CASS工艺在寒冷地区城市污水处理中的优化运行研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齐齐哈尔市是我国纬度较高的城市之一,气温较低并且冰封期长。整个城市只有一座10万m3/d的城市污水处理厂和一个20万m3/d的氧化塘。随着城市面积的不断扩大,城市污水量日益增加,高峰时水量远远超过了氧化塘所能承受的负荷。经过经济技术论证污水处理厂的二期工程选择了CASS工艺。
     目前,CASS工艺多用于工业废水的处理和纬度较低的城市污水处理。CASS工艺在寒冷地区应用的具体运行参数和运行方式需要进一步研究。本课题的研究以城市生活污水为处理对象,构建CASS工艺的小试系统以模拟齐齐哈尔市南郊污水处理厂的二期工艺,通过试验研究,考察运行参数的改变对CASS工艺处理效果的影响,以得到CASS工艺在寒冷地区运行的优化参数,掌握CASS工艺特性,探寻其降解有机物及脱氮除磷的规律。
     试验调节了进水历时、污泥回流比、曝气时间、反应区配比、充水比、污泥龄、溶解氧这7个因素。试验结果显示COD和氨氮受各因素的影响最小,两者的去除效率都很高并且十分稳定。总氮和总磷的去除效果受各因素的影响较大,其中污泥回流比、曝气时间和曝气末段溶解氧对总氮的去除效果影响最大,污泥龄和曝气末段溶解氧对总磷的去除效果影响最大。生物脱氮除磷是两个相互冲突的过程,综合各个因素的影响最优运行参数为:进水历时4h,污泥回流比100%,曝气时间2h(进水2h后开始曝气),生物选择区、预反应区和主反应区的容积比例1:8:27,污泥龄15d,曝气末段溶解氧3.0mg/L。在该运行条件下温度降到10℃左右时出水各项指标仍可以稳定达标。
     对整个周期连续取样,试验结果表明进水不曝气的2h中整个反应器中的硝酸盐氮得到了大量的去除。另外硝酸盐氮浓度的降低使得聚磷菌可以更充分的进行释磷,主反应区也发生了明显的释磷现象,最终污泥的释磷量达到进水总磷含量的9.5倍。长时进水短时曝气的运行模式有利于硝化细菌的生长。
Qiqihar is one of our cities with higher latitudes, low temperatures and long period of ice. The whole city has only a 100 thousands m3/d of municipal wastewater treatment plant and a 200 thousands m3/d of the oxidation pond. With the continuous expansion of urban areas, increasing the amount of, the peak of urban sewage far beyond the oxidation pond can bear the load. After the economic and technical feasibility studies of the second phase of the sewage treatment plant is selected CASS.
     Currently, CASS process used for industrial wastewater treatment and municipal sewage treatment in lower latitudes. CASS process in the cold regions of the specific operating parameters and operation mode needs further study. The research project of urban sewage was treated, building a small test system of CASS process to simulate the Phase II for the southern suburbs of the sewage treatment plant in Qiqihar. Through experimental research, changes in operating parameters investigated on the effect of CASS Process. Get the optimization parameters for CASS process running in the cold regions. Master the characteristics of CASS process, exploring the law for degradation of organic compounds and nitrogen and phosphorus removal.
     Test regulates influent time, sludge return ratio, aeration time, ratio of reaction zone, water filling ratio, SRT and DO. The results showed that COD and ammonia nitrogen by the minimal impact of various factors, both the removal efficiency is very high and very stable. Removal of total nitrogen and total phosphorus greatly influenced by various factors. Sludge return ratio, aeration time and last paragraph of dissolved oxygen aeration of greatest impact on total nitrogen removal. SRT and last paragraph of dissolved oxygen aeration of greatest impact on total phosphorus removal. Biological nitrogen and phosphorus removal is two conflicting processes. Comprehensive impact of various factors, the optimal operating parameters for the influent time 4h, sludge return ratio 100%, aeration time 2h (2h influent after aeration), biological selection, pre-reaction zone and the main reaction zone volume ratio 1:8:27, SRT 15d , the last paragraph of dissolved oxygen aeration 3.0mg/L. Under the operating conditions when the temperature dropped to around 10℃effluent standards of the indicators can still be stable.
