煤矿巷道树脂锚固体力学行为及锚杆杆体承载特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前锚杆(索)支护技术是我国地下煤矿开采中普遍采用的一种主动控制巷道围岩稳定的支护技术。但由于锚杆支护加固对象的复杂性,至今锚杆支护原理还没有一个统一全面的认识,对于复杂条件下锚杆的锚固机理、与围岩相互作用关系、应力分布规律及锚杆杆体承载特性等问题需要更深入的研究。论文采用理论分析、数值模拟、现场实测、实验室试验和工程实践相结合的综合研究手段,围绕树脂锚固体力学行为及锚杆杆体承载特性展开研究。论文研究的主要工作如下:
     (1)总结分析了树脂锚固体四类主要失效类型,着重分析了粘结失效类型中树脂锚固体空洞锚固失效和长时蠕变失效的两种形式。建立了空洞树脂锚固体拉拔状态下的力学模型,推导并求出了空洞树脂锚固体拉拔状态下沿锚固方向上杆体内拉应力分布的理论公式;同时建立了考虑锚固层粘弹特性树脂锚固体拉拔状态下的长时蠕变力学模型,推导并求出了与时间有关的杆体拉应力和锚固层-杆体界面剪应力分布公式,并求解了恒力长时作用下的树脂锚固体杆体外端点位移的近似公式,同时得到了锚固体产生破坏的极限拉拔力。
     (2)通过实验室力学试验,获得了围岩、锚杆等力学参数。基于ABAQUS数值模拟软件,验证了两种锚固体理论力学模型,研究了两种模型中杆体应力沿锚固方向上的分布规律,揭示了拉拔过程中锚固体内应力和位移的演化过程;着重阐述了长时蠕变模型杆体应力传递的三个阶段,分析了杆体的极限抗拉拔力与时间的关系。同时,分析了锚杆直径、锚固层厚度、钻孔直径、围岩强度等参数对树脂锚固体杆体拉拔状态下的力学特性影响。
     (3)采用预拉力锚固系统锚固作用综合实验台,研究了不同预拉力下锚杆杆体应力和弯矩的分布特征及其变化速率;通过测力锚杆井下拉拔试验,揭示了预拉力与锚杆杆体外端点位移的相互关系及不同预拉力下锚杆杆体轴力分布及承载特征,同时基于测得的锚杆杆体应力分布曲线,借助第三章研究结果,准确推测了巷道顶板的完整性;初步判定预拉力锚杆实际工作状态下杆体承载受力主要集中在外锚固段中性点附近,对限制巷道围岩变形起主要作用的是中性点附近杆体-锚固层-围岩三者之间的粘结关系,同时杆体内弯矩的存在说明杆体截面处于非均匀受力状。
     (4)在分析现有煤矿巷道围岩监测手段的不足和光纤光栅传感技术优越性的基础上,初步提出并建立了一套基于现代光纤传感技术的煤矿巷道围岩动态实时在线监测系统;并采用该系统对煤矿巷道锚杆杆体受力及演化进行了实测,监测结果表明树脂锚杆的杆体应力分布呈非均匀分布且波动变化,杆体内存在大量弯矩。
     (5)最后基于理论研究结果提出了确保锚杆支护效果的几个基本原则,并应用于淮南矿区顾桥矿1115(1)工作面轨道顺槽及朱集煤矿1111(1)工作面轨道顺槽的工程实践,应用结果表明遵循该原则采用的预拉力高强锚杆强化支护技术可以充分调动围岩的自稳能力优化围岩的力学参数,有效控制巷道围岩变形,满足矿井安全生产要求;同时采用煤矿巷道围岩动态实时在线监测系统成功揭示了1111(1)工作面轨道沿空留巷期间的矿压显现规律,并与传统矿压观测结果进行了对比,两者基本一致,初步显示了该系统的可靠性和应用前景。
Bolt or cable supporting technology which is active supporting method to control thesurrounding rock stability has been widely applied in underground coal mining in China.Based on the complexity of surrounding rock, principles of bolt supporting have not yetcommon and completely understood, the bolt supporting need more study on the anchoragemechanism, interactive relationship with the surrounding rock, stress distribution along theembedded direction, bolt bearing characteristic and etc..
