小脑上脚交叉的常规MRI和扩散加权成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     正常小脑上脚交叉是两侧小脑上脚(结合臂)在中脑下部的汇合,涉及小脑上脚的许多疾病均可累及到小脑上脚交叉,例如Friedreich共济失调,帕金森病,精神分裂症,进行性核上性麻痹,Joubert综合征,多发性硬化、脑梗塞等。在常规MR中小脑上脚交叉在矢状位T1WI上常呈低信号,在质子加权像(PDWI)上呈低信号,而在T2WI上无法识别。在扩散加权成像(DWI)中,小脑上脚交叉在层而选择方向DWI (DWIslice)图上呈左右对称倒三角形高信号,在相位编码方向DWI (DWIphase)图上呈左右对称两个半圆形高信号,而在频率读出方向DWI (DWIread)图中上无高信号改变。存扩散张量成像(DTI)中,小脑上脚交叉在横轴位彩色张量(FA)图上呈红色图点状,在脑白质扩散张量成像(DTT)图中表现为向前形成盲端、上下交叉上行、前后交义上行、吻接上行、单侧向前等五种类型。然而关于小脑上脚交叉的T1信号、DWI和表观扩散系数(ADC)图上的信号与年龄、性别的相关性还不明确。
     第一部分小脑上脚交叉T1WI特征及其与年龄、性别的相关性
     目的:比较小脑上脚交叉在不同方位SE-T1WI上的信号特征,并探讨小脑上脚交叉的T1信号强度与年龄、性别的相关性。
     材料与方法:首先对20例健康成人(男女各10例,年龄匹配,24-44岁,平均36.2岁)分别进行横轴位、矢状位和冠状位的SE-T1WI (TR/TE=450/11,3次信号采集,矩阵256×256,层厚5mm,无间隔,FOV=190mm)扫描,由两名神经放射学专家对小脑上脚交叉在不同方位T1WI的信号特征进行盲法评价,按照信号的高低分为低信号、等信号和高信号。分析比较T1WI显示小脑上脚交叉的最佳成像方位。然后回顾性分析120例正常人群的正中矢状位SE-T1WI图像(层厚4mm,无间隔),其中男性52例,女性48例,4-64岁,平均31岁。由一名专家运用感兴趣区(ROI)功能分别测量小脑上脚交叉、中脑上部和桥脑基底部的信号强度以及获得颅外空气信号强度的标准差(SD),以桥脑基底部为背景信号,依次计算小脑上脚交叉和中脑上部的对比信噪比(CNR)。小脑上却交叉和中脑上部CNR的比较采用配对样本t检验,单因素方差分析(ANOVA)和直线相关(Bivariate correlation)用于分析性别、年龄对小脑上脚交义信号的影响和相关性。
     结果:20例健康成人中,小脑上脚交叉在矢状位T1WI上呈低信号者19例,另外1例呈等信号;在横轴位和冠状位T1WI上呈低信号者均为12例,等信号者均为8例。上述方位中均没有发现1例小脑上脚交叉呈高信号者。经统计学分析处理,显示小脑上脚交叉矢状位T1WI明显优于横轴位和冠状位T1WI(x2=5.161,P=0.023)。120例健康人群中,与中脑上部信号相比较,20%(24/120)小脑上脚交叉呈等信号,80%(96/120)的小脑上脚交叉呈低信号,没有一例呈高信号。定挝分析中,小脑上脚交叉的信号明显低于中脑上部的信号(CNR:-3.021±1.471vs2.130±1.506,t=-30.078,P=0.000);女性小脑上脚交叉的信号虽然低于男性小脑上脚交叉的信号(CNR:-3.176±1.450vs-2.818±1.488),但经统计学处理没有显著性差异(t=-1.325,P=0.118)。小脑上脚交叉的信号在各年龄组间亦无显著性差异(F=0.974,P=0.437)。经Bivariate correlation分析,小脑上脚交叉信号强度与年龄之间没有相关性(r=0.028,P=0.764)。
     结论:SE-T1WI中,与横轴位和冠状位比较,矢状位是识别小脑上脚交叉的最佳T1WI体位。在矢状位T1WI中,与中脑上部信号比较,小脑上脚交叉通常呈低信号,其信号强度与性别、年龄没有相关性。这种发现结果有助于进一步了解中脑病理信号的变化。
     第二部分小脑上脚交叉横轴位DW1特征及其与年龄、性别的相关性
     目的:研究小脑上脚交叉在横轴位DWI上的信号特征,并探讨小脑上脚交叉的DWI信号强度、ADC值与年龄、性别的相关性。
     材料与方法:回顾性分析145例健康成人的横轴位DWI图像(3方向单次激发平面回波成像,TR/TE=3200/94ms,4次信号采集,b=0、1000s/mm2,矩阵192×192,层厚5mm,层距1.5mm, FOV=230mm),其中男70例、女75例,年龄31~79岁,平均年龄48.7岁。由两名神经放射学专家对小脑上脚交叉的DWI信号特点进行盲法评价,按照信号的高低分为低信号、等信号和高信号。然后由一名专家运用ROI功能分别测量小脑上脚交叉、中脑导水管周围灰质和左侧颞叶白质的信号强度和ADC位以及获得颅外空气信号强度的标准差(SD),以左侧颞叶白质为背景信号,计算小脑上脚交叉和中脑导水管周围灰质的对比信噪比(CNR)。小脑上脚交叉与中脑导水管周围灰质CNR和ADC值的比较采用配对样本t检验,性别之间指标的比较采用独立样本t检验。不同年龄组之间指标的比较采用单因素方差分析(ANOVA)。采用两变量直线相关(Bivariate correlation)分析小脑上脚交叉的CNR和ADC值与年龄的相关性,并计算Pearson相关系数(r)。
     结果:145例健康成人颅脑横轴位DWI中,与中脑导水管周围灰质信号相比较,65.5%(95/145)小脑上脚交叉呈高信号,34.5%(50/145)小脑上脚交叉呈等信号,没有一例呈低信号。定量分析中,小脑上脚交叉信号明昆高于中脑导水管周围灰质信号(CNR:29.53±7.65vs22.54±5.59;t=17.084,P=0.000);女性小脑上脚交叉的信号(CNR:30.57±7.88)与男性小脑上脚交叉的信号(CNR:28.42±7.28),没有统计学差异(t=-1.700,P=0.091)。小脑上脚交叉CNR与年龄呈弱正相关(r=0.178,P=0.032)。小脑上脚交叉的ADC值(698.37±37.13×10-6mm2/s)明显低于中脑导水管周围灰质的ADC值(740.50±42.57×10-6mm2/s),差别具有显著统计学意义(t=-12.537,P=0.000)。男性小脑上脚交叉的ADC值(702.31±36.90×10-6mm2/s)虽然高于女性小脑上脚交叉的ADC值(694.68±37.21×10-6mm2/s),但统计学处理没有显著性差异(t=1.240,P=0.217)。经Bivariate correlation分析,小脑上脚交叉的ADC值与年龄没有相关性(r=0.054,P=0.522)。
     结论:在横轴位DWI中,,与中脑导水管周围灰质比较,小脑上脚交叉多呈高信号。小脑上脚交叉的信号强度与年龄呈正相关而与性别无关,其ADC值与年龄、性别均没有相关性。这种发现结果有助于评价中脑下部脚间区域的扩散特点。
     第三部分小脑上脚交叉矢状位DWI特征及其与年龄、性别的相关性
