solutions[J]. Science in China Series G, 2003, 46(2): 145-167.
    [25]董建平.分数阶微积分及其在分数阶量子力学中的应用: [博士学位论文],济南;山东大学, 2009.
    [26]郭霄怡.分数阶微积分在量子力学和非牛顿流体力学研究中的某些应用:[博士学位论文],济南;山东大学, 2007.
    [27]王少伟.分数阶微积分理论在粘弹性流体力学及量子力学中的某些应用:[博士学位论文],济南;山东大学, 2007.
    [28] Barkai E, Silbey R J. Fractional Kramers equation[J]. Journal of PhysicalChemistry B, 2000, 104(16): 3866-3874.
    [29] Metzler R, Klafter J. The random walk’s guide to anomalous di?usion:a fractional dynamics approach[J]. Physics Reports, 2000, 339(1): 1-52.
    [30] Liu J Y, Xu M Y. An exact solution to the moving boundary problemwith fractional anomalous di?usion in drug release devices[J]. ZAMM-Journal of Applied Mathematics and Mechanics, 2004, 84(1): 22-28.
    [31] Liu J Y, Xu M Y. Some exact solutions to Stefan problems with frac-tional di?erential equations[J]. Journal of Mathematical Analysis andApplications, 2009, 351(2): 536-542.
    [32]李西成.分数阶可动边界问题及其在药物控释系统中的某些应用: [博士学位论文],济南;山东大学, 2009.
    [33] Dattoli G. Operational methods, fractional operators and special polyno-mials[J]. Applied Mathematics and Computation, 2003, 141(1): 151-159.
    [34] El-Borai M M. Semigroups and some nonlinear fractional di?erentialequations[J]. Applied Mathematics and Computation, 2004, 149(3): 823-831.
    [35] Turing A M. The chemical basis of morphogenesis[J]. PhilosophicalTransactions of the Royal Socity B, 1952, 237(641): 37-72.
    [36] Petrov V, Ouyang Q, Swinney H L. Resonant pattern formation in achemical system[J]. Nature, 1997, 388: 655-657.
    [37] Satnoianu R A, Menzinger M. Non-turing stationary patterns in ?ow-distributed oscillators with general di?usion and ?ow rates[J]. PhysicalReview E, 2000, 62(1): 113-119.
    [38] Gurney W S C, Veitch A R, Cruickshank I, McGeachin G. Circlesand spirals: population persistense in a spatially explicit predator-preymodel[J]. Ecology, 1998, 79: 2516-2530.
    [39] Petrovskii S, Morozov A, Li B L. Regimes of biological invasion in apredator-prey system with the allee e?ect[J]. Bulletin of MathematicalBiology, 2005, 67(3): 637-661.
    [40] Liu Q X, Jin Z, Li B L. Emergence of spatiotemporal chaos driven byfar-field breakup of spiral waves in the plankton ecological systems[J].Cornell University Library, 2007.
    [41] Hayes C K. A new traveling-wave solution of fisher equation with density-dependent di?usivity[J]. Journal of Mathematical Biology, 1991, 29(6):531-537.
    [42] Feng A. Traveling wave behavior for a generalized fisher equation[J].Chaos, Solitions and Fractals, 2008, 38(2): 481-488.
    [43] Kudryashov N A. Exact solitary waves of the fisher equation[J]. PhysicsLetters A, 2005, 342(1-2): 99-106.
    [44] Tyson J J, Brazhnik P K. On traveling wave solutions of fisher’s equationin two spatial demensions[J]. SIAM Journal on Applied Mathematics,1999, 60(2): 371-391.
    [45] Mavoungou T, Cherruanult Y. Numerical study of fisher’s equationby Adomian method[J]. Mathematical and Computer Modelling, 1994,19(1): 89-95.
    [46] Wazwaz A M, Gorguis A. An analytic study of Fisher’s equation by usingAdomian decomposition method[J]. Applied Mathematics and Compu-tation, 2004, 154(3): 609-620.
    [47] Kaya Dogan, El-Sayed S M. A numerical simulation and explicit solu-tions of the generalized Burgers-Fisher equation[J], Applied Mathemat-ics and Computation, 2004, 152(2): 403-413.
