软岩巷道让压壳—网壳耦合支护机理与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软岩巷道支护问题至今没有完全解决,特别是高应力泥化软岩巷道支护难度大,往往需要返修多次才能控制巷道长期稳定,严重影响生产安全和浪费大量巷修费用,软岩巷道稳定性控制已成为煤矿亟待解决的重大技术难题。本文以曲江矿850m东皮带大巷(高应力泥化软岩巷道)为工程背景,围绕高应力泥化软岩巷道稳定性控制问题,综合运用数值模拟、理论分析、实验室试验、现场监测和工业性试验等方法,对软岩巷道让压壳网壳耦合支护机理与技术进行系统研究,取得了如下主要创新成果:
     (1)进行了泥质粉砂岩三轴蠕变试验,建立了泥质粉砂岩蠕变全过程的粘弹塑性蠕变模型,并推导出该蠕变模型的本构方程;采用FLAC3D软件,分析并得到了高应力泥化软岩巷道流变规律以及塑性区分布规律。
     (2)提出了让压壳的概念,给出了让压壳的构筑条件、支护作用特点、支护内涵,并推导出让压壳厚度的计算式,分析了软岩巷道让压壳支护强度,确定了东皮带大巷让压壳支护强度与厚度。
     (3)建立了全长锚固预应力锚杆支护力学模型,系统研究了短细密锚杆支护作用机理,推导出锚杆轴应力和剪应力计算式;推导出围岩沿锚杆轴向、径向和环向的应力计算式,分析并得到了预紧力、锚杆长度、直径与锚杆轴应力和剪应力的关系;分析并得到了锚杆长度与预紧力对围岩应力的影响规律;采用FLAC软件,分析并得到了锚杆长度与支护密度对软岩巷道围岩变形的影响规律。
     (4)提出了让压壳网壳耦合支护技术,分析了让压壳网壳耦合支护原理,提出了“限压让压、让压抗压、限让适度、让抗协调”的二次支护原则,给出了让压壳网壳耦合支护技术关键与控制方法;推导出软岩巷道预留让压空间的计算式,并确定了东皮带大巷预留让压空间大小为38cm。
     (5)将高应力泥化软岩巷道围岩划分为让压壳(在破裂区内)、破裂区、塑性区及弹性区,基于粘弹塑性理论,考虑围岩蠕变与扩容,推导出塑性区半径、破裂区半径以及让压壳半径的计算式及各分区应力表达式,分析了让压壳变形以及变形过程中能量释放,确定了东皮带大巷让压壳网壳耦合支护强度与时机。
     (6)依据软岩巷道让压壳网壳耦合支护理论与技术,确定了曲江矿850m东皮带大巷围岩控制方案与参数,并进行了工业性试验。现场应用表明,采用“合理断面形状及尺寸+卸压控顶施工技术与工艺+让压壳+预留让压空间+锚索补强+网壳衬砌支架”的施工技术和支护方式较好地控制了850m东皮带大巷围岩有害变形,确保东皮带大巷长期安全稳定。
The problem about support of soft rock roadway has not been solved completelyyet. It is difficult to support especially in mudding soft rock roadway with high stress,we often rework several times in order to control the long term stability of roadwaywhich affects production safety seriously and wastes high cost of roadwaymaintenance, thus to control the stability of soft rock roadway has been a significanttechnical problem which needs to be resolved immediately. In this paper, we choose850m east belt main roadway of Qujiang coal mine (mudding soft rock roadway withhigh stress) as the engineering background and apply comprehensively numericalsimulation, theoretical analysis, laboratory experiment, field monitoring, industrialexperiment and other methods around the problem about controlling the stability ofmudding soft rock roadway with high stress. We make a systematical study ofyielding shell reticulated shell coupling support mechanism and technology in softrock roadway and obtain following innovation achievements:
     (1) We make a triaxial creep test of argillaceous siltstone, establish a viscoelasticplasticity creep model of the whole creep process of argillaceous siltstone and deducethe three dimensional constitutive equation about this creep model; we utilize Flac3Dto analyze and obtain the creep law and plastic zone distribution law in soft rockroadway with high stress.
     (2) We put forward the concept of yielding shell and the construction condition,support action characteristics and support connotation of yielding shell are given. Wededuce the formula for the thickness of yielding shell, analyze the support strength ofyielding shell in soft rock roadway and determine the support strength and thicknessof yielding shell in east belt main roadway.
     (3) We establish the mechanical model of full size grouted prestressed boltsupport, study systematically the support mechanism of bolts which are short, thin andarranged densely, deduce the formula for the axial stress and shear stress of bolt; wededuce the formula for the surrounding rock stress along the axial direction, theradial direction and the ring direction of bolt, analyze and obtain the relationshipbetween pre tightening force of bolt, length of bolt, diameter of bolt and axial stressof bolt, the shear stress of bolt; we analyze and obtain the influence law ofsurrounding rock stress by bolt length and bolt pre tightening force; we use Flacanalyze and obtain the influence law of the deformation of soft rock roadway surrounding rock by bolt length and support density.