     目的:研究不同年龄段正常小脑上脚交叉扩散信号与ADC值的特性,并探讨小脑上脚交叉的DWI信号强度、ADC值与年龄、性别的相关性。
     材料与方法:回顾性分析77例正常人群的正中矢状位DWI图像(3方向单次激发平面回波成像,TR/TE=3200/94ms,4次信号采集,b=0、1000s/mm2,矩阵192×192,层厚5mm,无间隔,FOV=230mm),其中男性37例,女性40例,10-79岁,平均50.4岁。山两名神经放射学专家对小脑上脚交叉的DWI信号特点进行盲法评价,按照信号的高低分为低信号、等信号和高信号。然后由一名专家运用ROI功能分别测量小脑上脚交叉、中脑上部和桥脑基底部的信号强度和ADC值以及获得颅外空气信号强度的标准差(SD),以桥脑基底部为背景信号,计算小脑上脚交叉和中脑上部的对比信噪比(CNR)。小脑上脚交叉与中脑上部CNR和ADC值的比较采用配对样本t检验,性别之间指标的比较采用独立样本t检验。不同年龄组之间指标的比较采用单因素方差分析(ANOVA)。采用两变量直线相关(Bivariate correlation)分析小脑上脚交叉的CNR和ADC值与年龄的相关性,并计算Pearson相关系数(r)。
     结果:77例健康人群颅脑矢状位DWI中,与中脑上部信号相比较,91%(70/77)小脑上脚交叉呈高信号,9%(7/77)小脑上脚交叉呈等信号,没有一例呈低信号。定量分析中,小脑上脚交叉信号明显高于中脑上部信号(CNR:12.50±2.77vs5.50±2.02;t=24.59,P=0.000);女性小脑上脚交叉的信号(CNR:12.08±2.58)与男性小脑上脚交叉的信号(CNR:12.88±2.92)没有显著统计学差异(t=-1.264,P=0.210)。小脑上脚交叉的CNR与年龄呈中度正相关(r=0.421,P=0.000)。小脑上脚交叉的ADC值(676.65±35.62×10-6mm2/s)明显低于中脑上部的ADC值(736.69±40.58×10-6mm2/s),差别具有显著统计学意义(t=-14.31,P=0.000)。男性小脑上脚交叉的ADC值(682.59±34.59×10-6mm2/s)虽然高于女性小脑上脚交叉的ADC值(671.15±36.10×10-6mm2/s),但统计学处理没有显著性差异(t=1.418,P=0.160)。经Bivariate correlation分析,小脑上脚交叉的ADC值与年龄呈低度负相关(r=-0.246,P=0.031)。
     结论:在矢状位DWI中,与中脑上部信号比较,小脑上脚交叉通常呈高信号并随年龄的增加而增高,而其ADC呈相对低信号并随年龄的增加而减低。小脑上脚交叉的扩散信号和ADC值均与性别无关。因此在诊断和评价中脑下部区域的扩散信号时,特别是在中老年人,需要考虑到正常小脑上脚交叉的信号特点,DWI结合ADC图将有助于评估中脑下部病理信号的变化。
Background
     The decussation of superior cerebellar peduncle (DSCP) is located in midline, in front of midbrain aqueduct, which is crossed by bilateral superior cerebellar peduncles at the level of the inferior midbrain. The superior cerebellar peduncle (SCP) is usually affected by many diseases, such as Friedreich's ataxia, Parkinson's disease, schizophrenia, progressive supranuclear palsy, Joubert syndrome, multiple sclerosis, and cerebral infarction, at al. These diseases could be involved the DSCP. On conventional MRI, DSCP usually shows low signal intensity (SI) on midsagittal T1WI, low signal intensity (SI) on proton density-weighted imaging (PDWI) in neurologically normal brain. However, the signal changes are not displayed on T2WI. On diffusion-weighted imaging (DWI), hyperintense of DSCP is showed a symmetrical inverted triangle on DWIslice, two symmetrical semi-circular on DWIphase and no hyperintense on DWIread. On diffusion tensor imaging (DTI), DSCP demonstrates a red spot on axial color fractional anisotropy (FA) map image. There are five kinds of fiber tracking appearances at the level of DSCP on DTT. The fiber crossed to the opposited red nucleus in anterior-posterior style, superior-inferior style and single main bundle fiber, kissing fiber and missing fiber sign. However, the SI change of DSCP with age and gender is not identified on SE-T1WI, DWI and apparent diffusion coefficient (ADC) map.
     Part one:Signal intensity of the decussation of superior cerebellar peduncle on T1WI:correlation with age and gender
     Purpose:This study is to evaluate the signal characteristics of the DSCP on spin-echo (SE) T1WI of different planes and investigate relationship between SI of the DSCP and age and gender on SE-T1WI in healthy subjects.