     This study took epoxy boned bolt system and bolt supported in coal mine roadway asresearch back ground, applied theoretical analysis, numerical simulation, field measurement,laboratory test and engineering practice to explore the mechanical behavior of epoxybonded bolt system and bolt bearing characteristic. The following findings were made:
     (1) Four main failure types of epoxy bolt supporting were analyzed and summaried,and imperfectly epoxy bonded failure and long-term creep failure of epoxy bonded boltsystem that belong to adhensive failure type were emphatically analyzed. A theoreticalmodel of epoxy bonded bolt system with an imperfect bonding adhesive layer was proposed,based on the this model, the formulas of axial stress in the blot and the shear stress at thebolt-epoxy interface along the embedded direction have been obtained and shown as apiecewise function. Simultaneously, an analytical model of epoxy bonded bolt systemconsidering the visco-elastic effect of the adhesive layer was developed, based on theproposed model, the time dependent formulas of tensile stress and shear stress at the boltand epoxy interface along the anchor’s direction have been obtained. The closed formequation of the long-term load end displacement was derived, additionally, the timedependent of initial debonding load Pini.
     (2) Mechanical parameters of the surrounding rock, bolt, etc. were obtained throughlaboratory mechanical tests. Two suggested models were compared with the FEMsimulation in ABAQUS, then the distribution of bolt stress along the longitude direction ofbolt in both models were studied, and the evolution process of stress and displacement inbolt system were also presented. Subsequently, parametric study of the constituentparameters of the epoxy bonded bolt system, such as bolt diameter, epoxy layer thickness,etc. were conducted to demonstrate their effects on the the epoxy bonded bolt system.
     (3) Bolt performance comprehensive experiment bar for pre-stress bolt system andunderground bolt pull-out tests were used to study the distribution and bearing behavior ofepoxy bonded bolt system with different pre-stress, the relationship between pre-stress and displacement of bolt endpoint was alos carried out. The research results were preliminaryindicated that the bearing stress in bolt under its working condition was complicated andchangeable, and bearing stress concentrated around bolt neutral point.
     (4) Based on analysis of shortage of present roadway surrounding rock monitoringmethods and excellence of FBG sensing technology, a dynamic real-time monitoringsystem for roadway surrounding rock in coal mine was proposed and successly used tomonitor the distribution and evolution of stress in bolt in roadway in coal mine.
     (5) Finally, several principles to ensure bolt supporting effect were proposed based onthe above results and successfully appied in track transportation gateways of1115(3)working face of Guqiao coalmine and1115(3) working face of Zhuji coalmine, Huainanmining group. Simultaneously, track transportation gateway in1111(1) working face ofZhuji coalmine in Huainan mining group was took as engineering background, the real-timeon-line monitoring system for roadway surrounding rock activity in coal mine wassuccessfully applied to monitor the ground pressure during its gob-side entry retaining.
引文
[1] International energy agency coal industry advisory board30th plenary meeting [R]. IEAheadquarter in Paris. November2008.
    [2] BP statistical review of world energy, June2010[2]
    [3] World energy outlook2009[R]. International Energy Agency.2009.
    [4]我国煤炭资源状况. http://114.255.18.15/web/myweb/show.asp?id=74.
    [5]陈炎光,陆士良,徐永圻.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994.
    [6]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [7]杜计平,苏景春.煤矿深井开采的矿压显现及控制[M].徐州:中国矿业大学出版社,2000.4.
    [8]刘泉声,高玮,袁亮.煤矿深部岩巷稳定控制理论与支护技术及应用[M].北京:科学出版社.2010
    [9]靖洪文.深部巷道大松动圈围岩位移分析及应用[M].徐州:中国矿业大学出版社,2001.
    [10]潘一山,祝平,王德利.深埋巷道底鼓及防治的蠕变模拟实验和数值分析[J].黑龙江矿业学院报,1998,8(2):1-7.
    [11]姜耀东,赵毅鑫,刘文岗等.深部开采中巷道底鼓问题的研究[J].岩石力学与工程学报,2004,23(14):2396-2401.
    [12] Nong Zhang, et al. Rock bearing capacity based stepwise bolting for deep underground coalroadway in China [J].2011International Conference on Civil Engineering and Building Materials.Advanced Materials Research.2011; Vols;255-260:pp3812-3816
    [13]侯朝炯,郭励生,勾攀峰.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999.
    [14]勾攀峰.巷道锚杆支护提高围岩强度和稳定性研究[D].徐州:中国矿业大学,1998.