     (4) We put forward the yielding shell reticulated shell coupling supporttechnology, analyze the yielding shell reticulated shell coupling support principle, putforward the secondary support principle that we should restrict, yield and resist stress.Meanwhile, moderate restriction and yielding are needed, yielding should coordinatewith resistance. The yielding shell reticulated shell coupling support technology andmethod are given. We deduce the formula for the reservation yielding space in softrock roadway and determine the reservation yielding space in the east belt mainroadway is38cm.
     (5) We divide the mudding soft rock roadway surrounding rock with high stressinto yielding shell (which is in fractured zone), fractured zone, plastic zone and elasticzone. We base on viscoelastic plastic theory, consider the creep and dilatancy ofsurrounding rock, deduce the formulae for the radius of plastic zone, the radius offractured zone and the radius of yielding shell and the expression of each division. Weanalyze the deformation of yielding shell and the energy release during deformationprocess, determine the yielding shell reticulated shell coupling support strength andtime in the east belt main roadway.
     (6) According to the yielding shell reticulated shell coupling support theory andtechnology in soft rock roadway, we determine the control method and parameters ofsurrounding rock in the850m east belt main roadway of Qujiang coal mine and makesome industrial tests. The field application shows that using the constructiontechnology, which consists of rationalizing the shape and size of section, yielding roofcontrol construction technology and process, yielding shell, reserving yielding space,anchor reinforcement and reticulated shell lining stent, and support method cancontrol the harmful deformation of surrounding rock in the850east belt mainroadway, ensure the long term security and stability of the east belt main roadway.
引文
[1]何满潮,景海河,孙晓明,著.软岩工程力学[M].北京:科学出版社,2002.
    [2]李刚.水岩耦合作用下软岩巷道变形机理及其控制研究.[D].辽宁:辽宁工程技术大学,2009.
    [3]何满潮,孙小明.中国煤矿软岩巷道工程支护设计与施工指南[[M].北京:科学出版社,2004.
    [4]靖洪文,李元海,赵保太,等编著.软岩工程支护理论与技术[M].徐州:中国矿业大学出版社,2008.
    [5]闰莫明,徐祯祥,苏自约.岩土锚固技术手册[M].人民交通出版社,2004.
    [6]刘泉声,张华,林涛.煤矿深部岩巷围岩稳定与支护对策[J].岩石力学与工程学报,2004,23(21):37343737.
    [7]李德忠,等编著.深部矿井开采技术[M].徐州:中国矿业大学出版社,2005,10
    [8]谢和平,彭苏萍,何满潮.深部开采基础理论与工程实践[M],北京:科学出版社,2006
    [9]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005.24(16):28032813.
    [10]煤炭工业部科技教育司,煤炭工业部软岩巷道支护专家组,煤矿软岩工程技术研究推广中心.中国煤矿软岩巷道支护理论与实践[M].中国矿业大学出版社,1999.
    [11]何满潮,等.软岩工程力学的基本问题[J].东北煤炭技术,1995(10):2533.
    [12]重庆建筑工程学院,同济大学编.岩体力学[M].北京:中国建筑工业出版社,1981,153164.
    [13]高磊.矿山岩体力学[M].北京:机械工业出版社,1988.
    [14] HKastner.Osterreich Bauzeitischrift,Vol.10(11),1947.
    [15]韩瑞庚.地下工程新奥法[M].北京:科学出版社,1987.
    [16] L.米勒.新奥法支护理论[M].地下工程,1980(6).
    [17]郑颖人,等.地下工程锚喷支护设计指南[M].北京:中国铁道出版社,1988.
    [18]于学馥,乔端.轴变论和围岩稳定轴比三规律[J]有色金属,1981(8):2125
    [19]何满潮.软岩巷道工程概论[M].徐州:中国矿业大学出版社,1993.
    [20]董方庭.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001.
    [21]方祖烈.拉压域特征及主次承载区的维护理论[M].世纪之交软岩工程技术现状与展望.北京:煤炭工业出版社,1999.
    [22]侯朝炯,郭励生,勾攀峰等著.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999.
    [23]侯朝炯.煤巷锚杆支护的关键理论与技术[J].矿山压力与顶板管理,2002,(1):25.
    [24]侯朝炯,何亚男.加固巷道帮、角控制底鼓的研究[J].煤炭学报,1995,20(3):15.
    [25]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19(3):342345.