     Continuous sampling of the entire cycle, the results show that two hours without aeration for influent make a lot of nitrate nitrogen removal in the reactor. Also the reducing for the concentration of nitrate nitrogen make that the Phosphate accumulating bacteria can be more fully phosphorus release. The main reaction zone also has an obvious phenomenon of phosphorus release. The total amount of phosphorus released can reach 9.5 times as large as the amount of influent phosphorus. The mode of long influent and short aerobic is conducive to the growth of nitrifying bacteria.
引文
[1]钱程,任丽波,姚瑶.寒冷地区冬季低温对污水处理厂运行效率的影响研究[J].环境科学与管理, 2008, 5(33):84-86.
    [2]沈耀良,王宝贞.循环活性污泥系统(CASS)处理城市废水[J].给水排水, 1999, 25(11):5-8.
    [3]任明华. CAST工艺的性能和优化运行研究[D].上海:同济大学. 2007.
    [4]马娟. CAST工艺强化脱氮除磷及其过程控制的基础研究[D].北京:北京工业大学. 2010.
    [5]郭爱军. CASS工艺处理高氨氮生活污水研究[D].北京:北京建筑工程学院. 2004.
    [6] Peter A. W, Irvine R. L, Goronszy M. C. Sequencing Batch Reactor Technology [M].孙洪伟,刘秀红,彭永臻译(第一版).北京:化学工业出版社. 2010:44-45.
    [7] Irvine R. L, Busch A. W. Sequencing batch reactors for biological reactors-an overview[J]. Water Pollution Control Federation, 1979, 51:235-243.
    [8] Irvine R. L, Davis W. B. Use of sequencing batch reactors for waste treatment[C]. In CPC International Corpus Christi, Texas, 26th Annual Purdue Industrial Waste Conference, Purdue University, 1971:450-462.
    [9] Irvine R. L, Ketchum L. H. J. Sequencing batch reactor for biological wastewater treatment[J]. Critical Reviews in Environmental Science and Technology, 1989, 18(4):255-294.
    [10] Irvine R. L, Moe W. M. Period biofilter operation for enhanced performance during unsteady-state loading conditions[J]. Water Science and Technology, 2001, 43(3):231-239.
    [11] Irvine R. L, Ketchum L. H. J, Breyfogle R, et al. Municipal application of sequencing batch treatment at Culcer, Indiana[J]. Water Pollution Control Federation, 1983, 55:484.
    [12] Irvine R. L, Ketchum L. H. J, Breyfogle R, et al. An organic loading study of full-scale sequencing batch reactor[J]. Water Pollution Control Federation, 1985, 57:847-853.
    [13] Irvine R. L, Ketchum L. H. J, Wilderer P. A, et al. Granular activated carbon-sequencing batch biofilm reactor (GAS-SBBR)[J]. United States Patent,1992, 5:126-131.
    [14] Kadouri D, Jurkevitch E, Okon Y, et al. Ecological and agricultural significance of bacterial polyhydroxyalkanoates[J]. Crtical Reviews In Microbiology. 2005, 31(2): 55-67.
    [15] Irvine R. L, Sojka S. A, Colaruotolo J. F. Enhanced biological treatment of leachates for industrial landfills[J]. Hazardous Waste, 1984, 1:123-135.
    [16] Irvine R. L, Wilderer P. A, Flemming H. C. Controlled unsteady state processes and technologies overview[J]. Water Science and Technology, 1997, 35(1):1-10.
    [17] Wilderer P. A. Sequencing batch biofilm reactor technology[C]. In Harnessing biotechnology for the 21st century, Washington. American Chemical Society, 1992:475-479.