    [15]康洪普,王金华等.煤巷锚杆支护理论与成套技术[M].北京:煤炭工业出版社,2007.11.
    [16]何满潮,景海河.中国煤矿锚杆支护理论与实践[M].北京:科学出版社,2004.
    [17]何满潮,孙晓明.中国煤矿软岩巷道工程支护设计与施工指南[M].北京:科学出版社,2004.1-4.
    [18]郑颖人.地下工程锚喷支护设计指南[M].北京:中国铁路出版社,1989.
    [19]]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [20] Kalman K. History of the sprayed concrete lining method-partⅠ: milestones up to the1960s.Tunneling and Underground Space Technology2003;18(1):57-69.
    [21] Kalman K. History of the sprayed concrete lining method-part Ⅱ: milestones up to the1960s.Tunneling and Underground Space Technology2003;18(1):71-83.
    [22]耿卫红,罗春华.岩土锚固工程技术及其应用[J].探矿工程,1997,(4):8-10.
    [23]王冲.预应力锚固的施工[M].北京:水利电力出版社,1987.
    [24]张农,高明仕.煤巷高强预应力锚杆支护技术与应用[J].中国矿业大学学报,2004(9):524-527.
    [25]张农.软岩巷道滞后注浆围岩控制研究[D].徐州:中国矿业大学,1999.6.
    [26] ZHANG Nong, WANG Cheng, ZHAO Yiming. Rapid Development of Coalmine Bolting inChina[J]. The6th International Conference on Mining Science&Technology. Xuzhou,China,19-20October.2009. Published by A.A. Balkema.
    [27]李桂臣.软弱夹层顶板巷道围岩稳定及安全控制研究[D].徐州:中国矿业大学,2008.
    [28]何满潮,景海河,孙晓明.软岩工程地质力学研究进展[J].工程地质学报,2000,8(1):46-62.
    [29]赖应得,崔兰秀,孙慧兰.能量支护学概论[J].山西煤炭,1994,(4):17-23.
    [30]范秋雁.试论软岩支护的理论基础[J].地下空间,1999,19(4):328-331.
    [31]王祥秋,杨林德,高文华.软弱围岩蠕变损伤机理及合理支护时间的反演分析[J].岩石力学与工程学报,2004,23(5):793-796;
    [32]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19(3):342-345.
    [33]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19(3):342-345.
    [34]康红普.煤巷锚杆支护成套技术研究与实践[J].岩石力学与工程学报,2005,24(21):3959-3964.
    [35]吕建青,张莉.预应力锚杆体系-锚杆支护技术发展的新阶段[J].山西煤炭管理干部学院学报.2000,1:46-47.
    [36]陈庆敏,郭颂,张农.煤巷锚杆支护新理论与设计方法[J].矿山压力与顶板管理,2002(1):12-15.
    [37] Hobbs DW. The formation of tension joints in sedimentary rocks: an explanation[J]. GeologicalMagazine,1967,106(6):550-556.
    [38] Freeman T.J. The behavior of fully-bonded rock bolts in the Kielder experiment tunnel[J]. Tunnelsand Tunnelling,1978;10(5):37-40.
    [39] Bj rnfot and Stephansson O. Interaction of grouted rock bolts and hard rock masses at variableloading in a test drift of the Kiirunavaara Mine[C]. Sweden. In: Stephansson P, editor. Proceedingsof the International Symposium on rock bolting, Rotterdam: Balkema,1984.
    [40] Tao Z, Chen JX. Behavior of rock bolting as tunneling support[C]. In: Stephansson O, editor.Proceedings of the international symposium on rock bolting, Rotterdam: Balkema,1984.
    [41] Selvadurai A.P.S. Some results concerning the viscoelastic relaxation of prestress in a surface rockanchor [J]. International Journal of Rock Mechanics and Mining Sciences&GeomechanicsAbstracts,1979,16(5):309-317.
    [42] Stheeman W.H. A practical solution to cable bolting problems at the Tsumeb Mine[J]. CIM Bull,1982,19(6):141.
    [43] James R. W. Strength of epoxy-grouted anchor bolts in concrete[J]. Journal of StructuralEngineering,1987,113(12):2365-2381.
    [44] Cook R.A., Doerr G.T. and Klingner R.E. Bond stress model for design of adhesive anchors [J].ACI Structural Journal,1993,90(5):514-524.