     Materials and Methods:Firstly, sagittal, axial and coronal SE T1-weighted images (TR/TE,450/11;3signals averaged; matrix,512×512; section thickness,4mm; no intersection gap, and FOV,190mm) of the brain were acquired in20healthy volunteers (10men and10women; mean age,36.2years; age range,24-44years) at1.5T, respectively. The signal characteristics of DSCP on TlWI with different planes were evaluated consensually by two neuroradiologists. The signal of DSCP was divided into low signal, isointense and high signal. The optimal plane to display the DSCP on T1WI was analysed. Secondly, midsagittal SE-T1WI (TR/TE,450/11;3signals averaged; matrix,512×512; section thickness,4mm; no intersection gap, and FOV,190mm) of120neurologically normal subjects (52men,68women; age range:4-64years, mean age:31years) were evaluated retrospectively. Assessment of the Sls was done by one radiologist and by placing circular ROIs in the DSCP, superior midbrain, and the background of images. Background signal was measured in the pontine basement on the same image. Noise was defined as the standard deviation (SD) of the SI within a ROI outside the head (i.e., air). Contrast-to-noisc ratios (CNR) of the DSCP and the superior midbrain were calculated. Two-paired samples t-test was used to evaluate the SI difference between DSCP and superior midbrain. One-way analysis of variance (ANOVA) and bivariate correlation analysis were performed to evaluate the effects of gender and age.
     Results: In20healthy adults, the DSCP was either isointense (one objective,5%) or hypointense (19subjects,95%) on sagittal T1WI, either isointense (eight subjects,40%) or hypointcnse (12subjects,60%) on both axial and coronal T1WI. No DSCP manifested a high SI appearance on T1WI. Sagittal plane is much better than the axial and coronal planes in displaying the DSCP on SE-T1WI (x2=5.161, P=0.023). In120healthy patients, twenty percent of DSCP were isointense (24/120),80%of them were hypointcnse (96/120), compared to the superior midbrain. In contrast, a hyperintense appearance was not seen at all in any of age groups. For quantitative interpretation, the CNR was significantly lower in the DSCP (-3.021±1.471) than in the superior midbrain (2.130±1.506,t=-30.078,P=0.000). The CNRs tended to be lower in females than in males (-3.176±1.450vs-2.818±1.488); however, this difference was not significant (t=-1.325,t'=0.118). Multiple comparisons showed no significantly differences with respect to age groups (F=0.974,P=0.437). The CNR of DSCP was not correlate with age (r=0.028,P=0.764) by bivariate correlation.
     Conclusion: Sagittal plane is the best one to display the DSCP on SE-T1WI, compared to the axial and coronal planes. The SI of DSCP is usually lower than that of superior midbrain on midsagittal Tl WI which shows no correlation with gender or age in healthy subjects. This finding is helpful for the further understanding of the pathological changes of midbrains.
     Part two:Signal intensity of the decussation of superior cerebellar peduncle on axial DWI:correlation with age and gender
     Purpose:This study is to evaluate the signal characteristics of the DSCP on axial DWI and investigate relationship between diffusion-weighted SI and ADC value of the DSCP and age and gender in healthy adults.
     Materials and Methods:Brain axial diffusion-weighted images (spin-echo planar imaging sequence, TR/TE,3200/94ms; diffusion gradient encoding in three orthogonal directions;6=0,1000s/mm2; matrix,192×192; section thickness,5mm; intersection gap,1.5mm; and FOV,230mm) of145neurologically normal adults (70men,75women; age range:31-79years, mean age:48.7years) were evaluated retrospectively. The signal of DSCP was divided into low signal, isointense and high signal. The signal characteristics of DSCP on axial and sagittal DWI were evaluated consensually by two neuroradiologists. Secondly, Assessment of the SIs was done by one radiologist and by placing circular ROIs in the DSCP, periaqueductal gray (PAG), and the background of images. Background signal was measured in the left temporal lobe white matter on the same image. Noise was defined as the standard deviation (SD) of the SI within a ROI outside the head (i.e., air). Contrast-to-noise ratios (CNR) of the DSCP and the PAG were calculated. Two-paired samples t-test was used to evaluate the SI difference between DSCP and PAG. Difference of age groups was used one-way analysis of variance (ANOVA). and bivariate correlation analysis were performed to evaluate the effects of gender and age. and Pearson correlation coefficient (r) was obtained.
     Results:In145healthy adults, sixty-five point five percent of DSCP were hyperintense (95/145),34.5%of them were isointense (50/145), compared to the PAG. In contrast, a hypointense appearance was not seen at all in any of age groups. For quantitative interpretation, the CNR was significantly higher in the DSCP (29.53±7.65) than in the PAG (22.54±5.59; t=17.084,P=0.000). The CNRs tended to be lower in females (CNR:30.57±7.88) than in males (CNR:28.42±7.28); however, this difierence was not significant (t=-1.700,P=0.091). The CNR of DSCP positively correlated with patients' age (r=0.178,P=0.032) by bivariate correlation. The ADC value was significantly lower in the DSCP (698.37±37.13×10-6mm2/s) than in the PAG (740.50±42.57×10-6mm2/s); the difierence was significant (t=-12.537,P=0.000). The ADC values tended to be higher in males (702.31±36.90×10-6mm2/s) than in females (694.68±37.21×10-6mm2/s); however, this difference was not significant (t=1.240, P=0.217). The ADC value of DSCP was not correlate with age (r=0.054, P=0.522) by bivariate correlation.
     Conclusion: The SI of DSCP is usually higher than that of PAG on axial DWI which significantly positively correlated with patients' age but not with patients" gender, and the ADC value of DSCP shows no correlation with gender or age. Therefore, the regional signal variation should not be negligible when evaluating signal characteristics of the inferior midbrain on DWI.
     Part three: Signal intensity of the decussation of superior cerebellar peduncle on sagittal DWI: correlation with age and gender
     Purpose: This study is to evaluate the signal characteristics of the DSCP on sagittal DWI and furture investigate relationship between diffusion-weighted SI and ADC value of the DSCP and age and gender in healthy subjects.
     Materials and Methods: Sagittal diffusion-weighted images (spin-echo planar imaging sequence. TR/TE,3200/94ms; diffusion gradient encoding in three orthogonal directions: b=0,1000s/mm2; matrix,192×192; section thickness,5mm; no intersection gap. and FOV,230mm) of the brain were evaluated retrospectively in77neurologically normal subjects (37men,40women; age range:10-79years, mean age:50.4years). The signal of DSCP was divided into low signal, isointense and high signal. The signal characteristics of DSCP on sagittal DWI were evaluated conscnsually by two neuroradiologists. Assessment of the SIs was done by one radiologist and by placing polygonal shaped ROIs in the DSCP, superior midbrain, and the background of images. Background signal was measured in the pontine basement on the same image. Noise was defined as the standard deviation (SD) of the SI within a ROI outside the head (i.e., air). Contrast-to-noise ratios (CNR) of the DSCP and the superior midbrain were calculated. Two-paired samples t-test was used to evaluate the SI difference between DSCP and superior midbrain. Difference of age groups was used one-way analysis of variance (ANOVA), and bivariate correlation analysis were performed to evaluate the effects of gender and age, and Pearson correlation coefficient (r) was obtained.