    [18] Wilderer P. A, R?ske. Continuous flow and sequenced batch operation of biofilm reactors-a comparative study of shock loading responses[J]. Biofouling: The Journal of Bioadhesion and Biofilm Research, 1993, 6:295-304.
    [19] Wilderer P. A, Schroeder E. D. Anwendung des Sequencing Batch Reactor(SBR)-Verfahrens zur biologischen Abwasserreinigung[C]. In Hamburger Berichte zur Siedlungswasserwirtschaft, 1986.
    [20] Wilderer P. A, Irvine R. L, Doellerer J. Sequencing batch reactor technology[J]. Water Science and Technology, 1997, 35(1):292.
    [21] Wilderer P. A, Arnz P, Arnold E. Application of biofilms and biofilm support materials as a temporary sink and source[J]. Water Air and Soil Pollution, 2000, 123(4):147-158.
    [22] Goronszy M. C. Single vessel intermittently operated activated sludge for nitrification denitrification[C]. In Proc. Water Pollution Control Federation Conference, Anaheim Control Fed, 1978.
    [23] Goronszy M. C. Intermittent operation of the extended aeration process for small system[J] Water Pollution Control Federation, 1979, 51:274-287.
    [24] Goronszy M. C, Newland M, Peters M, et al. Design and operation of the Dalby wastewater treatment plant for BNR using SBR technology[C]. In Proceedings of BNR3 Conference, Brisbane,Australia. Sydney, AWWA, 1997.
    [25] Goronszy M. C. Large scale application of cyclically operated activated sludge technology[C].In Proceedings 7th International Conference on Design and Operation of Large Wastewater Treatment Plants, Vienna, 1995.
    [26] Goronszy M. C, Demoulin G, Newland M. Aerated denitrification in full-scaleactivated sludge facilities[J]. Water Science and Technology, 1996, 34(1/2):487-491.
    [27] Goronszy M. C, Barnes D. Nitrogen control in intermittently decanted and aerated sludge systems[J]. Process Biochemistry, 1982.
    [28] Goronszy M. C, Eckenfelder W. W. The role of the degradation of primary solids in activated sludge plants[C]. Toronto, Water Pollution Control Federation, 1991.
    [29]郭迎庆.生物选择器控制污泥膨胀的机理及其设计[J].中国给水排水, 2002, 18(8):59-61.
    [30]孙勇,钟爱成. CASS工艺沉淀排水阶段设计优化[J].能源环境保护, 2005, 19(5):36-38.
    [31]马延新. CASS工艺在通辽经济技术开发区污水处理中的应用研究[D].大连:辽宁师范大学. 2009.
    [32]花刚勇. CASS工艺污水处理厂生产性试验研究[D].重庆:重庆大学. 2008.
    [33]田立江,李多松. CASS变型工艺污泥膨胀原因分析及控制[J].环境科学与技术, 2006, 29(3):87-88.
    [34]张占峰. CASS工艺在处理低温生活污水中的应用研究[J]北方环境, 2010, 22(2):97-99.
    [35]杨亚静,李亚新. CASS工艺的理论与设计计算[J].科技情报开发与经济, 2005, 15(3):186-191.
    [36] Goronszy M.C. Aerated denitrification in full-seale activated sludge facilities[J]. Water Science and Technology, 1997, 35(10):103-110.
    [37]凡广生,李多松.优化CASS工艺的设想[J].环境科学与管理, 2005, 30(6):56-57.
    [38] MA Juan, PENG Yongzhen, WANG Shuying, et al. Denitrifying phosphorus removal in a step-feed CAST with alternating anoxic-oxic operational strategy[J]. Journal of Environmental Sciences, 2009, 21(3): 1169-1174
    [39] Mervyn C, Goronszy M. C, Demoulin G, et al. Aerated denitrification in full-scale activated sludge facilities[J]. Water Science and Technology, 1997, 35(10):103-10.
    [40] Demoulin G, Rudiger A, Goronszy M. C. Cyclic activated sludge technology-Recent operating experience with a 90,000p.e. Plant in Germany[J]. Water Science and Technology, 2001, 43(3):33-337.