    [48] Tan Y, Xu H, Liao S J. Explicit series solution of travelling waves witha front of Fisher equation[J]. Chaos, Solitions and Fractals, 2007, 31(2):462-472.
    [49] Fatemeh S, Mehdi D. Numerical solution of a biological populationmodel using He’s variational iteration method[J]. Computers and Math-ematics with Applications, 2007, 54(7-8): 1197-1209.
    [50] El-Sayed A M A, Rida S Z, Arafa A A M. Exact solutions of fractional-order biological population model[J]. Communications in TheoreticalPhysics, 2009, 52(6): 992-996.
    [51] Khan N A, Khan N U, Are A, Jamil Muhammad. Approximate ana-lytical solutions of fractional reaction-di?usion equations[J]. Journal ofKing Saud University-Science, in press, 2010.
    [52] Dunbar S R. Traveling wave solutions of di?usive Lotka-Volterra equa-tions: a heteroclinic connection in R4. Transactions of the AmericanMathematica, 1984, 286(2): 557.
    [53] Dunbar S R. Traveling wave solutions of a nonlinear Lotka-Volterra equa-tons[J]. Journal of Mathematical Biology, 1983, 17(1): 11-32.
    [54] Petrovskii S, Malchow H, Li B L. An exact solution of a di?u-sive predator-prey system[J]. Proceedings of the Royal Society, 2005,461(2056): 1029-1053.
    [55] Kadem A, Baleanu D. Homotopy perturbation method for the coupledLotka-Volterra equations[J]. Romanian Journal of Physics, 2011, 56.
    [56] Ashwin P, Bartuccelli M V, Bridges T J, Gourley S A. Travelling frontsfor the kpp equation with spatio-temporal delay[J]. ZAMP, 2002, 53(1):103-122.
    [57] Shangbing A. Traveling wave fronts for generalized Fisher equationswith spatio-temporal delays[J]. Journal of Di?erential Equations, 2007,232(1): 104-133.
    [58] Baurmann M, Gross T, Feudel U. Instabilities in spatially extendedpredator-prey systems: spatio-temporal patterns in the neighborhood ofturing-hopf bigurcations[J]. Journal of Theoretical Biology, 2007, 245(2):220-229.
    [59]马知恩,周义仓,王稳地,靳祯.传染病动力学的数学建模和研究[M].北京:科学出版社,2004.
    [60] Wang W. Population dispersal and disease spread[J]. Discrete and Con-tinuous Dynamical Systems-Series B, 2004, 4(3): 797-804.
    [61] Wang W, Zhao X. An epidemic model in a patchy environment[J]. ,2004, 190(1): 97-112.
    [62] Wang W, Mulone G. Threshold of disease transmission in a patch envi-ronment[J]. , 2003, 285(1): 321-335.
    [63] Wang W, Zhao X. An age-structured epidemic model in a patchy envi-ronment[J]. SIAM Journal on Applied Mathematics, 2005, 65(5): 1597-1614.
    [64] Wang W, Zhao X. An epidemic model with population dispersal andinfection period[J]. SIAM Journal on Applied Mathematics, 2006, 66(4):1454-1472.
    [65]陆征一,王稳地.生物数学前沿[M].北京:科学出版社,2008.
    [66]马歇尔.经济学原理[M].北京:商务印书馆,1964.
    [67] Hannan M, Freeman J. Organizaton Ecology[M]. Cambridge: CambridgeUniversity Press, 1989.
    [68] Douglas R W, Susan M S. The e?ects of regulatory tools on organi-zational populations[J]. Academy of management review, 1991, 16(4):743-767.
    [69] Mario D, Francesca F. The evolution of environment protest in Italy1988-1997, The 27th ECPR Joint Sessions, 1998, 58(12): 26-31.
    [70]廖成林,孙洪杰.均势供应链及其利润分配机制探讨[J].管理工程学报,2003, 17(4): 83-85.
    [71]孙洪杰,廖成林.基于共生理论的供应链利益分配机制研究[J].科技进步与对策, 2006, 23(5): 114-115.
    [72] Ding Y B, Zhou B X, Dan L. Analysis of supply-chain alliance symbiosissystem’s dynamic stability[C]. In: Wu D, ed. Proceedings of Interna-tional Conference on Risk Management and Engineering Mangagement.Toronto, 2008: 214-221.
