马铃薯野生种Solanum Demissum与栽培品种杂交后代的遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯栽培种的遗传基础狭窄是阻碍其品种改良至关重要的限制因子,已为各国的育种实践所证实。然而,幸运的是还有丰富的马铃薯近缘栽培种和马铃薯野生种的存在,它们是改良现有品种潜在的种质资源,并已逐步在马铃薯育种实践中应用。马铃薯野生种Solanum demissum作为重要的晚疫病抗性资源已为一些育种家所应用,并取得了较好的育种效果。该野生种为六倍体种,原产于墨西哥。目前在世界范围内,含有该野生种血缘的育成品种已有200多个。该野生种除了高抗晚疫病外,还具有抗癌肿病、抗疮痂病,抗PVY、抗PVA、抗PLRV、抗马铃薯甲虫、以及高淀粉和高蛋白质含量等有利性状。以往的育种实践表明,以该野生种为母本易与栽培品种杂交,其杂种后代再与栽培种回交2~3次,能有效地将结薯多、比重高等丰产性状逐渐转入栽培品种,有效改良马铃薯的产量性状。然而,利用野生种来改良栽培种是一个周期较长的过程,如何能在较短的时间内取得良好的改良效果、提高育种效率一直是育种家所关注的。
     本试验研究采用三种交配设计模式,配制了种间杂交和回交组合40个,旨在探索马铃薯种间杂种回交群体的改良效果,探求有效克服野生习性的方法、优化种间杂交育种的程序和提高育种效率的途径。其最终目的是加速马铃薯种间杂种的改良进程,提高野生种在栽培品种改良上的利用效果。
     试验结果表明,对杂种群体进行回交可大幅度削弱野生种与栽培种性状间的连锁与互作。为此,利用马铃薯野生种Solanum demissum资源不会遇到性状重组的障碍。
     在种间杂种和各回交群体世代中,某些性状间存在动态相关关系,表明基于不同世代的相关系数间不可混用,否则可能引出错误的结论。
     采用配合力分析的方法,对利用普通栽培品种的早熟性直接克服种间杂种群体匍匐茎长、结薯晚等野生性状的试验结果表明,栽培品种在平均单薯重、商品薯率、匍匐茎长度等性状上存在着极显著差异,在单株产量、单株结薯数、生育期、比重、蛋白质含量、Vc含量、还原糖含量等性状上存在显著差异;种间杂种群体在主茎数、茎粗、商品薯率、蛋白质含量等性状上存在极显著差异,在单株产量、单株结薯数、平均单薯重、匍匐茎长度、生育期、比重、还原糖含量等性状上存在显著差异;双亲互作效应仅在块茎比重上表现为极显著差异。配合力效应估算结果表明,同一性状的一般配合力效应值在不同亲本间差异较大,并且同一性状的特殊配合力效应值在不同组合间差异亦较大。本试验结果还表明,栽培种的早熟性能有效地克服马铃薯野生种Solanum demissum所具有的匍匐茎长、结薯晚等野生性状。
     应用细胞遗传效应分析方法,对正反交两种组配类型的回交一代群体的遗传参数的分析结果表明,亲本的细胞质效应、组合的细胞核效应及质核互作效应均对后代群体有显著的遗传效应。亲本的细胞质遗传效应在所有测试性状上均表现出极显著的差异;组合的细胞核效应除在株高、主茎数、芽眼深度、比重等4个性状上不显著外,其他9个被测性状的差异均达极显著水平;组合的质核互作效应在株高、茎粗、单株产量、蛋白质含量等性状上存在显著差异,而在单株结薯数、还原糖含量、Vc含量等性状上存在极显著差异。同一性状的细胞质效应值在不同亲本间差异较大,并且同一性状的细胞核效应值和质核互作效应值在不同组合间差异亦较大。本试验结果还表明,亲本间正反交两种不同回交改良方式对后代群体主要农艺性的表现有较明显的影响。
     采用加性-显性遗传效应及贡献率分析模式,对改良回交二代群体的遗传参数的分析结果表明,株高、主茎数、单株结薯数、平均单薯重、匍匐茎长度、蛋白质含量、还原糖含量、Vc含量和芽眼深度等性状的遗传主要受基因加性效应控制,可通过早代选择来改良这些性状。而生育期和块茎比重的加性方差比率低于其显性方差比率,表明改良此类性状时应考虑利用其杂种优势的作用。所有测试性状对商品薯率的表现型方差贡献率CRP(C→T)不同。在所有测试的农艺性状中,除茎粗、单株产量对商品薯率的加性贡献率不显著外,其他11个性状对商品薯率的加性贡献率CRA(C→T)均达1%显著水平,并且单株结薯数、平均单薯重、比重、蛋白质含量、还原糖含量、Vc含量、生育期等性状对商品薯率的加性贡献率CRA(C→T)均高于其对表现型的贡献率。通过对平均单薯重、单株结薯数的间接选择可有效改良回交二代群体的商品薯率;所有测试性状对商品薯率的显性贡献率CRD(C→T)不同,选择生育期、茎粗显性效应高的组合,容易获得较高的商品薯率。
     根据对回交群体的遗传分析和不同改良方法的应用,提出了加速种间杂种群体的改良策略,以及提高马铃薯种间杂交育种效率的方法,可供参考。
Narrow genetic background of cultivated potato (S. tuberosum) is crucial constraint for cultivar improvement, which has been testified by breeding practices all around the world. Fortunately, plenty of primal cultivated species and wild species of potatoes are still existed, which are potential germplasm for cultivar improvement and adopted gradually in potato breeding. As a valuable germplasm highly resistance to late blight, wild species, Solanum demissum, has been being used in potato breeding programs worldwide, by which good results were achieved. S. demissum (2n=72) originated from Mexico. About 200 cultivars related genetically with S. demissum were released worldwide. Except for resistance to late blight, S. demissum also possesses resistances to wart, scab, PVY, PVA, PLRV, and potato beetle, as well as high contents of protein and starch. It has been approved by breeding practices that S. demissum as a female parent can cross easily with cultivated species, and yield components such as more tubers and high specific gravity can be improved by 2~3 times of backcross by its hybrid progenies with cultivated varieties. However, cultivar improvement through crossing with wild species is time-consuming work. How to achieve favorable progresses in relative short time and speed up breeding procedure has been being hotspot attended by breeders.