    [26]侯朝炯,柏建彪,张农等.困难复杂条件下的煤巷锚杆支护[J].岩土工程学报,2001,23(1):8488.
    [27] HOU CHaojiong,Review of Roadway Control in Soft Surrounding Rock under DynamicPressure[J],Journal of Coal Science&Engineering,June2003,Vol.9,No.1P17.
    [28] WANG Weijun,HOU CHaojiong,Study of Mechanical principle of Floor Heave of roadwaydriving along next goaf in fully mechanized sub level caving face[J],Journal of CoalScience&Engineering,June2001,Vol.7,No.1P1317.
    [29] ZOU Xizheng,HOU CHaojiong,LI Huaxiang,The Classification of the Surrounding of CoalMining Roadways[J],Journal of Coal Science&Engineering,Dec.1996,Vol.2,No.2P5557.
    [30] GUO Yuguang,BAI Jianbiao,HOU CHaojiong,Study on the Main Parameters of Side Packinginthe Roadways Maintained along god edge[J],Journal of China University ofMining&Technology,Jun.1994,Vol.4No.1P114.
    [31] LI Xue hua,Deformation mechanism of surrounding rock and key control technology forroadwaydriven along goaf in fully mechanized top coal caving face[J],Journal of CoalScience&Engineering,June2003,Vol.9,No.1P2832.
    [32]彭苏萍,孟召平著.矿井工程地质理论与实践[M].北京:地质出版社,2002.
    [33]郑雨天,朱浮声.预应力锚杆体系—锚杆支护技术发展的新阶段[J].矿山压力与顶板管理,1995,1:27,56.
    [34]陈庆敏,郭颂,张农.煤巷锚杆支护新理论与设计方法[J].矿山压力与顶板管理,2002(1):1215.
    [35]陈庆敏,郭颂,金太.锚杆支护的“刚性”理论及其应用[J].矿山压力与顶板管理,2000,17(1):14.
    [36]郭颂.水平应力—对采准巷道围岩稳定性的新认识[J].煤矿开采,1998(4):1417.
    [37] Song Guo,J.Stankus1997Control mechanism of a tensioned bolt system in the laminatedroofwith a large horizontal stress[C].16th Int.Conf.on Ground Control in MiningMorgantown West Virginia.
    [38]陈玉祥,王霞,刘少伟.锚杆支护理论现状及发展趋势探讨[J].西部探矿工程,2004,(10):155157.
    [39][英]A哈依斯,等.岩层控制技术的发展现状[C].国外锚杆支护技术译文集,煤炭科学研究总院北京开采所,1997,6.
    [40]董方庭,等.井巷设计与施工[M].徐州:中国矿业大学出版社,1997.
    [41]沈季良,等.建井工程手册(Vol.Ⅱ)[M].北京:煤炭工业出版社,1986,10.
    [42]东兆星,吴士良.井巷工程[M].徐州:中国矿业大学出版社,2004.
    [43]漆泰岳著.锚杆与围岩相互作用的数值模拟[M].徐州:中国矿业大学出版社,2002.
    [44]陆士良,汤雷,杨新安著.锚杆锚固力与锚固技术[M].北京:煤炭工业出版社,1998.
    [45] R.施查克[挪威]等著,张卫国,吴红译.锚杆支护实用手册[M].北京:煤炭工业出版社,1990.
    [46]马其华,樊克恭,郭忠平等.锚杆支护技术发展前景与制约因素[J].中国煤炭,24(5):2124,59.
    [47]康红普,王金华等著.煤巷锚杆支护理论与成套技术[M].北京:煤炭工业出版社,2007.
    [48]张农,袁亮.离层破碎型煤巷顶板的控制原理[J].采矿与安全工程学报,2006,23(1):3438.
    [49]庞建勇.深井煤巷锚索加固技术的应用[J].矿山压力与顶板管理,2004,2
    [50]刘民东.高应力软岩硐室锚索支护实践[J],焦作矿业学院院报,1994,22(4)
    [51]彭书林,周营昌,冯学工.无粘结预应力锚索工艺施工方法[J].河北地质矿产信息,2004,2
    [52]袁和生.煤矿巷道锚杆支护技术[M].北京:煤炭工业出版社,1997.
    [53]何炳银.锚杆与锚索联合支护的协调性讨论[J].江苏煤炭,2003,4
    [54]何满潮,袁和生,靖洪文,等.中国煤矿锚杆支护理论与实践[M].科学出版社,2004.
    [55]候朝炯,等编著.巷道金属支架[M].北京:煤炭工业出版社,1989.
    [56]陆士良,王悦汉.软岩巷道支架壁后充填与围岩关系的研究[J].岩石力学与工程学报,1998,(2):180183.
    [57]王悦汉,王彩根,周华强著.巷道支架壁后充填技术[M].北京:煤炭工业出版社,l995.