    [73] Zhou J Y, Liu W, Cheng G P. Research on the supply chain coordinationevolution from the prospective of population ecology theory[C]. In: Qi E,Wang J, Shen J, eds. Proceedings of the 15th International Conference onIndustrial Engineering and Engineering Management. Zhengzhou, 2008:709-713.
    [74]程大涛.基于共生理论的企业集群组织研究: [博士学位论文],杭州;浙江大学, 2003.
    [75]周浩.企业集群的共生模型及稳定性分析[J].系统工程,2003, 21(4):32-37.
    [76]王子龙,谭清美,许箫迪.企业集群共生演化模型及实证研究[J].中国管理科学,2006, 14(2): 141-148.
    [77]高琴.港口产业集群的复杂性研究: [博士学位论文],天津;天津大学,2008.
    [78] Gao Q, Ma J H. Chaos and Hopf bifurcation of a finance system[J].Nonlinear Dynamics, 2009, 58(1-2): 209-216.
    [79] Xin B G, Ma J H, Gao Q. The complexity of an investment competitiondynamical model with imperfect information in a security market[J].Chaos, Solitions and Fractals, 2009, 42(4): 2425-2438.
    [80] Nayfeh A H. Perturbation methods[M]. New York: John Wiley Sons,2000.
    [81]戴世强,邓学莹,段祝平.20世纪理论和应用力学十大进展[J].力学进展,2001, 31(3): 322-326.
    [82] Lyapunov A M. The general problem on stability of motion(englisntranslation). London: Taylor Francis,1992.
    [83] Karmishin A V, Zhukov A T, Kolosov V G. Methods o dynamics cal-culation and testing for Thin-Walled structures(in Russian). Moscow:Mashinostroyenie, 1990.
    [84] Adomian G. Nonlinear stochastic di?erential equations[J]. J. Math.Anal. and Applic., 1976, 55: 441-452.
    [85] Adomian G, Adomian G E. A global method for solution of complexsystems[J]. Mathemacical Modelling, 1984, 5(4): 251-263.
    [86] Adomian G. Solving frontier problems of physics: the decompositionmethod[M]. Boston and London: Kluwer Academic Publishers, 1994.
    [87] Momani S. Analytic and approximate solutions of the space- and time-fractional telegraph equations[J]. Applied Mathematics and Computa-tion, 2005, 170(2): 1126-1134.
    [88] Yu Q, Liu F, Anh V, Turner I. Solving linear and non-linear space-timefractional reaction-di?usion equations by the Adomian decompositionmethod[J]. International Journal for Numerical Methods in Engineering,2008, 74(1): 138-158.
    [89] Saha Ray S, Chaudhuri K S, Bera R K. Application of modified decom-position method for the analytical solution of space fractional di?usionequation[J]. Applied Mathematics and Computation, 2008, 196(1): 294-302.
    [90] Saha Ray S. Analytical solution for the space fractional di?usionequaiton by two-step Adomian decomposition method[J]. Communica-tion in Nonlinear Science and Numerical Simulation, 2009, 14(4): 1295-1306.
    [91] Cheng J F, Chu Y M. Solution to the linear fractional di?erential equa-tion using Adomian decomposition method[J]. Mathematical Problemsin Engineering, 2011, 587068.
    [92] Hilton P J. An introduction to homotopy theroy. Canbridge UniversityPress[M], 1953.
    [93] Sen S. Topology and Geometry for Physicists[M]. Florida: AcademicPress, 1983.
    [94] Liao S J. A kind of approximate solution technique which does not de-pend upon small parameters(II): an application in ?uid mechanics[J].International Journal of Non-Linear Mechanics, 1997, 32(5): 815-822.
    [95] Liao S J. An explicit, totally analytic approximation of Blassius viscous?ow problems[J]. International Journal of Non-Linear Mechanics, 1999,34(4): 759-778.
    [96] Liso S J. A new analytic algorithm of Lane-Emden equation[J]. AppliedMathematics and Computation, 2003, 142(1): 1-16.
    [97] Liao S J. An analytic approcimate approach for free oscillations of self-excited systems[J]. International Journal of Non-Linear Mechanics, 2004,39(2): 271-280.
    [98] Wang C, Zhu J M, Liao S J, Pop I. On the explicit analytic solutionof Cheng-Chang equation[J]. International Journal of Heat and MassTransfer, 2003, 46(10): 1855-1860.