     In this thesis, genetic parameters of progeny populations derived from 40 interspecies crosses were analyzed based on three crossing models. The purpose was to explore the effect of improvement of interspecies progeny population, find available methods for eliminating ill characters originated from wild species, and increase breeding efficiency through optimizing procedure of interspecies breeding. The final objective is to speed up breeding course of interspecies hybridization, and to increase efficiency of using wild species in cultivar improvement.
     The result showed that linkages and interactions of characters between cultivated species and wild species were lessened greatly by means of backcross hybrid population with cultivated varieties. Therefore, there is no any constraint for recombination of characters when S. demissum was used in conventional potato breeding programs.
     Correlations between some characters were inconsistent in various hybrid populations and backcross populations. The results indicated that correlation coefficients derived from one population cannot be used in others.
     By means of combining ability analysis, trial result from using the earliness of cultivated varieties to overcome long stolen and late tuberization of interspecific hybrid populations showed that significant variations at 0.01 level were found on mean single tuber weight, marketable tuber rate, length of stolen and variations at 0.05 level were found on yield per hill, tuber number per hill, maturity, specific gravity of tubers, protein content, vitamin content and reducing sugar content in cultivated varieties. Significant variations at 0.01 level were found on number of main stems, stem thickness, marketable tuber rate, and protein content, and significant variation at 0.05 level were found on yield per hill, tuber number per hill, mean tuber weight per hill, length of stolen, maturity, specific gravity and reducing sugar content in interspecific variety populations. Variation of parental interaction effects only was showed on tuber specific gravity significantly. General combining ability (GCA) value of the same character varied greatly among parents, and specific combining ability (SGA) value of the same character was also changeable among cross combinations. The result also showed that the earliness of cultivated varieties can overcome ill characters such as long stolen and late tuberization of wild species.
     Genetic parameters of first backcross populations derived from various crossing type were analyzed cytogenetically. The results showed that all effects brought by cytoplasm, nucleus, and interaction between cytoplasm and nucleus can be transferred into progenies obviously. Parental cytogenetic effects showed variation significantly in all characters tested. The nucleus effects of the combinations showed variations significantly in 9 characters tested except for plant height, number of main stems, reducing sugar and vitamin C content. Cytogenetic-nucleus interaction effects showed variation at 0.05 level on plant height, stem thickness, yield per hill, and protein content, showed variation at 0.01 level on tuber number per hill, reducing sugar and vitamin C contents. For the same character, effects aroused by cytoplasm and nucleus were varied dramatically among parental lines. Similarly, interaction effects of cytoplasm and nucleus for the same character were also varied greatly. Obvious genetic differences on progenies were found when a parental line used as male or female.