    [58]管学茂,侯朝炯.桁架锚杆在大断面煤巷中应用的研究[J].矿山压力与顶板管理,1996,(03):3235.
    [59]卢军明.桁架锚杆在大跨度巷道顶板加固中的应用[J].中州煤炭,2006,(05):57,94.
    [60]邢龙龙.大跨度切眼巷道锚杆(索)支护技术研究[D].中国优秀硕士学位论文全文数据库,2008,(01).
    [61]张柯.大跨度高地压破碎煤巷支护及机理研究[D].西安科技大学硕士论文,2003.
    [62]杜波,何富连,张守宝.桁架锚索联合控制技术在大跨度切眼中的应用[J].煤炭工程,2008,(08):3739.
    [63]阚甲广,张农,李桂臣,王成,张冬华.深井大跨度切眼施工方式研究[J].采矿与安全工程学报,2009,26(02):163167.
    [64]侯琴.大宁煤矿大跨度煤巷锚索支护研究与应用[D]太原理工大学,2005.
    [65]韩立军,蒋斌松,贺永年.构造复杂区域巷道控顶卸压原理与支护技术实践[M].岩石力学与工程学报,2005,24(2):54995504.
    [66]杨双锁,曹建平.锚杆受力演变机理及其与合理锚固长度的相关性[J].采矿与安全工程学报,2010,27(1):16.
    [67]康红普,王金华,林健.煤矿巷道锚杆支护应用实例分析[J].岩石力学与工程学报,2010,29(4):649664.
    [68]潘春德,等.深井巷道支护与维护技术[J].矿业译从,1991(4)
    [69]陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994
    [70]刘长武,楮秀生著.软岩巷道锚注加固原理与应用[M].中国矿业大学出版社,2000,11
    [71]蒋金泉,等.巷道围岩结构稳定性与控制设计[M].北京:煤炭工业出版社,1999,1
    [72]何满潮,等主编.世纪之交软岩工程技术现状与展望(中国CSRM软岩工程专业委员会第二届学术大会论文集)[M].北京:煤炭工业出版社,1999,4
    [73] Agne P. Rustan. Micro sequential contour blasting how does it influence the surrounding rockmass?.Engineering Geology1998(49):303313.
    [74] K.R.Dhawan,D.N.Singh,I.D.Gupta.2D and3D finite element analysis of undergroundopenings in an in homogeneous rock mass. International Journal of Rock Mechanics&Mining Sciences2002(39):217227.
    [75] C.D.Martina,P.K.Kaiser, R.Christiansson. Stress, instability and design of undergroundexcavations. International Journal of Rock Mechanics&Mining Sciences2003(40):1027–1047.
    [76] Q.H.Qian,X.P.Zhou,H.Q.Yang,Y.X.Zhang,X.H.Li. Zonal disintegration of surrounding rockmass around the diversion tunnels in Jinping II Hydropower Station, Southwestern China.Theoretical and Applied Fracture Mechanics2009(51):129–138.
    [77] Robert J. David. The Archaeology of Myth: Rock Art,Ritual Objects, and MythicalLandscapes of the Klamath Basin. Journal of the World Archaeological Congress2009.
    [78] E. Button,G. Riedmu¨ ller,W. Schubert,K. Klima,E. Medley. Tunnelling in tectonicmelanges—accommodating the impacts ofgeomechanical complexities andanisotropic rockmass fabrics. Bull Eng Geol Env2004(63):109–117.
    [79] Chih Min Lin, Senior Member, IEEE, and Chun Fei Hsu. Supervisory Recurrent FuzzyNeural Network Control of Wing Rock for Slender Delta Wings. IEEE TRANSACTIONSON FUZZY SYSTEMS,12(5):733742.
    [80] DOU Lin ming, LU Cai ping, MU Zong long, GAO Ming shi. Prevention and forecasting ofrock burst hazards in coal mines. Mining Science and Technology2009(19):0585–0591.
    [81] D. Bachmann, S. Bouissou, A. Chemenda. Analysis of massif fracturing during Deep SeatedGravitational Slope Deformation by physical and numerical modeling. Geomorphology2009(103):130–135.
    [82] Y.C.Liang,D.P.Feng,G.R.Liu,X.W.Yang,X.Han. Neural identification of rock parametersusing fuzzy adaptive learning parameters. Computers and Structures2003(81):2373–2382.
    [83] M.T.Parra,J.M.Villafruela, F.Castro,C.Mendez. Numerical and experimental analysis ofdifferent ventilation systems in deep mines. Building and Environment2006(41):87–93.
    [84] I.S.Lowndes,Z.Y.Yang,S.Jobling,C.Yates. A parametric analysis of a tunnel climaticprediction and planning model. Tunnelling and Underground Space Technology2006(21):520–532.