    [99] Ayub M, Rasheed A, Hayat T. Exact ?ow of a third grade ?uid past aporous plate using homotopy analysis method[J]. International Journalof Engineering Science, 2003, 41(18): 2091-2103.
    [100] He J H. Homotopy perturbation technique[J]. Computer Methods inApplied Mechanics and Engineering, 1999, 178(3-4): 257-262.
    [101] He J H. Homotopy perturbation method: a new nonlinear analyticaltechnique[J]. Applied Mathematics and Computation, 2003, 135(1): 73-79.
    [102] He J H. Homotopy perturbation method for solving boundary valueproblems[J]. Physics Letters A, 2006, 350(1-2): 87-88.
    [103] He J H. Comparison of homotopy perturbation method and homo-topy analysis method[J]. Applied Mathematics and Computation, 2004,156(2): 527-539.
    [104] Liao S J. Comparison between the homotopy analysis method and homo-topy perturbation method[J]. Applied Mathematics and Computation,2005, 169(2): 1186-1194.
    [105] Liang S X, Je?rey D J. Comparision of homotopy analysis methodand homotopy perturbation method through and evolution equation[J].Communications in Nonlinear Science and Numerical Simulation, 2009,14(12): 4057-4064.
    [106] Chowdhury M S H, Hashim I, Abdulaziz O. Comparison of homotopyanalysis method and homotopy perturbation method for purely non-linear fin-type problems[J]. Communications in Nonlinear Science andNumerical Simulation, 2009, 14(2): 371-378.
    [107] He J H. The Homotopy perturbation method for nonliear socillator withdiscontinuities[J]. Applied Mathematics and Computation, 2004, 151(1):287-292.
    [108] He J H. Application of homotopy perturbation method to nonlinear waveequations[J]. Chaos, Solitons and Fractals, 2005, 26(3): 695-700.
    [109] Hashim I, Chowdhury M S H, Mawa S. On multistage homotopy per-turbation method applied to nonlinear biochemical reaction model[J].Chaos, Solition and Fractals, 2008, 36(4): 823-827.
    [110] Yildirim A. Homotopy perturbation method for the mixed Volterra-Fredholm integral equations[J]. Chaos, Solitions and Fractals, 2009,42(5): 2760-2764.
    [111] Hizel E, Ku¨cu¨karslan S. Homotopy perturbation method for (2+1)-dimensional coupled Burgers system[J]. Nonlinear Analysis: Real WorldApplications, 2009, 10(3): 1932-1938.
    [112] Odibat Z M. Exact solitary solutions for variants of the KdV equationswith fractional time derivatives[J]. Chaos, Solitions and Fractals, 2009,40(3): 1264-1270.
    [113] Li X C, Xu M Y, Jiang X Y. Homotopy perturbation method to time-fractional di?usion equation with a moving boundary condition[J]. Ap-plied Mathematics and Computation, 2009, 208(2): 434-439.
    [114] Abdulazia O, Hashim I, Momani S. Application of homotopy-perturbation method to fractional IVPs[J]. Journal of Computationaland Applied Mathematics, 2008, 216(2): 574-584.
    [115] Yildirim A, Kocak H. Homotopy perturbation method for solving thespace-time fractional advection-dispersion equation[J]. Advances in Wa-ter Resources, 2009, 32(12): 1711-1716.
    [116] Babolian E, Azizi A, Saeidian J. Some notes on using the homotopy per-turbation method for solving time-dependent di?erential equations[J].Mathematical and Computer Modelling, 2009, 50(1-2): 213-224.
    [117] Biazar J, Ghazvini H. Convergence of the homotopy perturbationmethod for partial di?erential equations[J]. Nonlinear Analysis: RealWorld Applications, 2009, 10(5): 2633-2640.
    [118]曹志浩.变分迭代法[M].北京:科学出版社,2005.
    [119] Inokuti M, Sekine H, Mura T. General use of the Lagrange multiplierin non-linear mathematical physics, in: S. Nemat-Nasser, Editor, Vari-ational Method in the Mechanics of Solids, Pergamon Press, Oxford,1978.
    [120] He J H. Variational iteration method - a kind of non-linear analyticaltechnique: some examples[J]. International Journal of Non-Linear Me-chanics, 1999, 34(4): 699-708.