     Genetic parameters of the second backcross populations were analyzed based on the model of additive-dominant effect and contribution rate analysis. The results indicated that plant height, number of main stems, tuber number per hill, mean tuber weight, stolen length, protein content, reducing sugar content, vitamin C content and eye depth are mainly dominated by gene additive effects, which can be selected in early generations. The ratio of additive variances of maturity and specific gravity of tubers was less than dominant variances, which mean that heterosis would be available for those characters improvement. Contribution rate to phenotypic variances (CRP(C→T)) of marketable tuber rate of all characters tested were different. Except for stem thickness and yield per hill, additive contribution rate on marketable tuber rate (CRA(C→T)) of other 11 characters tested are all significant at 0.01 level, and CRA(C→T)of tuber number per hill, mean tuber weight, specific gravity, protein content, reducing sugar content, vitamin C content, and maturity were all higher than their CRP(C→T). Marketable tuber rate of the second backcross populations can be improved effectively by selecting mean tuber weight and tuber number per hill. Additive contribution rates to marketable tuber rate (CRD(C→T)) of all characters tested were also varied. Crosses selected based on maturity and stem thickness can easily improve marketable tuber rates.
     According to genetic analysis on backcross populations and application of various improving methods, strategy for accelerating the improving process of interspecific hybrid was made, by which breeding efficiency of interspecific hybridization can be increased.
引文
布卡索夫C M,卡美拉兹AЯ. 1983.马铃薯育种和良种繁育.李克来,唐洪明,李天然译.呼和浩特: 11~43.
    陈德鑫,潘重光. 1985.关于同源四倍体的基因分离.上海农学院学报. 3(1): 63~70
    程天庆. 1987.关于改进我国马铃薯育种工作的商榷.马铃薯杂志. 1(3): 32~36 高之仁. 1986.数量遗传学.四川大学出版社.
    巩秀峰,郝文胜,张颖力. 1999.马铃薯块茎干物质、还原糖含量与炸片质量的关系.陈伊里主编.中国马铃薯研究进展.哈尔滨:哈尔滨工程大学出版社,67~70
    巩秀峰,李文刚,王林萍等. 1992.马铃薯杂种群体的性状相关及其配合力分析.马铃薯杂志,6(2): 86~90
    哈里斯P M.1978.蒋先明,田玉丰,赵越等译. 1984.马铃薯改良的科学基础.农业出版社. 574~608
    赫乌斯托娃B B,雅什娜N M. 1973年,唐洪明,李克来译. 1981.马铃薯遗传学.北京:农业出版社. 117~137
    黑龙江省农业科学院马铃薯研究所. 1992.中国马铃薯栽培学.北京:中国农业出版社
    金黎平,孔德男,刘杰,段绍光,谢开云,卞春松,屈冬玉. 2008.二倍体马铃薯重要农艺
    性状配合力效应分析.马铃薯产业—更快更高更.哈尔滨工程大学出版社,174~181
    金黎平,屈冬玉,纪颖彪. 1999.马铃薯加工型品种的选育技术.陈伊里主编.中国马铃薯研究进展.哈尔滨:哈尔滨工程大学出版社. 1~6
    金黎平,朱明凯,程天庆. 1988.马铃薯植株性状遗传相关及遗传通径系数分析.马铃薯杂志. 2(4): 201~207
    库丽霞,陈彦惠,吴连成等.2006.玉米秸秆热值性状杂种优势及配合力分析.作物学报. 32(2):228~231
    李飞,雷尊国,刘杰,金黎. 2008.野生马铃薯材料苗期耐冻性鉴定.中国蔬菜. (12):6~10
    李军. 1995.马铃薯有关性状与淀粉含量的相关性分析.黑龙江农业科学. 4: 18~20.
    李文滨,王金陵,杨庆凯. 1990.大豆种间杂种后代自交与回交群体数量性状的遗传分析.大豆科学. 9(2): 89~102
    联合国粮农组织,粮农统计数据库,http://faostat.fao.org
    梁德霖,刘淑华,姚裕琪,谢智明. 1995.马铃薯高淀粉品种的选育.华北农业学报. 10:30~33
    梁慧珍,李卫东,方宣钧等.2005.大豆异黄酮及其组分含量的配合力和杂种优势.中国农业科学,38(10):2147~2152
    刘梦芸,宣俊亮,赵富宝,门福义,蒙美莲. 1994.马铃薯高淀粉生理基础的研究—块茎组织结构与淀粉积累的关系.马铃薯杂志. 8(3): 129~133
    刘淑华,姜兴亚,梁德林.1989.马铃薯高淀粉育种初世代比重相关性分析和测选方法的研究. 马铃薯杂志.3:112~114.
    刘淑华,梁德霖,姜兴亚,田敏娟,雷虹. 1999.马铃薯高淀粉育种的淀粉含量测定和利用研究.陈伊里主编.中国马铃薯研究进展.哈尔滨:哈尔滨工程大学出版社,26~30.
    刘淑华. 1999.高淀粉品种“内薯7号”的选育与利用.陈伊里主编.中国马铃薯研究进展.哈尔滨:哈尔滨工程大学出版社. 42~44.