     Results:In77healthy patients, ninety-one percent of DSCP were hyperintense (70/77),9%of them were isointense (7/77), compared to the superior midbrain. In contrast, a hypointense appearance was not seen at all in any of age groups. For quantitative interpretation, the CNR was significantly higher in the DSCP (12.50±2.77) than in the superior midbrain (5.50±2.02;t=24.59,P=0.000). The CNRs tended to be lower in females than in males (12.08±2.58vs12.88±2.92); however, this difference was not significant (t=-1.264, P=0.210). The CNR of DSCP significantly positively correlated with patients'age (r=0.421, P=0.000) by bivariate correlation. The ADC value was significantly lower in the DSCP (676.65±35.62×10-6mm2/s) than in the superior midbrain (736.69±40.58×10-6mm2/s); the difference was significant (t=-14.31, P=0.000). The ADC values tended to be higher in males (682.59±34.59×10-6mm2/s) than in females (671.15±36.10×10-6mm2/s); however, this difference was not significant (t=1.418, P=0.160). The ADC value of DSCP significantly negatively correlated with patients'age (r=-0.246,P=0.031) by bivariate correlation.
     Conclusion:The DSCP frequently displays high SI on sagittal DWI in the neurologically normal brain. Diffusion signal of the DSCP increased with advancing age, but its ADC value decreased with advancing age. Both SI and ADC value of the DSCP showed no correlation with gender. Therefore, the regional signal variation should not be negligible when evaluating signal characteristics of the inferior midbrain on DWI. especially, in older adults. DWI combined with the ADC maps would help to evaluate signal characteristics and pathological changes of midbrains.
引文
[1]Akhlaghi H, Corben L, Georgiou-Karistianis N, et al. Superior cercbellar peduncle atrophy in Friedreich's alaxia correlates with disease symptoms. Cerebellum. 2011; 10(1): 81-87.
    [2]Pagani E, Ginestroni A, Delia Nave R, ct al. Assessment of brain white matter fiber bundle atrophy in patients with Friedreieh ataxia. Radiology. 2010; 255(3): 882-889.
    [3]Nicoletti G, Tonon C, Lodi R, ct al. Apparent diffusion coefficient of the superior cerebellar peduncle differentiates progressive supranuclear palsy from Parkinson's disease. Mov Disord. 2008; 23(16): 2370-2376.
    [4]Wang F, Sun Z, Du X, et al. A diffusion tensor imaging study of middle and superior cerebellar peduncle in male patients with schizophrenia. Neurosci Lett. 2003; 48(3): 35-38.
    [5]Okugawa G, Nobuhara K, Minami T, et al. Neural disorganization in the superior cerebellar peduncle and cognitive abnormality in patients with schizophrenia: A diffusion tensor imaging study. Prog Neuropsychopharmacol Biol Psychiatry. 2006; 30(8): 1408-1412.
    [6]Oka M, Katayama S, Imon Y, et al. Abnormal signals on proton density-weighted MRI of the superior cerebellar peduncle in progressive supranuclear palsy. Acta Neurol Scand. 2001; 104(1): 1-5.
    [7]Kataoka H, Tonomura Y, Taoka T, et al. Signal changes of superior cerebellar peduncle on fluid-attenuated inversion recovery in progressive supranuclear palsy. Parkinsonism Relat Disord. 2008; 14(1): 63-65.
    [8| Tsuboi Y. Slowinski J, Josephs KA, et al. Atrophy of superior cerebellar peduncle in progressive supranuclear palsy. Neurology. 2003; 60(11): 1766-1769.
    [9]Paviour DC, Price SL, Stevens JM, et al. Quantitative MRI measurement of superior cerebellar peduncle in progressive supranuclear palsy. Neurology. 2005; 64(4): 675-679.
    [10]Poretti A, Boltshauser E, Locnneker T, et al. Diffusion tensor imaging in Joubert syndrome. A.INR Am J Neuroradiol. 2007; 28(10): 1929-1933.
    [11]Spampinato MV, Kraas J, Maria BL, et al. Absence of decussation of the superior cerebellar peduncles in patients with Joubert syndrome. Am J Med Genet A.2008; 146A(11):1389-1394.
    [12]Parisi MA, Pinter JD, Glass IA, et al. Cerebral and cerebellar motor activation abnormalities in a subject with Joubert syndrome:functional magnetic resonance imaging (MRI) study. J Child Neurol.2004; 19(3):214-218.
    [13]Ferland RJ, Eyaid W, Collura RV, et al. Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nat Genet. 2004; 36(9):1008-1013. Erratum in:Nat Genet.2004; 36(10):1126.
    [14]Quisling RG, Barkovich AJ, Maria BL. Magnetic resonance imaging features and classification of central nervous system malformations in Joubert syndrome. J Child Neurol.1999; 14(10):628-635.
    [15]Tamraz J, Comair Y, Luders H. Atlas of regional anatomy of the brain using MRI:With functional correlations. Berlin, Heidelberg:Springer.2000, p330.
    [16]Ropele S, de Graaf W, Khalil M, et al. MRI assessment of iron deposition in multiple sclerosis. J Magn Reson Imaging.2011; 34(1):13-21.
    [17]Otaduy MC, Leite Cda C, Nagae LM, et al. Further diffusion tensor imaging contribution in horizontal gaze palsy and progressive scoliosis. Arq Neuropsiquiatr.2009; 67(4):1054-1056.
    [18]Mamata H, Mamata Y, Westin CF, et al. High-resolution line scan diffusion tensor MR imaging of white matter fiber tract anatomy. AJNR Am J Neuroradiol.2002; 23(1):67-75.
    [19]Wakana S, Jiang H, Nagae-Poetscher LM, et al. Fiber tractbased atlas of human white matter anatomy. Radiology.2004; 230(1):77-87.
    [20]Lee SK, Kim DI, Kim J, et al. Diffusion-tensor MR imaging and fiber tractography:A new method of describing aberrant fiber connections in developmental CNS anomalies. Radiographics.2005; 25(1):53-65; discussion 66-68.