    [121] He J H, Wu X H. Variational iteration method: new development andapplications[J]. Computers and Mathematics with Applications, 2007,54(7-8): 881-894.
    [122] Rafei M, Ganji D D, Pashnaer H. The variatonal iteration method forsolving nonlieanr oscillators with dicontinuities[J]. Journal of Sound andVibration, 2007, 305(4-5): 614-620.
    [123] Shou D H, He J H. Application of parameter-expanding method tostrongly nonlinear oscillators[J]. International Journal of Nonlinear Sci-ences and Numerical Simulation, 2007, 8(1): 121-124.
    [124] Barari A, Omidvar M, Abdoul R G, Ganji D D. Application of homotopyperturbation method and variational iteration method to nonlinear Os-cillator di?erential euqtions[J]. Acta Applicandae Mathematicae, 2008,104(2): 161-171.
    [125] Abdou M A, Soliman A A. Variational iteration method for solvingBurger’s and coupled Burger’s equations[J]. Journal of Computationaland Applied Mathematics, 2005, 181(2): 245-251.
    [126] Wazwaz A M. The variational iteration method for rational solutionsfor KdV, K(2,2), Burgers, and cubic Boussinesq equations[J]. Journal ofComputational and Applied Mathematics, 2007, 207(1): 18-23.
    [127] Soliman A A. A numerical simulation and explicit solutions of KdV-Burgers’and Lax’s seventh-order KdV equations[J]. Chaos, Solitionsand Fractals, 2006, 29(2): 294-302.
    [128] Ganji D D, Sadighi A. Application of homotopy-perturbation and vari-ational iteration methods to nonlinear heat transfer and porous mediaequations[J]. Journal of Computational and Applied Mathematics, 2007,207(1): 24-34.
    [129] Ganji D D, Afrouzi G A, Talarposhti R A. Application of variationaliteration method and homotopy perturbation method for nonlinear heatdi?usion and heat transfer equations[J]. Physics Letters A, 2007, 368(6):450-457.
    [130] Momani S, Abuasad S. Application of He’s variational iteration methodto Helmholtz equation[J]. Chaos, Solitions and Fractals, 2006, 27(5):1119-1123.
    [131] Odibat Z, Momani S. The variational iteration method: an e?cientscheme for handling fractional partial di?erential equations in ?uid me-chanics[J]. Computers and Mathematics with Applications, 2009, 58(11-12): 2199-2208.
    [132] Hilfer R. Applications of fractional calculus in physics[M]. World Scien-tific Press, Singapore, 2000.
    [133] Hilfer R. Fractional di?usion based on Riemann-Liouville fractioanlderivatives[J]. The Journal of Physical Chemistry B, 2000, 104(16):3914-3917.
    [134] Manabe S. Common representations for logic and nonlinearities. JIEE,1973, 5: 339-345.
    [135] Oustaloup A. Fractional order sinusoidal oscilatours: optimization andtheir use in highly linear FM modulatours. IEEE Transactions on Cir-cuits and Systems, 1981, 28: 1007-1009.
    [136] Oustaloup A, Levron F, Mathieu B, Nanot F M.Frequencyband complexnoninteger di?erenciator. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 2000, 47(1): 25-39.
    [137] Axtell M, Bise E M. Fractional calculus applications in control sys-tems[C]. Proceedings of the IEEE 1990 National Aerospace and Elec-tronics Conference, 1990, 2: 563-366.
    [138] Matignon D. Stability results on fractional di?erenial equations withapplications to control processing[J]. Proceeding of the ComputationalEngineering in System Applications, 1996, 2:769-771.
    [139] Matignon D, d’Andre′a B. Some results on controllability and observabil-ity of finite-dimensional fraciotnal di?erential systems[J]. Proceeding ofthe Computational Engineering in System Applications, 1996, 2: 952-956.
    [140] Matignon D, d’Andre′a B. Observer-based controllers for fractional di?er-ential systems[C]. Proceeding of the 36th IEEE Conference on Decisionand Control, 1997, 5: 4967-4972.
    [141] Audounet J, Montseny G, Matignon D. Fractional integro-di?erentialboundary control of the Euler-Bernoulli beam[C]. Proceeding of the 36thIEEE Conference on Decision and Control, 1997, 5: 4973-4978.