    刘喜才,张丽娟. 2007.马铃薯种质资源描述规范和数据标准.北京:中国农业出版社. 51~73
    吕文河,秦昕,王凤义等. 2003.中国马铃薯野生种近缘栽培种利用研究进展.中国马铃薯发展与产业化开发.哈尔滨:哈尔滨工业大学出版社. 83~86
    马育华. 1982.植物育种的数量遗传基础.江苏江苏科学技术出版社. 376~426
    门福义,刘梦芸. 1995.马铃薯栽培生理.北京:中国农业出版社. 300~346
    莫惠栋. 1982.世代平均数的遗传分析Ⅰ.加性-显性模型的基因效应估计.江苏农学院学报. 5(4): 43~49
    纳添仓,季克震. 2001.加工型马铃薯品种的性状要求及育种方法.青海农林科技. 318~19
    牛志敏,兰青义. 2001.马铃薯炸条、炸片资源材料筛选.中国马铃薯. 15(3): 156~158
    盛万民,曹淑敏,李成军. 2003.马铃薯炸片品种克新14号选育及利用.陈伊里主编.中国马铃薯研究与产业开发.哈尔滨:哈尔滨工程大学出版社,352~353.
    盛万民,王凤义,牛志敏,曹淑敏,张丽娟,石瑛,田兴亚,陈伊礼,吕文河. 2001.马铃薯
    二倍体栽培种与普通栽培种的四倍体杂种品质性状育种价值的研究.中国马铃薯. 15(2): 72~77
    盛万民. 1997.从马铃薯野生种向普通栽培种转移PVY抗性基因的研究.中国农学通报. 13(5):54~55
    孙慧生,马伟青,王培伦,杨元军,董道峰,黄传红. 2000.加速马铃薯加工品种选育发展马铃薯炸片炸条加工业.陈伊里主编.面向21世纪的中国马铃薯产业.哈尔滨:哈尔滨工程大学出版社. 29~33
    孙慧生. 1976.马铃薯育种和良种繁育.北京:农业出版社. 109~131
    孙慧生. 2003.马铃薯育种学.北京:中国农业出版社. 79~104
    唐启义,冯明光. 2002.实用统计分析及其DPS数据处理系统.北京:中国农业出版社. 271~292
    田丰,李渝珍,马占兰. 1997.马铃薯淀粉含量测定方法的比较研究.青海农林科技. 1: 52~54.
    王凤义. 2002.马铃薯不同组合类型产量性状分离规律的研究.哈尔滨:东北农业大学.博士学位论文.
    王健康,盖钧镒.1998.数量性状主基因+多基因混合遗传的P1、P2、F1、F2和F3联合分析方法.作物学报.24(6):651~659
    肖志敏,李景华,王凤义. 1982.马铃薯近缘栽培种种间杂种后代主要经济性状的配合力分析.马铃薯杂志. 2:69~72.
    谢开云,郭志乾,王立英,金黎平,卞春松,段绍光,屈冬玉. 2003,高淀粉马铃薯品种块茎大小与淀粉含量之间的关系. 17(5):中国马铃薯. 280~283.
    谢开云,屈冬玉,金黎平,庞万福. 2008.中国马铃薯生产与世界先进国家的比较.马铃薯产业—更快更高更.哈尔滨工程大学出版社,1~6
    徐欣,连勇. 1997,马铃薯块茎发育机理的研究.马铃薯杂志. 11 (2): 115~119.
    许庆芬,盛万民,陈伊里. 2008.马铃薯早熟组合重要农艺性状分离趋势.东北农业大学学报. 39(5): 6~10
    宣俊杰,蔡兴奎,郭鲜蒲,何礼,柳俊. 2006.马铃薯体细胞杂种主要形态性状和农艺性状鉴定,中国马铃薯,20(5 ): 261~264
    杨万林,吴毅歆,李先平,阎发祥,隋启君. 2004.马铃薯品种块茎性状的遗传分析.中国马铃薯. 18 (1): 19~26.
    杨万林,吴毅歆,李先平,阎发祥,隋启君. 2004.马铃薯块茎8个主要性状的配合力分析.西北农林科技大学学报(自然科学版). 32(8): 27~33
    张丽娟. 2003.利用人工加倍技术提高马铃薯种间杂交结实率初探.中国马铃薯. 17(1):24~25
    张荣,王一航,文国宏,李高峰. 2008.马铃薯主要块茎性状杂种优势及配合力分析.中国马铃薯. 22(2): 81~84
    赵庆媛,姜润田,杨丽娟. 1996.马铃薯品种淀粉含量和大中薯比率稳定性分析.吉林农业科学. 4:17~19.
    中国农业统计年鉴. 2007.北京:中国统计出版社.