    [41]张国柱. CASS工艺处理城市污水的应用及优化研究[D].哈尔滨:哈尔滨工业大学硕士论文. 2006.
    [42]马延新. CASS工艺在通辽经济技术开发区污水处理中的应用研究[D].辽宁师范大学. 2009.
    [43]孙剑辉,闰怡新,徐文刚.循环式活性污泥法(CAST)的设计要点[J].中国给排水, 2003, 19(l):89-91.
    [44]陈克玲,詹健. CAST工艺处理城市污水原理及设计[J].环境科学与技术, 2004, 27(4):71-73.
    [45] Ya Y. Wanga, Min Yana, Nai Y. Gaoa, et al. Impact of operating conditions on nitrogen removal using cyclic activated sludge technology (CAST)[J]. Journal of Environmental Science and Health, 2010, 45:370-376.
    [46] Goronszy M. C, Nigel Slater, Konicki D. The cyclic activated sludge system for resort area wastewater treatment[J]. Water Science and Technology, 1995, 32(9):105-114.
    [47]孙洪伟,彭永臻,王淑英等.厌氧氨氧化脱氮技术的演变、机理及研究进展[J].工业用水与废水. 2008, 39(1):7-11.
    [48] Shi, H.P, Lee C. M. Combining anoxic denitrifying ability with aerobic-anoxic phosphorus-removal examinations to screen denitrifying phosphorus-removing bacteria[J]. International Biodeterioration and Biodegradation, 2006, 57,121-128.
    [49]高大文,彭永臻,潘威. SBR法短程硝化一反硝化生物脱氮工艺的研究[J].环境污染治理技术与设备, 2003, 4(6):1-4.
    [50]宋桂杰,张韵. CASS工艺中曝气系统节能技术探讨[J].给水排水, 2009, 35(增刊):67-72.
    [51]张占锋. CASS工艺在处理低温生活污水中的应用研究[J].北方环境, 2010, 22(2):97-99.
    [52] Ma Juan, Peng Chengyao, Wang Li, et al. Biological nitrogen removal in a step-feed CAST with real-time control treating municipal wastewater[J]. Water Science and Technology, 2010, 61(9):2325-2332.
    [53]秦俊芳,石玮. CASS工艺水力停留时间的实验研究[J].北方环境, 2010, 22(1):76-78.
    [54]李颖,郭爱军,赵国华. CASS工艺处理高氨氮污水的脱氮设计[J].给水排水, 2006, 32(5):5-8.
    [55]俞欣,梅凯.影响CASS工艺除磷效果的运行参数研究[J].给水排水, 2007, 33(增刊):64-68.
    [56]凡广生,李多松.优化CASS工艺的设想[J].环境科学与管理, 2005, 30(6):56-57.
    [57]顾夏生,胡洪营,文湘华等.水处理微生物学(第四版)[M].北京:中国建筑工业出版社, 2006:237-240.
    [58]熊红权,李文彬. CASS工艺在国内的应用现状[J].中国给水排水, 2003, 19(2):34-35.
    [59]张自杰,顾夏生,林荣忱等.排水工程下册(第四版)[M].北京:中国建筑工业出版社, 2006:103-104.
    [60]任南琪,马放.污染控制微生物学[M].哈尔滨:哈尔滨工业大学出版社, 2002:91-95.
    [61]钱程,任丽波,姚瑶.寒冷地区冬季低温对污水处理厂运行效率的影响研究[J].环境科学与管理, 2008, 5(33):84-86.
    [62]张自杰,顾夏生,林荣忱等.排水工程下册(第四版)[M].北京:中国建筑工业出版社, 2006:103-104.
    [63]郭频. AB法污水处理工艺功能升级试验研究[D].哈尔滨:哈尔滨工业大学. 2010.
    [64]唐致文. A2/O工艺处理系统脱氮除磷优化研究[D].哈尔滨:哈尔滨工业大学. 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700