    [21]韩鸿宾, 王俭,阎军浩,等 层面选择方向扩散加权成像在中脑大脑脚间产生高信号的机制,中华放射学杂志,2008,42(9):936-940.
    [22]Tsang A, Stobbe RW, Asdaghi N, et al. Relationship between sodium intensity and perfusion deficits in acute ischemic stroke. J Magn Reson Imaging.2011; 33(1):41-47.
    [23]Pugash D, Oh T, Godwin K, et al. Sonographic 'molar tooth' sign in the diagnosis of Joubert syndrome. Ultrasound Obstet Gynecol.2011; 38(5): 598-602.
    [24]Harting I, Kotzaeridou U, Poretti A. et al. Interpeduncular heterotopia in Joubert syndrome:a previously undescribed MR finding. AJNR Am J Neuroradiol.2011; 32(7):1286-1289.
    [25]Maria BL, Quisling RG, Rosainz LC, et al. Molar tooth sign in Joubert syndrome:clinical, radiologic, and pathologic significance.J Child Ncurol. 1999; 14(6):368-376.
    [26]Senocak EU, Oguz KK, Haliloglu G, et al. Structural abnormalities of the brain other than molar tooth sign in Joubert syndrome-related disorders. Diagn Interv Radiol.2010; 16(1):3-6.
    [27]Alorainy IA, Sabir S, Seidahmed MZ, et al. Brain stem and ccrebellar findings in Joubert syndrome. J Comput Assist Tomogr.2006; 30(1):116-121.
    [28]Doherty D. Joubert syndrome:insights into brain development, cilium biology, and complex disease. Semin Pediatr Neurol.2009; 16(3):143-154.
    [1]Fung SH, Roccatagliata L, Gonzalez RG, et al. MR diffusion imaging in ischemic stroke. Neuroimaging Clin N Am 2011; 21(2):345-77.
    [2]Knash M, Tsang A, Hameed B, et al. Low cerebral blood volume is predictive of diffusion restriction only in hyperacute stroke. Stroke 2010; 41(12):2795-800.
    [3]Wessels T, Wessels C, Ellsiepen A, et al. Contribution of diffusion-weighted imaging in determination of stroke etiology. AJNR Am J Neuroradiol 2006; 27(1):35-39.
    [4]Usnich T, Albach FN, Brunecker P, et al. Incidence of new diffusion-weighted imaging lesions outside the area of initial hypoperfusion within 1 week after acute ischemic stroke.Stroke.2012; 43(10):2654-2658.
    [5]Attye A, Boncoeur-Martel MP, Maubon A, et al. Diffusion-Weighted Imaging infarct volume and neurologic outcomes after ischemic stroke.J Neuroradiol. 2012; 39(2):97-103.
    [6]Kanner AM. Diffusion-weighted imaging:can it play a role in the evaluation of patients with epilepsy? Epilepsy Curr 2006; 6(4):121-123.
    [7]Wang R, Li SY, Chen M, et al. Diagnostic value of interictal diffusion-weighted imaging in evaluation of intractable temporal lobe epilepsy. Chin Med Sci J. 2008; 23(2):68-72.
    [8]Wehner T, Lapresto E, Tkach J, et al. The value of interictal diffusion-weighted imaging in lateralizing temporal lobe epilepsy. Neurology.2007; 68(2):122-127.
    [9]Hanyu H, Sakurai H, Iwamoto T, et al. Diffusion- weighted MR imaging of the hippocampus and temporal white matter in Alzheimer's disease. J Neurol Sci 1998; 156(2):195-200.
    [10]Yoshiura T, Noguchi T, Koga H, et al.Cortical damage in Alzheimer's disease estimation in medial and lateral aspects of the cerebrum using an improved mapping method based on diffusion-weighted magnetic resonance imaging.Acad Radiol.2008; 15(2):193-200.
    [11]Yoshiura T, Mihara F, Koga H, et al. Mapping of subcortical white matter abnormality in Alzheimer's disease using diffusion weighted magnetic resonance imaging. Acad Radiol.2006; 13(12):1460-1464.
    [12]Yoshiura T, Mihara F, Tanaka A, et al. High b value diffusion-weighted imaging is more sensitive to white matter degeneration in Alzheimer's disease. Neuroimage.2003; 20(1):413-419.
    [13]Hygino da Cruz LC Jr, Batista RR, Domingues RC. et al. Diffusion magnetic resonance imaging in multiple sclerosis. Neuroimaging Clin N Am 2011; 21(1): 71-88, vii-viii.
    [14]Balashov KE, Aung LL, Dhib-Jalbut S, et al. Acute multiple sclerosis lesion: conversion of restricted diffusion due to vasogenic edema.J Neuroimaging 2011; 21(2):202-204.
    [15]Straus Farber R, Devilliers L, Miller A, et al. Differentiating multiple sclerosis from other causes of demyelination using diffusion weighted imaging of the corpus callosum. J Magn Reson Imaging.2009; 30(4):732-736.
    [16]Yurtsever I, Hakyemez B, Taskapilioglu O, et al. The contribution of diffusion-weighted MR imaging in multiple sclerosis during acute attack. Eur J Radiol.2008; 65(3):421-426.
    [17]Tavazzi E, Dwyer MG, Weinstock-Guttman B, et al. Quantitative diffusion weighted imaging measures in patients with multiple sclerosis. Neuroimage. 2007; 36(3):746-754.
    [18]Adachi M, Hosoya T, Haku T, et al. Evaluation of the substantia nigra in patients with Parkinsonian syndrome accomplished using multishot diffusion-weighted MR imaging. AJNR Am J Neuroradiol 1999; 20(8):1500-1506.
    [19]Paviour DC, Thornton JS, Lees AJ, et al. Diffusion-weighted magnetic resonance imaging differentiates Parkinsonian variant of multiple-system atrophy from progressive supranuclear palsy. Mov Disord.2007; 22(1):68-74.
    [20]Asao C, Hirai T, Yoshimatsu S, et al. Human cerebral cortices:signal variation on diffusion-weighted MR imaging. Neuroradiology 2008; 50(3):205-211.
    [21]窦郁,郭顺林,韩鸿宾,等.小脑上脚纤维交叉MR扩散加权成像研究.临床放射学杂志,2010,29(11):1445-1448.