    [85] Shouju Lia,, HeYua, YingxiLiua, FengjiWu. Results from in situ monitoring of displacement,bolt load, and disturbed zone of a powerhouse cavern during excavation process.International Journal of Rock Mechanics&Mining Sciences2008(45):1519–1525.
    [86] H.Y.Liu,J.C.Small,J.P.Carter,D.J.Williams. Effects of tunnelling on existing support systemsof perpendicularly crossing tunnels. Computers and Geotechnics2009(36):880–894.
    [87] J. Adam, J.L. Urai, B. Wieneke, O. Oncken, K. Pfeiffer, N. Kukowski, J. LohrmannS. Hotha,W. van der Zee, J. Schmatz. Shear localisation and strain distribution during tectonic faulting—new insights from granular flow experiments and high resolution optical image correlationtechniques. Journal of Structural Geology2005(27):283–301.
    [88] MARC ANDRKE,GUTSCHER and NINA KUKOWSKI. Material transfer in accretionarywedges from analysis of a systematic series of analog experiments. Journal of StructuraGleology,1998(8):80–84.
    [89] C. Zangerl, K.F.Evans, E.Eberhardt, S.Loew. Consolidation settlements above deep tunnels infractured crystalline rock: Part1—Investigations above the Gotthard highway tunnel.International Journal of Rock Mechanics&Mining Sciences2008(45):1195–1210.
    [90] Jo Lohrmann, Nina Kukowski, Jurgen Adam, Onno Oncken. The impact of analogue materialproperties on the geometry,kinematics, and dynamics of convergent sand wedges. Journal ofStructural Geology25(2003):1691–1711.
    [91] J. Moon, G. Fernandez. Effect of Excavation Induced Groundwater Level Drawdown onTunnel Inflow in a Jointed Rock Mass. Engineering Geology2010(110):33–42.
    [92] A. Pellegrino, A. Prestininzi. Impact of weathering on the geomechanical properties of rocksalong thermal–metamorphic contact belts and morpho evolutionary processes: Thedeep seated gravitational slope deformations of Mt. Granieri–Salincriti (Calabria–Italy).Geomorphology2007(87):176–195.
    [93] J. K. MORGAN and D. E. KARIG. Kinematics and a balanced and restored cross sectionacross the toe of the eastern Nankai accretionary prism. Journal of Structural Geology2004(52):76–95.
    [94] Henning Wolf, Diethard Konig, Theodoros Triantafyllidis. Experimental investigation ofshear band patterns in granular material. Journal of Structural Geology2003(25):1229–1240.
    [95] GAO Fu qiang, KANG Hong pu. Effect of pre tensioned rock bolts on stress redistributionaround a roadway—insight from numerical modeling. J China Univ Mining&Technol2008(18):0509–0515.
    [96]李德忠,李冲.岩石巷道二向压力的估测方法[J].岩土力学,2005,26(4):496599.
    [97] Chong Li, Jinhai Xu, Chunsheng Fu, Rui Wu, Qianqian Ma. Mechanism and practice ofrock control in deep large span cut holes[J]. Mining Science and Technology2011,21(6):891896.
    [98]周华强著.巷道支护限制与稳定作用理论及其应用[M].徐州:中国矿业大学出版社,2004.
    [99]陈庆敏.软岩巷道支护与围岩相互作用机理及支护技术的研究[D].徐州:中国矿业大学,1995.
    [100]庞建勇.软弱围岩隧道新型半刚性网壳衬砌结构研究及应用[D].南京:东南大学,2005.
    [101]雷金波,姜弘道,况森保.钢筋网壳锚喷支护结构适用性研究[J].煤炭科学技术,2003,31(11):2023.
    [102]陈勇军,庞建勇.钢筋网壳锚喷支护新技术理论分析及工程应用[J].安徽理工大学(自然科学版),2004,24(3):2832.
    [103]顾孟寒,张正新,郭兰波,等.钢筋网壳锚喷支护修复软岩巷道研究[J].矿山压力与顶板管理,2003,1:2931.
    [104]雷金波,姜弘道,郭兰波.钢筋网壳喷层结构内力的简化计算[J].建井技术,25(4):2732.
    [105]盖建平,周金城.高应力巷道锚网壳支护技术研究[J].煤炭工程,2008,5:6871.
    [106]代学灵.极软岩巷道网壳支护技术研究[J].矿山压力与顶板管理,2005,4:3435.
    [107]周金城.锚网壳支护技术在高应力巷道修复中的应用[J].煤矿支护,2008,1:2328.
    [108]李德忠,李冰冰,檀远远.矿井深部巷道围岩变形浅析及控制[J].2009,30(1):109112.