    朱军,季道藩,许馥华. 1993.作物品种间杂种优势遗传分析的新方法.遗传学报. 20(3): 262~271
    朱军. 1994.广义遗传模型与数量遗传分析新方法.浙江农业大学学报. 20(6): 551~559
    朱军. 1997.遗传模型分析方法.北京:中国农业出版社
    Austin S,Baer M,Helgeson J P. 1985. Transfer of resistance to potato leaf roll virus from Solanum brevidens into Solanum tuberosum by somatic fusion. Plant Sci. (39): 75~82
    Austin S,Lojkowska E,Ehlenfeldt M K. 1988. Fertile interspeccific hybrids of Solanum:A novel source of resistance to Erwinia soft rot. Phytopathology. (78): 1216~1220
    Barone A,Sebastiano A,Carputo D,della Rocca F,Frusciante L. 2001. Molecular marker-assisted introgression of the wild Solanum commersonii genome into the cultivated S. tuberosum gene pool. Theor Appl Genet. 102:900~907
    Bendahmane A,Kanyuka K,Baulcombe D C. 1999. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell. 11:781~791
    Bonierbale M W,Plaisted R L,Tanksley S D. 1993. A test of the maximum heterozygosity hypothesis using molecular markers in tetraploid potatoes. Theor Appl Genet. 186:481~491
    Bradshaw J E,Ramsay G. 2005. Utilisation of the Commonwealth Potato Collection in potato breeding. Euphytica. 146:9~19
    Bradshaw J E,Wastic R L,Stewart H E. 1996. Assessing general combining ability for gangrene resistance by means of a glasshouse seedling test. Potato Res. 39(2): 179~183
    Brown C R. 1993. Outcrossing rate in cultivated autotetraploid potato. Am Potato J. 70: 725–734
    Brown J, Caligari P D S. 1989. Cross prediction in a potato breeding programme by evaluation of parental material. Theor.Appl.Genet. 77:246~252
    Buso J A,Boiteux L S,Peloquin S J. 1999. Comparison of haploid Tuberosum—Solanum chacoense versus Solanum phureja—haploid Tuberosum hybrids as staminate parents of 4x–2x progenies evaluated under distinct crop management systems. Euphytica. 109: 191~199
    Caligari P D S,Powell W,Liddell K,De Maine M J, Swan G E L. 1998. Methods and Strategies for detecting Solanum Tuberosum dihaploids in interspecific crosses with S. phureja.Ann. Apple Biol. 112:323~328
    Camadro E L,Carputo D,Peloquin S J. 2004. Substitutes for genome differentiation in tuberbearing Solanum: interspecific pollen-pistil incompatibility, nuclear-cytoplasmic male sterility, and endosperm. Theor Appl Genet. 109: 1369~1376
    Carputo D,Barone A. 2005. Ploidy level manipulations in potato through sexual hybridisation. Ann Appl Biol. 146: 71~79
    Carroll C P,De Maine M J. 1989. The agronomic value of tetraploid F1 hybrids between potatoes of Group Tuberosum and Group Phureja/Stenotomum. Potato Res. 32: 447~456
    Carroll C P. 1982. A mass-selection method for the acclimatization and improvement of edible diploid potatoes in the United Kingdom. J Agr Sci. 99: 631~640
    Chandra S,Huaman Z,Hari Krishna S,Ortiz R. 2002. Optimal sampling strategy and core collection size of the Andean tetraploid potato based on isozyme data-a simulation study. Theor Appl Genet.104: 1325~1334
    Chase S S. 1963. Analytic breeding in Solanum tuberosum L.—a scheme utilizing parthenotes and other diploid stocks. Can J Genet Cytol. 5: 359~363
    Chase S S. 1969. Analytic breeding in Solanum tuberosum L.-A scheme utilizing parthenotes and other diploid stocks. Can. J. Genet. Cytol. 5: 359~363
    Cubillos A G, Plaisted R F. 1976. Heterosis for yield in hybrids between S. tuberosum spp. Tuberosum and S. tuberosum spp. andigena. Am Potato J. 53: 143~150
    Davidson M M,Butler R C,Wratten S D, Conner A J. 2004. Resistance of potatoes transgenic for a cry1Ac9 gene, to Phthorimaea operculella (Lepidoptera: Gelechiidae) over field seasons and between plant organs. Ann Appl Biol. 145: 271~277
    Davies H V. 1998. Prospects for manipulating carbohydrate metabolism in potato tuber. Aspects Appl Biol. 52: 245~254
    De Jong H,Tai G C C. 1977. Analysis of tetraploid-diploid hybrids in cultivated potatoes. Potato Res. 20: 110~121
    De Jong H. 1981. Inheritance of russeting in cultivated diploid potatoes. Potato Res. 24: 309~313
    De, Maine M J. 1982. An evaluation of the use of dihaploid and unreduced gametes in breeding for quantative resistance to potato pathogens. J.Agr.Sci.Camb. 99: 79~83
    Duncan D R,Hammond D,Zalewski J,Cudnohufsky J,Kaniewski W,Thornton M, Bookout J T,Lavrik P,Rogan G J,Feldman-Riebe J. 2002. Field performance of transgenic potato,with resistance to Colorado potato beetle and viruses. HortScience. 37: 275~276