    [22]韩鸿宾,王俭,阎军浩,等.层面选择方向扩散加权成像在中脑大脑脚间产生高信号的机制.中华放射学杂志,2008,42(9):936-940.
    [23]Spampinato MV, Kraas J. Maria BL, et al. Absence of decussation of the superior cerebellar peduncles in patients with Joubert syndrome. Am J Med Genet A 2008; 146A(11):1389-1394.
    [24]Oka M, Katayama S, Imon Y. et al. Abnormal signals on proton density-weighted MRI of the superior cerebellar peduncle in progressive supranuclear palsy. Acta Neurol Scand.2001; 104(1):1-5.
    [25]Hiwatashi A, Kinoshita T, Moritani T, et al. Hypointensity on diffusion-weighted MRI of the brain related to T2 shortening and susceptibility effects. AJR Am J Roentgenol 2003; 181(6):1705-1709.
    [26]Helenius J, Soinne L, Perkio J, et al. Diffusion-weighted MR imaging in normal human brains in various age groups. A.INR Am J Neuroradiol 2002; 23(2):194-199.
    [27]Dardzinski B.I, Sotak CH, Fisher M, et al. Apparent diffusion coefficient mapping of experimental focal cerebral ischemia using diffusion-weighted echo-planar imaging. Magn Reson Med 1993; 30(3):318-325.
    [28]Marks MP, de Crespigny A, Lent D, et al. Acute and chronic stroke:navigated spin-echo diffusion-weighted MR imaging. Radiology 1996; 199(2):403-408.
    [29]Nagesh V, Welch KM, Windham JP,et al. Time course of ADCw changes in ischemic stroke:beyond the human eye! Stroke 1998; 29(9):1778-1782.
    [1]韩鸿宾,王俭,阎军浩,等.层面选择方向扩散加权成像在中脑大脑脚间产生高信号的机制.中华放射学杂志,2008,42(9):936-940.
    [2]窦郁,韩鸿宾,郭顺林,等.不同参数扩散张量脑白质成像重建小脑上脚交叉示踪.中国医学影像技术,2010,26(4):752-755.
    [3]窦郁,郭顺林,韩鸿宾,等.小脑上脚纤维交叉MR扩散加权成像研究.临床放射学杂志,2010,29(11):1445-1448.
    [4]Spampinato MV, Kraas J, Maria BL, et al. Absence of decussation of the superior cerebellar peduncles in patients with Joubert syndrome. Am J Med Genet A.2008; 146A(11):1389-1394.
    [5]Tamraz J, Comair Y, Luders H. Atlas of regional anatomy of the brain using MRI:With functional correlations. Berlin, Heidelberg:Springer.2000, p330.
    [6]Oka M, Katayama S, Imon Y, et al. Abnormal signals on proton density-weighted MRI of the superior cerebellar peduncle in progressive supranuclear palsy. Acta Neurol Scand.2001; 104(1):1-5.
    [7]Akhlaghi H, Corben L, Georgiou-Karistianis N, et al. Superior cerebellar peduncle atrophy in Friedreich's ataxia correlates with disease symptoms. Cerebellum.2011; 10(1):81-87.
    [8]Nicoletti G, Tonon C, Lodi R, et al. Apparent diffusion coefficient of the superior cerebellar peduncle differentiates progressive supranuclear palsy from Parkinson's disease. Mov Disord.2008; 23(16):2370-2376.
    [9]Kataoka H, Tonomura Y, Taoka T, et al. Signal changes of superior cerebellar peduncle on fluid-attenuated inversion recovery in progressive supranuclear palsy. Parkinsonism Relat Disord.2008; 14(1):63-65.
    [10]Poretti A, Boltshauser E, Loenneker T, et al. Diffusion tensor imaging in Joubert syndrome. AJNR Am J Neuroradiol.2007; 28(10):1929-1933.
    [11]Ropele S, de Graaf W, Khalil M, et al. MRI assessment of iron deposition in multiple sclerosis. J Magn Reson Imaging.2011; 34(1):13-21.
    [12]Otaduy MC, Leite Cda C, Nagae LM, et al. Further diffusion tensor imaging contribution in horizontal gaze palsy and progressive scoliosis. Arq Neuropsiquiatr.2009; 67(4):1054-1056.
    [13]Lee SK, Kim DI, Kim J, et al. Diffusion- tensor MR imaging and fiber tractography:A new method of describing aberrant fiber connections in developmental CNS anomalies. Radiographics.2005; 25(1):53-65.
    [14]金辉,张树桐,刘松,周利华.多b值扩散加权成像对急性期脑梗死的诊断价值探讨.临床放射学杂志,2012,31(8):1091-1093.
    [15]Liu Z, Xiao X. The use of multi b values diffusion-weighted imaging in patients with acute stroke. Neuroradiology.2013; 55(3):371-376.
    [16]Nagashima H, Doi K, Ogura T, et al. Automated adjustment of display conditions in brain MR images:diffusion-weighted MRIs and apparent diffusion coefficient maps for hyperacute ischemic stroke. Radiol Phys Technol. 2013;6(1):202-209.
    [17]Drier A, Tourdias T, Attal Y, et al. Prediction of subacute infarct size in acute middle cerebral artery stroke:comparison of perfusion-weighted imaging and apparent diffusion coefficient maps. Radiology.2012; 265(2):511-517.
    [18]Campbell BC, Christensen S, Levi CR, et al. Comparison of computed tomography perfusion and magnetic resonance imaging perfusion-diffusion mismatch in ischemic stroke. Stroke.2012; 43(10):2648-2653.
    [19]Braley TJ, Lee YH, Mohan S, et al. Differences in diffusion tensor imaging-derived metrics in the corpus callosum of patients with multiple sclerosis without and with gadolinium-enhancing cerebral lesions. J Comput Assist Tomogr.2012; 36(4):410-415.
    [20]Balashov KE, Lindzen E. Acute demyelinating lesions with restricted diffusion in multiple sclerosis. Mult Scler.2012; 18(12):1745-1753.
    [21]Liu Y, Duan Y, He Y, et al. Whole brain white matter changes revealed by multiple diffusion metrics in multiple sclerosis:a TBSS study. Eur J Radiol. 2012;81(10):2826-2832.
    [22]Helenius J. Soinne L, Perkio J, et al. Diffusion-weighted MR imaging in normal human brains in various age groups. AJNR Am J Neuroradiol 2002: 23(2):194-199.