    [109]庞建勇,刘松玉,郭兰波.软岩巷道新型网壳锚喷支架静力分析及其应用[J].岩土工程学报,2003,25(5):602605.
    [110]唐百晓,杜恒,庞建勇.软岩巷道网壳衬砌力学性能试验研究[J].山西建筑,2009,35(36):35.
    [111]尹德钰,刘善维,钱若军,合著.网壳结构设计[M].北京:中国建筑出版社,1996,3.
    [112]沈祖炎,陈扬骥,编著.网壳与网架[M].上海:同济大学出版社,1996,10.
    [113]刘保民,李怀珍,张和.软岩巷道中网壳锚喷结构受力监测分析[J].煤田地质与勘探,2007,35(5):5860.
    [114]刘文朝.采动影响下破碎围岩巷道注浆加固支护技术[J].煤炭科学技术,2009,37(6):1720.
    [115]胡毅夫,董燕军.地下铜室锚注围岩的变形分析[J].岩土力学,2004,25(11):18141818.
    [116]魏树群,张吉雄,张文海等.高应力硐室群锚注联合支护技术[J].采矿与安全工程学报,2008,25(3):281285.
    [117]马万祥,刘晓平,马永生.煤矿过断层巷道化学预注浆加固设计与实践[J].现代商贸工业,2010,11:356357.
    [118]缪万里,李翔,涂强.深孔锚索注浆技术在防治软岩硐室底鼓中的应用[J].煤炭工程,2010,6:2021.
    [119]彭刚,王卫军,李树清.松散破碎硐室锚注修复加固技术应用研究[J].湖南科技大学学报(自然科学版),2008,23(1):69.
    [120]王连国,张健,李海亮.软岩巷道锚注支护结构蠕变分析[J].中国矿业大学学报,2009,38(5):607612.
    [121]朱训国.地下工程中注浆岩石锚杆锚固机理研究.[D].大连:大连理工大学,2006.
    [122]韩金田.复合注浆技术在地基加固中的应用研究.[D].长沙:中南大学,2007.
    [123]孙锋.海底隧道风化槽复合注浆堵水关键技术研究.[D].北京:北京交通大学,2010.
    [124]何忠明.裂隙岩体复合防渗堵水浆液试验及作用机理研究.[D].长沙:中南大学,2007.
    [125]郑玉辉.裂隙岩体注浆浆液与注浆控制方法的研究[D].长春:吉林大学,2005.
    [126]徐艳.滨海淤泥的快速固化研究.[M].北京:中国科学院研究生院,2007.
    [127] E.Villaescusa,R.Varden,R.Hassell. Quantifying the performance of resin anchored rock boltsin the Australian underground hard rock mining industry. International Journal of RockMechanics&Mining Sciences2008(45):94–102.
    [128] Yue Cai,Tetsuro Esaki,Yujing Jiang. Arock bolt and rock mass interaction model.International Journal of Rock Mechanics&Mining Sciences2004(41):1055–1067.
    [129] A. K l c, E. Yasar, A.G. Celik. Effect of grout properties on the pull out load capacity offully grouted rock bolt. Tunnelling and Underground Space Technology2002(17):355–362.
    [130] YujingJiang, BoLi, YujiYamashita. Simulation of cracking near a large underground cavernin a discontinuous rock mass using the expanded distinct element method. InternationalJournal of Rock Mechanics&Mining Sciences2009(46):97–106.
    [131] LI Guofeng, HE Manchao, ZHANG Guofeng, TAO Zhigang. Deformation mechanism andexcavation process of large span intersection within deep soft rock roadway. Mining Scienceand Technology2010(20):0028–0034.
    [132] E. J. Sellers and P. Klerck. Modelling of the Effect of Discontinuities on the Extent of theFracture Zone Surrounding Deep Tunnels. Timwllinga nd UndergmunSdp acel khn&v2000(41):453439.
    [133] GUO Zhibiao, SHI Jianjun, WANG Jiong, CAI Feng, WANG Fuqiang. Double directionalcontrol bolt support technology and engineering application at large span Y typeintersections in deep coal mines. Mining Science and Technology2010(20):0254–0259.
    [134] GUO Zhi biao, GUO Ping ye, HUANG Mao hong, LIU Yin gen. Stability control of gategroups in deep wells. Mining Science and Technology2009(19):0155–0160.
    [135] A.H.Laatar,M.Benahmed,A.Belghith,P.LeQuer.2Dlarge eddy simulation of pollutantdispersion around a covered roadway. Journal of Wind Engineering and IndustrialAerodynamics2002(90):617–637.
    [136] WANG Qi sheng, LI Xi bing, ZhAO Guo yan, SHAO Peng, YAO Jin rui. Experiment onmechanical properties of steel fiber reinforced concrete and application in deep undergroundengineering. J China Univ Mining&Technol2008(18):0064–0066.