    [45] Ba ant Z. P., Desmorat T. Size effect in fiber or bar pullout with interface softing slip[J]. Journal ofEngineering Mechanics1994;120(9):1945-1962.
    [46] Benmokrane B., Chennouf A. and Mitri H.S. Laboratory evaluation of cement-based grouts andgrouted rock anchors [J]. International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1995,32(7):633-642.
    [47] Benmokrane B., Chekired M., Hu X., and Ballivy G. Behavior of grouted anchors subjected torepeated loadings in field [J]. International Journal of Rock Mechanics and Mining Science&Geomechanics Abstracts,1995,32(8):413-320.
    [48] Steen M. and Valles J.L. Interfacial bond conditions and tress distribution in a two-dimensionallyreinforced brittle-matrix composite [J]. Composites Science and Technology,1998,58(3-4):313-330.
    [49] Serrano A, Olalla C. Tensile resistance of rock anchors [J]. Int J Rock Mech Min Sci1999;36(4):449-474.
    [50] Cornelius Lanczos. The variational principles of mechanics. New York: Dover Publication,1986.
    [51] Hoek E, Brown ET. Empirical strength criterion for rock massed [J]. J Geotech Eng Division,American Society of Civil Engineers,1980;106(GT9):1013-1035.
    [52] Hoek E, Brown ET. The Hoek-Brown failure criterion, a1988update. In: Pro.15th Canadian RockMechanics Symposium, Univ. of Toronto October,1988.
    [53] Li C, Stillborg B. Analytical models for rock bolts [J]. International Journal of Rock Mechanics andMining Sciences,1999,36(8):1013-1029.
    [54] K l c A., Yasar E., Celik A.G. Effect of grout properties on the pull-out load capacity of fullygrouted rock bolt[J]. Tunneling and Underground Space Technology,2002,17(4):355-362.
    [55]尤春安,锚固系统应力传递机理理论及应用研究[D].山东科技大学,2004.05.
    [56]尤春安,战玉宝.预应力锚索锚固段的应力分布规律及分析[J].岩石力学与工程学报,2005,24(6):925-928.
    [57]何思明.预应力锚索作用机理研究[D].西南交通大学,2004.03
    [58]朱训国.地下工程中注浆岩体锚杆锚固机理研究[M].大连:大连理工大学,2006.12.
    [59]饶枭宇.预应力岩锚内锚固段锚固性能及荷载传递机理研究[D].重庆大学,2007.10.
    [60] E.Hoek,D.F.Wood. Rock Support [J]. Min.Mag.,1989,282-287
    [61] Yang S. T., Wu Z. M., Hu X. Z., Zheng J. J. Theoretical analysis on pullout of anchor fromanchor-mortar-concrete anchorage system[J]. Engineering Fracture Mechanics,2008,75(5):961-985.
    [62] Wu Z. M., Yang S. T., Hu X. Z. and Zheng J. J. Analytical method for pullout of anchor fromanchor–mortar–concrete anchorage system due to shear failure of mortar[J]. Journal of EngineeringMechanics,2007,133(12):1352-1369.
    [63]卢黎,张永兴,吴曙光.压力型锚杆锚固段的应力分布规律研究[J].岩土力学,2008,29(6):1517-1520。
    [64]卢黎.压力型岩锚内锚固段锚固性能及工程应用研究[D].重庆大学,2010.05
    [65] Kim N-K, Park J-S, Kim S-K. Numerical simulation of ground anchors[J]. Computers andGeotechnics,2007,34(6):498–507.
    [66] Froli M. Analytical remarks on the anchorage of elastic–plastically bonded ductile bars[J].International Journal of Mechanical Sciences,2007,49(5):589–596.
    [67] Delhomme F, Debicki G. Numerical modeling of anchor bolts under pullout and relaxation tests[J].Construction and Building Materials,2010,24(7):1232-1238.
    [68] Eurocode2. Design of concrete structure-part1-1: general rules and rules for buildings[J]. Brussels:Euopean Standards, CEN,2003.
    [69]于远祥,于远祥等.黄土地层下预应力锚索荷载传递规律的试验研究[J].岩石力学与工程学报,2010,29(12):2573-2580.
    [70]任智敏,李义.拉拔状态下全锚锚杆轴向应力分布规律研究[J].山西煤炭,2010,30(2):44-46.
    [71]邓宗伟,冷伍明等.预应力锚索荷载传递与锚固效应计算[J].中南大学学报(自然科学版),2011,42(2);501-507.