    [23]Marks MP, de Crespigny A, Lentz D, et al. Acute and chronic stroke:navigated spin-echo diffusion-weighted MR imaging. Radiology 1996; 199(2):403-408.
    [24]Nagesh V, Welch KM, Windham JP, et al. Time course of ADCw changes in ischemic stroke:beyond the human eye! Stroke 1998; 29(9):1778-1782.
    [25]Watanabe M, Sakai O, Ozonoff A, et al. Age-related Apparent Diffusion Coefficient Changes in the Normal Brain. Radiology.2013; 266(2):575-582.
    [26]Bugalho P, Viana-Baptista M, Jordao C, et al. Age-related white matter lesions are associated with reduction of the apparent diffusion coefficient in the cerebellum. Eur J Neurol.2007; 14(9):1063-1066.
    [27]Copen WA, Schwamm LH, Gonzalez RG, et al. Ischemic stroke:effects of etiology and patient age on the time course of the core apparent diffusion coefficient. Radiology.2001; 221(1):27-34.
    [28]Akazawa K., Yamada K, Matsushima S, et al. Optimum b value for resolving crossing fibers:a study with standard clinical b value using 1.5-T MR. Neuroradiology.2010; 52(8):723-728.
    [29]Fatima Z, Motosugi U,Hori M, et al. Age-related white matter changes in high b-value q-space diffusion-weighted imaging. Neuroradiology.2013; 55(3): 253-259.
    [30]Baumann PS, Cammoun L, Conus P, et al.High b-value diffusion-weighted imaging:a sensitive method to reveal white matter differences in schizophrenia. Psychiatry Res.2012; 201(2):144-151.
    [31]Purroy F, Begue R, Quilez A, et al. Contribution of high-b-value diffusion-weighted imaging in determination of brain ischemia in transient ischemic attack patients.J Neuroimaging.2013; 23(1):33-38.
    [32]Kang Y, Choi SH, Kim YJ, et al. Gliomas:Histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging-correlation with tumor grade. Radiology.2011; 261(3):882-890.
    [33]Tomar V, Yadav A. Rathore RK, et al. Apparent diffusion coefficient with higher b-value correlates better with viable cell count quantified from the cavity of brain abscess. AJNR Am J Ncuroradiol.2011; 32(11):2120-2125.
    [1]韩鸿宾, 王俭,阎军浩,等.层面选择方向扩散加权成像在中脑大脑脚间产生高信号的机制,中华放射学杂志,2008,42(9):936-940.
    [2]窦郁,韩鸿宾,郭顺林,等.不同参数扩散张量脑白质成像重建小脑上脚交叉示踪,中国医学影像技术,2010,26(4):752-755.
    [3]窦郁,郭顺林,韩鸿宾,等.小脑上脚纤维交叉MR扩散加权成像研究.临床放射学杂志,2010,29(11):1445-1448.
    [4]Bammer R, Acar B, Moseley ME. In vivo MR tractography using diffusion imaging. Eur J Radiol.2003; 45(3):223-234.
    [5]Spampinato MV, Kraas J, Maria BL, et al. Absence of decussation of the superior cerebellar peduncles in patients with Joubert syndrome. Am J Med Genet A.2008; 146A(11):1389-1394.
    [6]Ma D, Liu C, Kong Q, et al. Signal intensity of decussation of the superior cerebellar peduncle on sagittal T1WI:correlation with age and gender. Clinical Imaging.2013; 37(1):37-40.
    [7]Oka M, Katayama S, Imon Y, et al. Abnormal signals on proton density-weighted MRI of the superior cerebellar peduncle in progressive supranuclear palsy. Acta Neurol Scand.2001; 104(1):1-5.
    [8]Kataoka H, Tonomura Y, Taoka T, et al. Signal changes of superior cerebellar peduncle on fluid-attenuated inversion recovery in progressive supranuclear palsy. Parkinsonism Relat Disord.2008; 14(1):63-65.
    [9]Akhlaghi H, Corben L, Georgiou-Karistianis N, et al. Superior cerebellar peduncle atrophy in Friedreich's ataxia correlates with disease symptoms. Cerebellum.2011; 10(1):81-87.
    [10]Nicoletti G, Tonon C, Lodi R, et al. Apparent diffusion coefficient of the superior cerebellar peduncle differentiates progressive supranuclear palsy from Parkinson's disease. Mov Disord.2008; 23(16):2370-2376.
    [11]Poretti A, Boltshauser E, Loenneker T, et al. Diffusion tensor imaging in Joubert syndrome. AJNR Am J Neuroradiol.2007; 28(10):1929-1933.
    [12]Ropele S, de Graaf W, Khalil M, et al. MRI assessment of iron deposition in multiple sclerosis. J Magn Reson Imaging.2011; 34(1):13-21.
    [13]Otaduy MC, Leite Cda C, Nagae LM, et al. Further diffusion tensor imaging contribution in horizontal gaze palsy and progressive scoliosis. Arq Neuropsiquiatr.2009; 67(4):1054-1056.
    [14]Mamata H, Mamata Y, Westin CF, et al. High-resolution line scan diffusion tensor MR imaging of white matter fiber tract anatomy. AJNR Am J Neuroradiol.2002; 23(1):67-75.
    [15]Wakana S, Jiang H, Nagae-Poetscher LM, et al. Fiber tractbased atlas of human white matter anatomy. Radiology.2004; 230(1):77-87.
    [16]Lee SK, Kim DI, Kim J, et al. Diffusion- tensor MR imaging and fiber tractography:A new method of describing aberrant fiber connections in developmental CNS anomalies. Radiographics.2005; 25(1):53-65; discussion 66-68.
    [17]Parisi MA, Pinter JD, Glass I A, et al. Cerebral and cerebellar motor activation abnormalities in a subject with Joubert syndrome:functional magnetic resonance imaging (MRI) study. J Child Neurol.2004; 19(3):214-218.
    [18]Fung SH, Roccatagliata L, Gonzalez RG, et al. MR diffusion imaging in ischemic stroke. Neuroimaging Clin N Am.2011; 21(2):345-77.
    [19]Knash M, Tsang A, Hameed B, et al. Low cerebral blood volume is predictive of diffusion restriction only in hyperacute stroke. Stroke.2010; 41(12): 2795-800.