    [137] YANG Shen, KANG Yong shang, ZHAO Qun, WANG Hong yan, LI Jing ming. Method forpredicting economic peak yield fra single well of coalbed methane. J China Univ Mining&Technol2008(18):0521–0526.
    [138]郭富利.堡镇软岩隧道大变形机理及控制技术研究.[D].北京:北京交通大学,2009.
    [139]郜进海.薄层状巨厚复合顶板回采巷道锚杆锚索支护理论及应用研究.[D].太原:太原理工大学,2005.
    [140]高峰.地应力分布规律及其对巷道围岩稳定性影响研究.[D].徐州:中国矿业大学,2009.
    [141]王广德.复杂条件下围岩分类研究[D].成都:成都理工大学,2006.
    [142]刘玉卫.高应力膨胀性软岩巷道变形破坏机理与支护研究.[D].西安:西安科技大学,2009.
    [143]杨峰.高应力软岩巷道变形破坏特征及让压支护机理研究.[D].徐州:中国矿业大学,2009.
    [144]李冲,徐金海,吴锐.深井软岩巷道锚索网壳衬砌耦合支护机理与实践[J].采矿安全学报.2011,28(2):193197.
    [145]李冲,徐金海,李明,李凯.深井软岩巷道预留刚隙柔层厚度的确定及应用[J].中国矿业大学学报.2011,40(4):505510.
    [146]王金喜.高应力软岩巷道锚壳喷支护机理研究.[M].邯郸:河北工程大学,2007.
    [147]王襄禹.高应力软岩巷道有控卸压与蠕变控制研究.[D].徐州:中国矿业大学,2008.
    [148]冯志强.破碎煤岩体化学注浆加固材料研制及渗透扩散特性研究.[D].北京:煤炭科学研究总院,2007.
    [149] LI Zong xiang, HUANG Zhi an, ZHANG Ai ran, SONG Jian guo. Numerical analysis ofgas emission rule from a goaf of tailing roadway. J China Univ Mining&Technol2008(18):0164–0167.
    [150] YUAN Liang. Study on Critical, Modern Technology for Mining in Gassy Deep Mines. JChina Univ Mining&Technol2007,17(2):0226–0231.
    [151] LU Ai hong, MAO Xian biao, LIU Hai shun. Physical simulation of rock burst induced bystress waves. J China Univ Mining&Technol18(2008)0401–0405.
    [152] YU Jing cun, LIU Zhi xin, TANG Jin yun. Research on Full Space TransientElectromagnetism Technique for Detecting Aqueous Structures in Coal Mines. J China UnivMining&Technol2007,17(1):0058–0062.
    [153] LIU Ya jing, MAO Shan jun, LI Mei, YAO Ji ming. Study of a Comprehensive AssessmentMethod for Coal Mine Safety Based on a Hierarchical Grey Analysis. J China Univ Mining&Technol2007,17(1):0006–0010.
    [154]李冲,李德忠.软岩回采巷道底鼓的机理和防治[J].2006,6:2729.
    [155]李冲,徐金海,吴锐,董健涛.综放工作面回采巷道锚杆支护解除机理与实践[J].煤炭学报,2011,36(12):20182023.
    [156] WU Hao, FANG Qin, GUO Zhi kun. Zonal disintegration phenomenon in rock masssurrounding deep tunnels. J China Univ Mining&Technol2008(18):0187–0193.
    [157] WU Hao, FANG Qin, ZHANG Ya dong, GONG Zi ming. Zonal disintegration phenomenonin enclosing rockmass surrounding deep tunnels—mechanism and discussion ofcharacteristic parameters. Mining Science and Technology2009(19):0306–0311.
    [158] Xiaoping Zhou,Qihu Qian, Bohu Zhang. ZONAL DISINTEGRATION MECHANISM OFDEEP CRACK WEAKENED ROCKMASSES UNDER DYNAMIC UNLOADING. ActaMechanica Solida Sinica,2009(9):0166–0174.
    [159] WU Hao, FANG Qin, ZHANG Ya dong, GONG Zi ming. Zonal disintegration phenomenonin enclosing rock mass surrounding deep tunnels—Elasto plastic analysis of stress field ofenclosing rock mass. Mining Science and Technology2009(19):0084–0090.
    [160] SUN Xiao ming, CAI Feng, YANG Jun, CAO Wu fu. Numerical simulation of the effect ofcoupling support of bolt mesh anchor in deep tunnel. Mining Science and Technology2009(19):0352–0357
    [161] P. Egger. Design and Construction Aspects of Deep Tunnels(with particular emphasis onstrain softening rocks). TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY2000(15):0403–0408.