    Gaur p C,Gopal j,Rana M S. 1983. Combining ability for yield,its componerts and tuber dry matter in potato. Indian j. Agr. 876~879
    Gaur P C,Gupta P K,kishore H. 1978. Genetic components of tuber yield and quality characters in potato. J. Indian potato Assoc. 5:32~37
    Gibson R W. 1971. Glandular hairs providing resistance to aphids in certain wild potato species. Ann. Appl. Biol. 68: 113–119
    Glendinning D R. 1969. The performance of progenies obtained by crossing Groups Andigena and Tuberosum of Solanum tuberosum. Eur Potato J. 12: 13~19
    Glendinning D R. 1976. Neo-Tuberosum: new potato breeding material. 4. The breeding system of Neo-Tuberosum,and the structure and composition of the Neo-Tuberosum gene pool. Potato Res. 19: 27~36
    Gopal J,Oyama K. 2005. Genetic base of Indian potato selections as revealed by pedigree analysis. Euphytica 142: 23~31
    Gopal J. 1997. Progeny selection for agronomic characters in early generations of a potato breeding programme. Theoretical and Applied Genetics. 95: 307~311
    Gopal J. 1998. General combining ability and its repeatability in early generations of potato breeding programmes. Potato Res. 41(1): 21~28
    Gopal J. 1998. Heterosis and combining ability analysis resistance to early blight (Alternariasolani) in potato. Potato Res. 41(4):311~317
    Graham M K, Dionne L A. 1961. Crossability relationships of certain diploid Mexican Solanum species. Canad. J. Genet. Cytol. 3: 121–127
    Graham M K,Niederhauser J S,Servin L. 1959. Studies on fertility and late blight resistance in Solanum bulbocastanum Dun. in Mexico. Canad. J. Bot. 37: 41–49
    Hawkes J G,Francisco-Ortega J. 1993. The early history of the potato in Europe. Euphytica. 70: 1~7
    Hawkes J G. 1990. The potato: evolution, biodiversity and genetic resources. Belhaven Press. London
    Haynes K G,Christ B J. 1999. Heritability of resistance to foliar late blight in a diploid hybrid population of Solanum phureja—Solanum stenotomum. Plant Breed. 118: 431~434
    Haynes K G,Haynes F L,Henderson W R. 1989. Heritability of specific gravity of diploid potato under high temperature growing conditions. Crop sci. 29: 622~625
    Hemmsen J G Th,Sonneveld J,Vreugden D,hil Van Ballegooijen D,staas-Ebregt E. 1988.
    Genetics of self-compatibility in dihaploids of solanum tuberosum L. 5. The S- genotype of tetraploid potato cultivar. Gineke. Euphytica. 27:385~388
    Hermandstal S A, Peloquin S J. 1985. Germplasm enhancement with potato haploid. J.Hered. 76: 463~467
    Hermsen J G T,Ramanna M S. 1973. Double-bridge hybrids of Solanum bulbocastanum and cultivars of Solanum tuberosum. Euphytica. 22: 457~466
    Hermsen J G Th,verdenius J. 1973. Selection from solanum tuberosum Group Phureja of genotypes combining high-frequency haploid induction with homozygosity for embro-spot. Euphytica. 22:244~259
    Hijmans R J. 2001. Global distribution of the potato crop. Am J Potato Res. 78: 403~412
    Hilali A,Lawer F I,Veilleux R E. 1988. Effect of environment and direction of hybridization an genetic variability in two diploid potato populations.potato Res. 31: 247~256
    Hillis D M,Bull J J. 1993. An empirical test of bootstrapping as a method for assessing confidencein phylogenetic analysis. Syst. Biol. 42:182~192
    Hosaka K. 2004. Evolutionary pathway of T-type chloroplast DNA in potato. Am J Potato Res. 81: 153~158
    Hougas R W,Peloquin S J. 1958. The potential of potato haploid in breeding and genetic research. Am.Potato J. 35: 701~707
    Huaman Z,Hoekstra R,Bamberg J B. 2000. The inter-genebank potato database and the dimensions of available wild potato germplasm. Am J Potato Res. 77: 353~362
    Huaman Z,Ortiz R,Gomez R. 2000. Selecting a Solanum tuberosum subsp. andigena core collection using morphological,geographical,disease and pest descriptors. Am J Potato Res. 77: 183~190
    Huaman Z,Ortiz R,Zhang D,Rodriguez F. 2000. Isozyme analysis of entire and core collections of Solanum tuberosum subsp. andigena potato cultivars. Crop Sci. 40: 273~276
    Huaman Z,Spooner D M. 2002. Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). Am J Botany. 89: 947~965