    [20]Wessels T, Wessels C, Ellsiepen A, et al. Contribution of diffusion-weighted imaging in determination of stroke etiology. AJNR Am J Neuroradiol.2006; 27(1):35-39.
    [21]Usnich T, Albach FN, Brunecker P, et al. Incidence of new diffusion-weighted imaging lesions outside the area of initial hypoperfusion within 1 week after acute ischemic stroke.Stroke.2012; 43(10):2654-2658.
    [22]Attye A, Boncoeur-Martel MP, Maubon A, et al. Diffusion-Weighted Imaging infarct volume and neurologic outcomes after ischemic stroke.J Neuroradiol. 2012; 39(2):97-103.
    [23]Kanner AM. Diffusion-weighted imaging:can it play a role in the evaluation of patients with epilepsy? Epilepsy Curr.2006; 6(4):121-123.
    [24]Wang R, Li SY, Chen M, et al. Diagnostic value of interictal diffusion-weighted imaging in evaluation of intractable temporal lobe epilepsy. Chin Med Sci J.2008; 23(2):68-72.
    [25]Wehner T, Lapresto E, Tkach J, et al. The value of interictal diffusion-weighted imaging in lateralizing temporal lobe epilepsy. Neurology.2007; 68(2): 122-127.
    [26]Mygino da Cruz LC Jr, Batista RR, Domingues RC, et al. Diffusion magnetic resonance imaging in multiple sclerosis. Ncuroimaging Clin N Am.2011; 21(1): 71-88, vii-viii.
    [27]Balashov KE, Aung LL, Dhib-Jalbul S, et al. Acute multiple sclerosis lesion: conversion of restricted diffusion due to vasogenic edema. J Neuroimaging. 2011; 21(2):202-204.
    [28]Straus Farber R, Devilliers L, Miller A, et al. Differentiating multiple sclerosis from other causes of demyelination using diffusion weighted imaging of the corpus callosum. J Magn Reson Imaging.2009; 30(4):732-736.
    [29]Yurtsever I,Hakyemez B, Taskapilioglu O, et al. The contribution of diffusion-weighted MR imaging in multiple sclerosis during acute attack. Eur J Radiol. 2008; 65(3):421-426.
    [30]kugawa G, Nobuhara K, Minami T, et al. Neural disorganization in the superior cerebellar peduncle and cognitive abnormality in patients with schizophrenia:A diffusion tensor imaging study. Prog Neuropsyehopharmacol Biol Psychiatry. 2006;30(8):1408-1412.
    [31]Wang F, Sun Z, Du X, et al. A diffusion tensor imaging study of middle and superior cerebellar peduncle in male patients with schizophrenia. Neurosci Lett. 2003;48(3):35-38.
    [32]Tsuboi Y, Slowinski J, Josephs KA, et al. Atrophy of superior cerebellar peduncle in progressive supranuclear palsy. Neurology.2003; 60(11): 1766-1769.
    [33]Paviour DC, Price SL, Stevens JM, et al. Quantitative MRI measurement of superior cerebellar peduncle in progressive supranuclear palsy. Neurology. 2005; 64(4):675-679.
    [34]Asao C. Hirai T, Yoshimatsu S, et al. Human cerebral cortices:signal variation on diffusion-weighted MR imaging. Neuroradiology.2008; 50(3):205-211.
    [35]Hiwatashi A, Kinoshita T, Moritani T, et al. Hypointensity on diffusion-weighted MRI of the brain related to T2 shortening and susceptibility effects. AJR Am J Roentgenol.2003; 181(6):1705-1709.
    [36]Helenius J, Soinne L, Perkio J, et al. Diffusion-weighted MR imaging in normal human brains in various age groups. AJNR Am J Neuroradiol.2002; 23(2):194-199.
    [37]Dardzinski BJ, Sotak CH, Fisher M, et al. Apparent diffusion coefficient mapping of experimental focal cerebral ischemia using diffusion-weighted echo-planar imaging. Magn Reson Med.1993; 30(3):318-325.
    [38]Marks MP, de Crespigny A, Lentz D, et al. Acute and chronic stroke:navigated spin-echo diffusion-weighted MR imaging. Radiology.1996; 199(2):403-408.
    [39]Nagesh V, Welch KM, Windham JP, et al. Time course of ADCw changes in ischemic stroke:beyond the human eye! Stroke.1998; 29(9):1778-1782.
     [40]郭睿,邓奎品,刘铁军.磁共振弥散张量成像在中枢神经系统的应用研究进展.医学影像学杂志,2009,19(6):762-765.
    [41]Okada T, Miki Y. Fushimi Y, et al. Diffusion-tensor fiber tractography: Intra-individual comparison of 3.0T and 1.5T MR Imaging. Radiology.2006, 238(2):668-678.
    [42]Stadlbauer A, Salomonowitz E, Strunk G, et al. Age-related degradation in the central nervous system:assessment with diffusion-tensor imaging and quantitative fiber tracking. Radiology.2008; 247(1):179-188.
    [43]Stadlbauer A. Salomonowitz E, Strunk G, et al. Quantitative diffusion tensor fiber tracking of age-related changes in the limbic system. Eur Radiol.2008; 18(1):130-137.
    [44]Salat DH. Tuch DS, Greve DN, et al. Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging.2005; 26(8):1215-1227.
    [45]Wang Q, Xu X, Zhang M. Normal aging in the basal ganglia evaluated by eigenvalues of diffusion tensor imaging. AJNR Am J Neuroradiol.2010; 31(3): 516-520.
    [46]Hsu JL, Leemans A, Bai CH, et al. Gender differences and age-related white matter changes of the human brain:a diffusion tensor imaging study. Neuroimage.2008; 39(2):566-577.
    [47]Pal D, Trivedi R, Saksena S, et al. Quantification of age- and gender-related changes in diffusion tensor imaging indices in deep grey matter of the normal human brain. J Clin Neurosci.2011; 18(2):193-196.
    [48]Pfefferbaum A, Sullivan EV, Hedehus M, et al. Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging. Magn Reson Med.2000,44(2):259-268.
    [49]Sullivan EV, Adalsteinsson E, Hedehus M, et al. Equivalent disruption of regional white matter micro- structure in ageing healthy men and women. Neuroreport.2001; 12(1):99-104.
    [50]武刚,詹青霞,丁小龙,等.正常成人大脑白质纤维磁共振弥散张量成像的定量研究.中国医学计算机成像杂志,2012,18(1):6-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700