    [142] Mbodje B, Montseny G. Boundary fractional derivative control of thewave equation[C]. IEEE Transactions on Automatic Control. 1995,40(2): 378-382.
    [143]朱呈祥,邹云.分数阶控制研究综述[J].控制与决策, 2009, 24(2): 161-169.
    [144] Metzler R, Klafter J. The restaurant at the end of the random walk:recent development in the description of anomalous transport by frac-tional dynamics[J]. Journal of Physics A: Mathematical and General,2004, 37(31): 161-208.
    [145] Mainardi F. The fundamental solutions for the fractional di?usion-waveequation[J]. Applied Mathematics Letters, 1996, 9(6): 23-28.
    [146] Mainardi F. Fractional relaxation-oscillation and fractional di?usion-wave phenomena[J]. Chaos, Solitions and Fractals, 1996, 7(9): 1461-1477.
    [147] Povstenko Y Z. Fractional heat conduction equation and associated ther-mal stress[J]. Journal of Thermal Stresses, 28(1): 83-102.
    [148] Liu Y Q, Ma J H. Exact solutions of a generalized multi-fractional nonlin-ear di?usion equation in radical symmetry[J]. Communications in The-oretical Physics, 2009, 52(5): 857-861.
    [149] Ma J H, Liu Y Q. Exact solutions for a generalized nonlinear fractionalFokker-Planck equation[J]. Nonlinear Analysis: Real World Applica-tions, 2010, 11(1): 515-521.
    [150] Jiang X Y, Xu M Y. The time fractional heat conduction equation in thegeneral orthogonal curvilinear coordinate and the cylindrical coordinatesystems[J]. Physica A: Statistical Mechanics and its Applications, 2010,389(17): 3368-3374.
    [151] Jiang X Y, Xu M Y. Analysis of fractional anomalous di?usion causedby an instantaneous point source in disordered fractal media[J]. Inter-national Journal of Non-linear Mechanics, 2006, 41(1): 156-165.
    [152] Jiang X Y, Xu M Y. The fractional di?usion model with an absorpt-ing term and modified Fick’s law for non-local transport processes[J].Nonlinear Analysis: Real World Applications, 2010, 11(1): 262-269.
    [153] Paradisi P, Cesari R, Mainardi F, Maurizi A, Tampieri F. A general-ized Fick’s law to describle non-local transport e?ects[J]. Physics andChemistry of the Earth, 2001, 26(4): 275-279.
    [154] Sattin F. Fick’s law and Fokker-Planck equation in inhomogeneous en-vironments[J]. Physics Letters A, 2008, 372(22): 3941-3945.
    [155] Paradisi P, Cesari R, Mainardi F, Tampieri F. The fractional Fick’s lawfor non-local transport processes[J]. Physica A: Statistical Mechanicsand its Applications, 2001, 293(1-2): 130-142.
    [156] Metzler R, Barkai E, Klafter J. Deriving fractional Fokker-Planck equa-tions from a generalised master equation[J]. Europhysics Letters, 1999,46(4): 431-436.
    [157] Barkai E, Metzler R, Klafter J. From continuous time random walks tothe fractional Fokker-Planck equation[J]. Physical review E, 2000, 61(1):132-138.
    [158] Metzler R, Klafter J. From a generalized Chapman-Kolmogorov equationto the fractional Klein-Kramers equation[J]. The Journal of PhysicalChemistry B, 2000, 104(16): 3851-3857.
    [159] Scott Blair G W. Analytical and integraltive aspects of the stress-strain-time problem[J]. Journal of Scientific Instruments, 1944, 21: 80-84.
    [160] Gerasimov A N. A generalization of linear laws of deformation and itsapplication to inner friction problems[J]. Priklandnae¨i`ia Matematika iMekhanika, 1948, 12: 251-260.
    [161] Bagley R L, Torvik P J. A theoretical basis for the application of frac-tional calculus to viscoelasticity[J]. Journal of Rheology, 1983, 27(3):201-210.
    [162] Bagley R L, Torvik P J. Fractional calculus - a di?erent approach to theanalysis of viscoelastically damped structures[J]. AIAA Journal, 1983,21(5): 741-748.