    Irikura Y. 1975. Induction of haploid plants by anther culture in tuber-bearing species and nterspecific hybrids of Solanum. Potato Res. 18: 133~140
    Iwanaga M,Jatala P,Oritiz R,Guevara E. 1988. Use of in pollen to transfer resistance to root-knot nematodes into cultivated 4x potatoes. J.Am.Soc.Hort. Sci. 114: 1008~1013
    Jacobsen T L,Jansky S H. 1989. Effects of pre-breeding wildspecies on tuberization of solanum tuberosum haploid-wildspecies hybrids. Am.Potato J. 66: 803~811
    Jansen G,Flamme W,Schiller J K,Vandrey M. 2001. Tuber and starch quality species and cultivars of wild and cultivated potato. Potato Res. 44: 137~146
    Jansky S H,Yerk G L,Peloquin S J. 1990. The use of potato haploids to put 2x wild species germplasm into a usable form. Plant Breed. 104: 290~294
    Jansky SH,Davis GL, Peloquin SJ. 2004. A genetic model for tuberization in potato haploid-wild species hybrids grown under long-day conditions. Am J Potato Res. 81: 335~339
    Jones R A C. 1985. Further studies on resistance-breaking strains of potato virus X. Plant Pathol. 34: 182~189
    Kalazich J,Holuigue L. 2000. Expression of the chicken lysozyme gene in potato enhances resistance to infection by Erwinia carotovora subsp. atroseptica. Am J Potato Res. 77: 191~199
    Keijzer-van derstoel M C,Pegels-Van Deelen M W,Neel A E F. 1991. Analysis of the breeding value of diploid potato clones comparing 2x-2x and 4x-2x crosses. Euphytica. 52: 131~136
    Kim J H, Joung H, Kim H Y,Lim Y P. 1998. Estimation of genetic variation and relationship in potato (Solanum tuberosum L.) cultivars using AFLP markers. Amer. J. Potato Res. 75: 107–112.
    Knight T A. 1807. On raising of new and early varieties of the potato (Solanum tuberosum). Transactions of the Horticultural Society of London. 1: 57~59
    Koopman W J M,Zevenbergen M J,Van den Berg R G.(2001)Species relationships in Lactuca s.l.(Lactuceae,Asteraceae)inferred from AFLP fingerprints. Amer. J. Bot. 88:1881–1887.
    Lang J. 2001. Notes of a potato watcher. Texas A&M University Press,College Station, Texas McGregor C E,van Treuren R,Hoekstra R,van Hintum T J. 2002. Analysis of the wild potato germplasm of the series Acaulia with AFLPs: implications for ex situ conservation. Theor Appl Genet. 104: 146~156
    Lara-Cabrera S, Spooner D S. 2004. Taxonomy of Mexican diploid wild potato(Solanum sect. Petota) species: morphological and microsatellite data. Monogr. Syst. Bot. Missouri Bot. Gard. (in press).
    Lees A K, Bradshaw J E. 2001. Inheritance of resistance to Fusarium sulphureum. Potato Res. 44(2): 147~152
    Mace E S, Gebhardt C G. Lester R N. 1999. AFLP analysis of genetic relationships in the tribe Datureae(Solanaceae). Theor. Appl. Genet. 99: 634~641
    Mace E S, Lester R N, Gebhardt C G. 999. AFLP analysis of genetic relationships among the cultivated eggplant,Solanum melongena L.,and wild relatives (Solanaceae). Theor. Appl.Genet. 99: 626~633.
    Maris B. 1989. Analysis of an incomplete diallel cross among three ssp. tuberosum varieties and seven long-day adapted ssp. andigena clones of the potato (Solanum tuberosum L.). Euphytica. 41: 163~182
    Maris B. 1990. Comparision of diploid and tetraploid potato families derived from Solanum phureja×dihaploid S.tuberosum hybrids and their vegetatively doubled counterparts. Euphytica. 46: 15~34
    Mchale N A,Lauer F I. Inheritance of tuber traits from phureja-tuberosum hybrids and phureja in 4x-2x crosses in potatoes. Am. Potato J. 1981. 58: 365~374
    Mendiburu A O,Peloquin S J. 1971. High yielding tetraploids from 4x-2x and 2x-2x matings. Am.Potato J. 48: 300-301
    Mendoza H A,Haynes F L. 1973. Some aspects of breeding and inbreeding in potatoes. American Potato Journal. 50: 216~222
    Mendoza H A,Haynes F L. 1974. Genetic relationship among potato cultivars grown in the united States. HortScience. 9: 328~330
    Mendoza H A,Haynes F L. 1974. Geneticsm basis of heterosis for yield in autotetraploid potato. Theor.Appl.Genet. 45:21~25
    Mok D W S,Peloquin S J. 1975. Breeding value of 2n pollen(diplandroids)in tetraploid×diploidc crosses in potatoes. Theor.appl.Genet. 46: 307~314
    Mullin R,Lauer F I. 1966. Breeding behavior of F1 and inbred potato clones. Proc. Am. Soc. Hort.Sci. 89: 449~455
    Naess S K,Bradeen J M,Wielgus S M,Haberlach G T,McGrath J M,Helgeson J P. 2000.