    [72]夏敬欢,梅林芳,张世雄.大冶铁矿露天转地下巷道围岩变形监测与稳定性预报研究[J].2006,12(12):36-38.
    [73]何杰兵.淮南矿区深部巷道围岩监测[J].煤炭技术,2007,26(10):87-88
    [74]鲁全胜,高谦.金川二矿区采场巷道围岩与充填体收敛变形监测研究[J].金川科技,2004;1:14-22
    [75]李术才,王汉鹏,钱七虎等.深部巷道围岩分区破裂化现象现场监测研究[J].岩石力学与工程学报.2008,27(8):1545-1552.
    [76]高谦,王保学,杨同.矿山运输巷道围岩变形监测分析及在施工中的应用[J].中国矿业.1997,6(3):56-59.
    [77]冶小平,孙强.某软岩巷道围岩变形监测研究[J].西部探矿工程.2009,10:108-113.
    [78]邓福康,汪仁和.巷道围岩分类与锚喷支护设计[J].山东煤炭科技.2009,1:69-70.
    [79]古全忠,李效甫,王泽进,廖灿平.巷道围岩失稳及锚杆位态监测[J].矿山压力与顶板控制.1997,3-4:207-209
    [80]黄夫宽,王显森. LBY-3型顶板离层指示仪在五沟煤矿中的应用[J].山西建筑,2007,33(33):340-341.
    [81]赵玮烨. KJ132顶板离层监测系统在凤凰山矿的应用[J].煤矿机电,2009.02:106
    [82]张勇,闫相宏,宋扬.基于网络的煤矿巷道顶板离层计算机监测预报系统研究[J].矿业安全与环保.2008,35(6):29-30,33.
    [83]卢喜山.智能型顶板离层仪的研制与应用[J].煤炭工程,2006,06:92-94.
    [84]李明旭,蒋敬平,王富奇,曲延伦. KZL-300巷道顶板离层自动监测报警系统[J].山东煤炭科技,2003,2:31-32.
    [85]蒋敬平,李明旭,张震,董友权,王广金.巷道顶板离层自动监测报警系统在鲍店煤矿的应用[J].山东煤炭科技.2004,1:20-21.
    [86]于腾飞,苏维嘉.巷道围岩变形自动监测系统[J].辽宁工程技术大学学报,2008,27:213-215.
    [87] Richard McCreary, John McGaughey, Yves Potvin el al. Results from micro seismic monitoring,conventional instrumentation, and tomography surveys in the creation and thinning of a burst-pronesill pillar[J]. Pure and Applied Geophysics.1992,139(3):349-373.
    [88] R.P. Young, S. Talebi, D.A. Hutchines et al. Analysis of mining-induced microseismic events atStrathcona Mine Subdury Canada[J]. Pure and Applied Geophysics.1989,129(4):455-474.
    [89]李希勇,孙庆国.深部巷道围岩工程控制理论及支护实践[M].徐州:中国矿业大学出版社,2001.
    [90]付国彬,姜志方.深井巷道矿山压力控制[M].徐州:中国矿业大学出版社,1996.
    [91]袁和生.煤矿巷道锚杆支护技术[M].北京:煤炭工业出版社,1997.
    [92] Seim J.M., W.L.Sehulz, E.Udd, K.Corona-Bittiek et al, Low-Cost High Speed Fiber Optic GratingDemodulation System for Monitoring Composite Structures[J]. SPIE Proe,1998,3326:390-395.
    [93]姜得生, Richard O. Claus.智能材料器件结构与应用[M].武汉:武汉工业大学出版社,2000.
    [94] Joan R. Casas, Paulo J.s.Cruz, M. ASCE. Fiber optic sensors for bridge monitoring[J]. Journal ofbridge engineering, ASCE,2003
    [95]张颖.布拉格光纤光栅传感技术研究[D].天津:南开大学,2001.
    [96]王惠文,江先进,赵长明等.光纤传感技术与应用[M].北京:国防工业出版社,2001.
    [97]郭风珍,于长泰.光纤传感技术与应用[M].杭州:浙江大学出版设,1992.33-45.
    [98]刘德明,向清,黄德修.光纤传感器及其应用[M].成都:电子科技大学出版社,1994.96-127.
    [99]安毓英,曾小东.光学传感与测量[M].北京:电子工业出版社,1995.143-147.