    [163] Gemant A. A method of analyzing experimental results obtained fromelasto-viscous bodies[J]. Physics, 1936, 7: 311-317.
    [164] Caputo M. Linear models of dissipaton whose Q is almost frequencyindependent-II[J]. The Geophysical Journal of teh Royal AstronomicalSociety[J]. 1967, 13(5): 529-539.
    [165] Xu M Y, Tan W C. Representation of the constitutive equation of vis-coelastic materials by teh generalized fractional element networks and itsgeneralized solution[J]. Science in China Series G, 2003, 46(2): 145-157.
    [166] Liu J G, Xu M Y. Higher-order fractional constitutive equations ofviscoelastic materials involving three di?erent parameters and their re-laxation and creep function[J]. Mechnics of Time-Dependent Materials,2006, 10(4): 263-279.
    [167] Li Y, Xu M Y. Hysteresis and precondition of viscoelastic solid models[J].Mechnics of Time-Dependent Materials, 2006, 10(2): 113-123.
    [168] Li Y, Xu M Y. Hysteresis loop and energy dissipation of viscoelastic solidmodels[J]. Mechnics of Time-Dependent Materials, 2007, 11(1): 1-14.
    [169]李岩.分数阶微积分及其在粘弹性材料和控制理论中的应用: [博士学位论文],济南;山东大学, 2008.
    [170]阳含熙,李飞.生态系统浅说[M].北京:清华大学出版社,2002.
    [171]林振山.种群动力学[M].北京:科学出版社,2006.
    [172]祖元刚,赵则海,于景华,杨逢建.非线性生态模型[M].北京:科学出版社,2004.
    [173]谷超豪,李大潜,沈玮熙.应用偏微分方程[M].北京:高等教育出版社,1993.
    [174] S E扬戈逊著,陆健健,周玉丽译.生态模型法原理[M].上海:上海翻译出版公司,1988.
    [175]蒋庆琅著,方积乾译.随机过程原理与生命科学模型[M].上海:上海翻译出版公司,1987.
    [176]王克.随机生物数学模型[M].北京:科学出版社,2010.
    [177] Marle C. Multiphase ?ow in porous medium[M]. Gulf Publishing Com-pany, 1981.
    [178] Pascal H. On a nonlinear convection-di?usion equation[J]. Physica A,1993, 192(4): 562-568.
    [179] Pascal J P, Pascal H. On nonlinear di?usion in fractal structures[J].Physica A, 1994, 208(3-4): 351-358.
    [180] Stephenson J. Some non-linear di?usion equations and fractal di?u-sion[J]. Physica A, 1995, 222(1-4): 234-247.
    [181] Tsallis C, Lenzi E K. Anomalous di?usion: nonlinear fractional Fokker-Planck equation[J]. Chemical Physics, 2002, 284(1-2): 341-347.
    [182] Bologna M, Tsallis C, Grigolini P. Anomalous di?usion associated withnonlinear fractional derivative Fokker-Planck-Like equation: exact time-dependent solutions[J]. Physical Review E, 2000, 62(2): 2213-2218.
    [183] Zola R S, Lenzi M K, Evangelista, Lenzi E K, Lucena L S, da SilvaL R. Exact solutions for a di?usion equation with a nonlinear externalforce[J]. Physics Letters A, 2008, 372(14): 2359-2363.
    [184] Liang J, Ren F, Wiu W, Xiao J. Exact solutions for nonlinear fractionalanomalous di?usion equations[J]. Physica A, 2007, 385(1): 80-94.
    [185] Yamano Y. Some properties of q-logarithm and q-exponential functionsin Tsallis statistics[J]. Physica A, 2002, 305(3-4): 486-496.
    [186] Tsallisa C, Mendes R S, Platino A R. The role of constraints withingeneralized nonextensive statistics[J]. Physica A, 1998, 261(3-4): 534-554.
    [187] Tsallisa C, Levy S V F, Souza A M C, Maynard R. Statistical-mechanicalfoundation of the ubiquity of le′vy distributions in nature[J]. PhysicalReview E, 1995, 75(20): 3589-3592.
    [188] Silva A T, Lenzi E K, Evangelista L R, Lenzi M K, Silva L R. Fractionalnonlinear di?usion equation, solutions and anomalous di?usion[J]. Phys-ica A, 2007, 375(1): 65-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700