    Resistance to late blight in Solanum bulbocastanum is mapped to chromosome 8. Theor Appl Genet. 101: 697~704
    Neele A E F,Nab H J,Loues K M. 1991. Identification of superior parents in a potato breeding programme. Theoretical and Applied Genetics. 89(2): 264~272
    Ochoa Eng C. 1979. Collection and taxonomy of Andean wild potatoes (Peru and Bolivia). In :Report of planning conference of CIP on the exploration,taxonomy and maintenance of potato germplasm. Peru,Lima. 114~125
    Ortiz R,Iwanaga M,Mendoza H A. 1981. Combining ability and parental effects in 4x-2x crosses for potato breeding. Potato Res. 31: 643~650
    Ortiz R. 1997. Breeding for potato production from true seed. Plant Breeding Abstracts. 67: 1355~1360
    Osusky M,Osuska L,Kay W,Misra S. 2005. Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2. Theor Appl Genet. 111: 711~722
    Paal J,Henselewski H,Muth J,Meksem K,Menendez C M,Salamini F,Ballvora A,Gebhardt C (2004) Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach. Plant J. 38: 285~297
    Pereira A,Stiekema W,Allefs S. 2003. An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J. 36: 867~882
    Phillips M S,Wilson L A,Forrest J M S. 1979. General and specific combining ability of potato parents for resistance to the white cyst nematodes(Globoderapallida). Agric Sci UK. 92: 255~256
    Plaisted R L,Hoopes R W. 1989. The past record and future prospects for the use of exotic potato germplasm. Am Potato J. 66: 603~627
    Plaisted R L,Sanford L,Federer W T, kehr A E, Peterson C L. 1962. Specific and general combining ability for yield in potato. Am.Potato J. 39: 185~197
    Plaisted R L. 1957. Some components of the variance of specific gravity of potatoes. Proc.Am. Soc.Hort.Sci. 70: 391~396
    Raker C M,Spooner D M. 2002. Chilean tetraploid cultivated potato,Solanum tuberosum, is distinct from the Andean populations: microsatellite data. Crop Sci. 42: 1451~1458
    Serrano C,Arce-Johnson P,Torres H,Gebauer M,Gutierrez M,Moreno M,Jordana X, Venegas A,Simmonds NW. 1997. A review of potato propagation by means of seed,as distinct from clonal propagation by tubers. Potato Res. 40: 191~214
    Smilde W D,Brigneti G,Jagger L,Perkins S,Jones J D G. 2005. Solanum mochiquense chromosome IX carries a novel late blight resistance gene Rpi-moc1. Theor Appl Genet. 110: 252~258
    Spooner D M,McLean K,Ramsay G,Waugh R,Bryan G J. 2005. A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc Natl Acad Sci U S A. 102: 14694~14699
    Spooner D M,Nunez J,Rodriguez F,Naik P S,Ghislain M. 2005. Nuclear and chloroplast DNA reassessment of the origin of Indian potato varieties and its implications for the origin of the early European potato. Theor Appl Genet. 110: 1020~1026
    Stewart H E,Wastie R L,Bradshaw J E. 1992. Inheritance of resistance to late blight in foliage and tubers of progenies from parents differing in resistance. PotatoRes. 35: 313~319
    Tai G C C,De Jong H. 1980. Multivariate analyses of potato hybrids.Ⅰ. Discrimination between tetraploid-diploid hybrid families and their relationship to cultivars. Can J Genet Cytol. 22: 227~235
    Tai G C C,Tarn T R. 1980. Multivariate analyses of potato hybrids.Ⅱ. Discrimination between tuberosum-andigena hybrid families and their relationship to cultivars. Can J Genet Cytol. 22: 279~286
    Tai G C C. 1976. Estimation of general and specific combining abilities in potato. Can. J. Genet. Cytol. 18:463~470
    Tarn T R,Tai G C C. 1983. Tuberosum - Tuberosum and Tuberosum- Andigena potato hybrids: comparisons of families and parents, and breeding strategies for Andigena potatoes in long-day temperate environments. Theor Appl Genet. 66: 87~91
    Tek A L,Stevensen W R,Helgeson J P,Jiang J. 2004. Transfer of tuber soft rot and early blight resistances from Solanum brevidens into cultivated potato. Theor Appl Genet. 109: 249~254

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700