    [100] Hill K O, Fujii Y, Johnson D C et al. Photosensitivity in optical fiber waveguide: application toreflection filter fabrication[J]. Appl. Phys. Lett.,1978,32(10):647-649.
    [101] Meltz G. Morey M M, Glenn W H. formation of Bragg grating in optical fibers by transversebetween holographic method[J]. Appl. Phys. Lett.,1993,62(10):1035-1037.
    [102] Vengsarkar A M et al. Long-Period fiber gratings as band-rejection filters[J]. J. LightwaveTechnol.,1996,14(1):58-65.
    [103] Bhatia V, Vengsarkar A M. Optical fiber long-period grating sensors[J]. Opt.Lett.,1996,21:692-694.
    [104]赵廷超,黄尚廉,陈伟民.机敏土建结构中光纤传感技术的研究综述[J].重庆大学学报(自科学版),1997,20(5):104-109.
    [105]瞿伟廉,李卓球等.智能材料结构系统在土木工程中的应用[J].地震工程与工程振动,1999,19(3):87-95.
    [106]袁慎芳,陶宝棋,王听.智能材料结构在民用上的应用[J].南京航空航天大学学报,1997,29(5):586-592.
    [107] Yong Wang, Swee Chuan Tjin, et al, Simultaneous monitoring of the amplitude and Locationof loading with fiber Bragg grating sensor arrays, SPIE,2001, Vol.4337:451-458
    [108] Zhang Gang, LI Shaohui, Qin yi, Zhang ZhiPeng, Research of Distributed Fiber sensor UsingWavelet Transform, SPIE,1998, Vol.3541:330-337
    [109] Nobuo Takeda, Characterization of microscopic damage in composite laminates and real-timemonitoring by embedded optical fiber sensors, International Journal of Fatigue24(2002):281-289
    [110] Bhatia V, Vengsarkar A M. Optical fiber long-period grating sensors[J]. Opt. Lett.,1996,21:692-694.
    [111] Cusano, A. Cutolo, J. Nasser, M. Giordano, A. calabrò. Dynamic strain measurement by fibreBragg grating sensor [J]. Sensors and Actuators A: Physical,2004,110(1-3):276–281.
    [112] T. Fresvig, P. Ludvigsen, H. Steen et al. Fibre optic Bragg grating sensors: an alternative methodto strain gauges for measuring deformation in bone[J]. Medical Engineering&Physics,2008,30(1):104-108.
    [113] Anders L nnermark, Per Olof Hedekvist, Haukur Ingason. Gas temperature measurement usingfibre Bragg grating during fire experiment in a tunnel[J]. Fire Safety Journal,2008,119-126.
    [114] Suchandan Pal, Tong Sun, Kenneth T. V. Grattan et al. Non-linear temperature dependence ofBragg gratings written in different fibres, optimized for sensor applications over a wide range oftemperatures [J]. Sensors and Actuaors A: Physical,2004,112(2-3):211-219.
    [115] P. Moyo, J.M.W. Brownjoho et al. Development of fiber Bragg grating sensors for monitoringcivil infrastructure [J]. Engineering Structures.2005,27(12):1828-1834.
    [116] J. G. Liu, C. Schmidt-Hattenberger, G. Borm. Dynamic strain measurement with a fibre Bragggrating sensor system [J]. Measurement,2002,32(2):151-161.
    [117] R. Maaskant, T. Alavie, R. M. Measures et al. Fiber-optic Bragg Grating sensors for bridgemonitoring [J]. Cement and Concrete Composites,1997,19(1):21-33.
    [118] Mousumi Majumder, Tarun Kumar Gangopadhyay, Ashim Kumar Chakraborty et al. Fibre Bragggrating in structural health monitoring-present status and applications[J]. Sensors and Actuators A:Physical.2008,147(1):150-164.
    [119] Y.W. Yang, S. Bhalla, C. Wang et al. Monitoring of rocks using smart sensors [J]. Tunnelling andUnderground space technology,2007,22(2):206-221.
    [120] Pietro Ferraro, Giuseppe De Natale. On the possible use of optical fiber Bragg gratings as strainsensors for geodynamical monitoring [J]. Optics and Lasers in Engineering,2002,37(2-3):115-130.
    [121] ShibA Keiji. Structural health monitoring for infrastructures using fiber optic sensors[J]. JidoSeigyo Rengo Koenkai Maezuri.2001,44:234-237
    [122]丁睿.工程健康监测的分布式光纤传感技术及应用研究[D].四川:四川大学,2005.