    [162] Cheng Xiang Yang,Yong Hong Wu,Tung Hon. A no tension elastic–plastic model andoptimized back analysis technique for modeling nonlinear mechanical behavior of rockmass in tunneling. Tunnelling and Underground Space Technology2010(25):279–289.
    [163] Q.M. Gong, J.Zhao. Development of a rock mass characteristics model for TBMpenetration rate prediction. International Journal of Rock Mechanics&Mining Sciences2009(46):8–18.
    [164] Desheng Deng,Duc Nguyen Minh. Identification of rock mass properties in elasto plasticity.Computers and Geotechnics2003(30):27–40.
    [165] C.D.Martina,P.K.Kaiser,R.Christiansson. Stress, instability and design of undergroundexcavations. International Journal of Rock Mechanics&Mining Sciences2003(40):1027–1047.
    [166] J. Toran,R.Rodrguez、 D eza、 J.M.Rivas Cidb,M.M.Casal Barciella。 FEM modeling ofroadways driven in a fractured rock mass under a longwall influence. Computers andGeotechnics2002(29):411–431.
    [167] Slawomir J.Gibowiez, Stanislaw Lasoeki. Analysis of Shallow and Deep EarthquakeDoublets in the Fiji Tonga Kermadee Region[J]. Pure and APPlied GeoPhysies,2007,164(1):4253
    [168] Yu.K.Zaretskii,M.1.Karabaev. Feasibility of Faee Sureharging during Deep Settlement FreeTunneling in Dense Urban Settings[J].Soil Mechanics and Foundation Engineering,2004,41(4):11361149.
    [169] M.Grodner.Fraeturing around a preeonditioned deep level gold mine stope[J].Geotechnicaland Geological Engineering,1999,17(34):418422.
    [170] A. M. Milev, S.M. Spottiswoode. Effect of the Rock Properties on Mining indueedSeismieity Around the Ventersdorp Contact Reef,Witwatersrand Basin,South Africa[J].Pure and Applied GeoPhysics,1999,159(l3):165177.
    [171]倪建明.淮北矿区煤巷围岩稳定性分类与支护对策研究[D].江苏:中国矿业大学,2008.
    [172]杨树新,李宏,白明洲等.高地应力环境下硐室开挖围岩应力释放规律[J].煤炭学报,2010,35(1):2630.
    [173]柏建彪,王襄禹,姚喆.高应力软岩巷道耦合支护研究[J].中国矿业大学学报,2007,36(4):421425.
    [174]季明,高峰,高亚楠等.灰质泥岩遇水膨胀的时间效应研究[J].中国矿业大学学报,2010,39(4):511515.
    [175]李学华,姚强岭,张农.软岩巷道破裂特征与分阶段分区域控制研究[J].中国矿业大学学报,2009,38(5):618623.
    [176]贾剑青,王宏图,李晶等.复杂条件下隧道支护结构稳定性分析[J].岩土力学,2010,31(11):35993604.
    [177]孙晓明,杨军,曹伍富.深部回采巷道锚网索耦合支护时空作用规律研究[J].岩石力学与工程学报,2007,26(5):895900.
    [178]康红普,姜铁明,高富强.预应力在锚杆支护中的作用[J].煤炭学报,2007,32(7):680685.
    [179]赵庆彪,侯朝炯,马念杰.煤巷锚杆锚索支护互补原理及其设计方法[J].中国矿业学学报,2005,34(4):490493.
    [180]翟英达.锚杆预紧力在巷道围岩中的力学效应[J].煤炭学报,2008,33(8):856859.
    [181]李德忠,李冰冰,檀远远.矿井深部巷道围岩变形浅析及控制[J].岩土力学,2009,30(1):109112.
    [182]盖建平,周金城.高应力巷道锚网壳支护技术研究[J].煤炭工程,2008,5:6871.
    [183]谢文兵,陈玉华,陆士良.软岩硐室围岩作用关系分析[J].湖南科技大学学报(自然科学版),2004,19(2):69.
    [184]魏树群,张吉雄,张文海等.高应力硐室群锚注联合支护技术[J].采矿与安全工程学报,2008,25(3):281285.
    [185]庞建勇,郭兰波,刘松玉.高应力巷道局部弱支护机理分析[J].岩石力学与工程学报,2004,23(12):20012004.
    [186]王金华.我国煤巷锚杆支护技术的新发展[J].煤炭学报,2007,32(2):113118.
    [187]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19(3):342345.
    [188]耿鸣山.深部岩体硐室分区破裂数值试验研究[D].辽宁:大连理工大学,2010.
    [189]徐金海,周保精,吴锐.煤矿锚杆支护无损检测技术与应用[J].中国矿业大学.采矿与安全工程学报,2010,27(2):166170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700