    [123]孙曼.光纤Bragg光栅传感技术用于工程结构安全监测的研究[D].四川:四川大学,2005.
    [124] T.HT. Chan, L. Yu, H.Y. Tam et al. Fiber Bragg grating sensors for structural health monitoringof Tsing Ma bridge: Background and experimental observation [J]. Engineering Structures,2006,28(5):648-659.
    [125] C.K.Y. Leung. Fiber optic sensors in concrete: the future [J]. NDT&E International.2001,34(2):85-94.
    [126]林传年,刘泉生,高玮,肖春喜.光纤传感技术在锚杆轴力监测中的应用[J].岩土力学,2008,29(11):3161-3164
    [127]艾红,陈闻新.基于光纤传感器的油井温度场监测研究[J].光器件,2010,03:15-17.
    [128]撒继铭.光纤CO气体传感器的理论建模及设计实现[D].武汉:华中科技大学,2007.
    [129]张景超.光纤光学式甲烷气体传感器的设计与实验研究[D].秦皇岛:燕山大学,2006.
    [130]孙俪.光纤光栅传感技术与工程应用研究[D].大连:大连理工大学,2006.
    [131]任亮.光纤光栅传感技术在结构健康监测中的应用[D].大连:大连理工大学,2008.
    [132]孙汝蛟.光纤光栅传感技术在桥梁健康监测中的应用研究[D].上海:同济大学,2007.
    [133]曹晔.光纤光栅传感器解调技术及封装工艺的研究[D].天津:南开大学,2005.
    [134]刘胜春.光纤光栅智能材料与桥梁健康监测系统研究[D].武汉:武汉科技大学,2006.
    [135] Hill K O, Fujii Y, Johnson D C et al. Photosensitivity in optical fiber waveguide: application toreflection filter fabrication[J]. Appl. Phys. Lett.,1978,32(10):647-649.
    [136]黄尚廉,梁大巍,骆飞.分布式光纤传感器现状与动向[J].光电工程.1990,17(3):57-62.
    [137]黄尚廉,梁大巍,刘龚.分布式光纤温度传感器系统的研究[J].仪器仪表学报.1991,12(4):361-364.
    [138]黄尚廉.智能结构-工程学科萌生的一场革命[J].压电与声光,1993,15(1):13-15.
    [139]黄尚廉.高双折射光纤双折射参数的精密干涉测量法[J].光电工程.1993,20(5):23-26.
    [140]欧进萍.土木工程结构用智能感知材料、传感器与健康监测系统的研发现状[J].高层论坛功能材料信息,2005,2(5).
    [141]欧进萍,周智,王勃. FRP-OFBG智能复合筋及其在加筋混凝土梁中的应用[J].高技术通讯,2005,15(4):23-28.
    [142]欧进萍,侯爽,周智等.分段分布式光纤裂缝监测系统及其应用[J].压电与声光,2007,29(2):144-147.
    [143]欧进萍.土木工程结构智能感知材料、传感器与健康监测系统[J].功能材料,2004,增刊(35):32-43.
    [144] BAIDU百科, http://baike.baidu.com/view/2353535.htm,2010.
    [145] K. A. Heasley, T.H.Dubaniewicz, M.D.Dimartino. Development of a fiber optic stress sensor[J].Int. J. Rock Mech.&Min. Sci.1997,34(3-4):66.e1-66.e13.
    [146] Hiroshi Naruse, Hideki Uehara, Taishi Deguchi et al. Application of a distributed fibre optic strainsensing system to monitoring changes in the state of an underground mine[J]. MeasurementScience and Technology,2007,18(10):3202~3210.
    [147]冯仁俊,彭文庆,杨义辉.全长锚固锚杆的光纤光栅实验研究[J].矿业工程研究,2009,24(1)39-43
    [148]柴敬,兰曙光等.光纤Bragg光栅锚杆应力应变监测系统[J].西安科技大学学报,2005,25(1):1-4.
    [149]信思金,李斯丹,舒丹.光纤Bragg光栅传感器在锚固工程中的应用[J].华中科技大学学报(自然科学版),2005,33(3):75-77.
    [150]李辉,郝建军,何秋生.光纤传感技术在矿井安全监测中的应用[J].煤矿安全,2006,04:37-40.
    [151]裴雅兴,谭先康,王爱勋.光纤传感技术在预应力锚杆应力测试中的应用[J].人民长江,2004,35(1):25-27
    [152]煤矿安全规程2010版[S].北京:国家安全生产监督管理总局出版社,2010.02.
    [153] McVay.M., Cook.A.R.,and Kailash.K. Pullout simulation postinstalled chemically bondedanchors [J]. Journal of Structural Engineering,1996,122:1016-1024
    [154]唐树名,饶枭宇,张永兴.公路边坡锚固失效模式及影响因素[J].公路交通技术,2005;10(5):26-28,39.
    [155] T.H.Hanna[英].胡定等译.锚固技术在岩土工程中的应用[M].北京:中国建筑工业出版社,1987.
    [156]李磊,杨威.锚杆失效的原因及防治措置[J].矿业工程,2007,5(6):28-30.
    [157]王英,任瑞云,姜洪雨.大雁矿区煤巷锚杆支护失效原因分析及预防[J].煤炭工程,2005;4:23-25.
    [158]徐仲东.锚杆支护失效原因分析及防范措施[J].煤矿现代化,2010,3:35-36.
    [159]靖洪文.深部巷道大松动圈围岩位移分析及应用[M].徐州:中国矿业大学出版社,2001.10.
    [160]高勤福,马道局.锚杆失锚现象分析与防治措施[J].煤矿开采,2001,4:76-79.
    [161] Baalbaki.Q., Khalil.E., Ahmed.E. A Numerical-Experimental Study of Design Parameters forAnchoring Rebar in Rehabilitated Concrete Structures [J]. Pakistan Journal of Applied Sciences,2002,2:346-350.
    [162] Colak.A.. Parametric Study of Factor Affecting the Pull Out Strength of Steel Rods Bonded in toPrecast Concrete Panels[J]. International Journal of Adhesion&Adhesives.2001,21:487-493.
    [163] Dean.G. Modeling Non Linear Creep Behavior of an Epoxy Adhesive[J]. International Journal ofdhesion&Adhesives.2006,27:636-646.
    [164] Arzoumanidis. G. A, Liechti.K.M.. Linear Viscoelastic Property Measurement and ItsSignificance for Some Nonlinear Viscoelasticity Models [J]. Mechanics of Time-DependentMaterials.2003,7:209-250.
    [165] http://en.wikipedia.org/wiki/Viscoelasticity
    [166] http://en.wikipedia.org/wiki/Creep_(deformation)
    [167] http://en.wikipedia.org/wiki/Creep
    [168]陆士良,汤雷,杨新安.锚杆锚固力与锚固技术[M].北京:煤炭工业出版社,1998.11.
    [169] James Lindsay White. Principle of Polymer Engineering Rheology[M]. Wiley-Inter science(1edition),July20,1990.
    [170]何平笙.新编高聚物的结构与性能[M].北京:科学出版社,2009.
    [171]沃德I M.固体高聚物的力学性能[M].徐懋,漆宗能,译.2nd.北京:科学出版社,1988.
    [172]于同隐,何曼君,卜海山等.高聚物的粘弹性[M].上海:上海科学技术出版社,1986.
    [173]约翰.J.阿克罗尼斯,威廉.J.马可尼特等.聚合物粘弹性引论[M].北京:宇航出版社,1983
    [174]杨挺青.粘弹性力学[M].上海:华中理工大出版社,1992.05.
    [175]周光泉,刘孝敏.粘弹性理论[M].合肥:中国科技大学出版社.1996.12.
    [176]穆霞英.蠕变力学[M].西安:西安交通大学出版社,1990.06.
    [177]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.08.
    [178] N. G. McCrum, C. P. Buckley, and C. B. Bucknall. Principles of Polymer Engineering[M]. theUnited Kingdom, Oxford: Oxford University Press,1997.
    [179]何平笙,朱平平,杨海洋.高聚合物弹性力学模型的等当性[J].高分子材料科学与工程,2010.26(10):169-171
    [180] Abaqus6.9. Abaqus/CAE user’s manual. Dassault Systèmes Simulia Corp,2009.
    [181] Ahmad Almagableh, Mantena P.R. and Alostaz A. Creep and stress relaxation modeling of vinylester Nano composites reinforced by Nano clay and Graphite platelets [J]. Journal of AppliedPolymer Science,2010,115(3):1635-1641.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700