基于同位素技术的鄂尔多斯白垩系盆地北区地下水循环及水化学演化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,在鄂尔多斯盆地发现了丰富的矿产资源,为当地社会经济的发展带来了新的契机。然而,受干旱少雨的大陆性季风气候影响,该地区水资源短缺,地表水尤其匮乏,地下水将成为当地社会经济发展的主要水源。为了使有限的水资源得到充分合理的利用,发挥出最大的效益,从而保证社会经济的持续稳定发展,需要制定合理的水资源开发利用方案。然而,相对滞后的地下水资源勘查与研究程度,无法满足人们对地下水资源的具体开发方式、可开发利用程度以及环境影响评价的需求。因此,有必要了解当地大气降水、地表水和地下水之间的转化关系,研究地下水循环模式及其水化学形成机理,从而确定水资源的价值和有利开发地段。
     本文在分析鄂尔多斯白垩系盆地北区大气降水、地表水和地下水的水化学、同位素分布及变化规律的基础上,揭示了研究区的地下水循环模式;然后综合利用饱和指数法、离子组合及比值法、S、Sr同位素技术和反向水文地球化学模拟技术对地下水化学形成作用进行了分析,揭示了研究区地下水水化学演化规律和形成机理。
Groundwater in the Cretaceous Basin is vital to the construction of the energy and chemical industry base, and is an important factor which holds out coordinate development of the society and economy. The construction of groundwater circulation mode and reasonable evaluation of groundwater resources can provide useful guidance and is helpful to the allocation of water resources. Meantime, the groundwater circulation process and its value in use then can be found according to the groundwater circulation mode. Therefore, the groundwater circulation mode of the northern cretaceous basin and the hydrochemical evolution mechanism are focused in this thesis, which can provide basis for the groundwater utilization.
     The groundwater is in close relationship with local setting throughout the long geologic history, when moving in the stratum and forms the typical characteristics of hydrochemistry and isotopes which can provide important evidence for groundwater circulation. Therefore, the distribution characteristics of hydrochemical field and D、18O isotopes of different water bodies were firstly analyzed as well as the variation of TDS, D and 18O isotopes along chief rivers to find out the dynamitic connections of precipitation, surface water and groundwater. Then the ages of groundwater in different aquifers and their sources were calculated using 3H, CFCs and 14C to ascertain the groundwater flow direction and its circulation rate. The typical profile (Ⅱ-Ⅱ’) was chosen to proceed a groundwater mathematic simulation. In the end, the groundwater circulation mode in the research field was constructed.
     The groundwater hydrochemical field is formed after long history with various characteristics and formation mechanism. Therefore, it’s necessary to take advantages of several different methods to conclude a correct result. This thesis applied the mineral saturation index method, the ion combination and ratio method and the isotopic hydrologic method to analyze the hydrochemical formation effects and the sources of partial hydrochemical constituents. Then two samples on the same flow path were selected to analyze the geochemical actions with the combination of the result from the groundwater flow field model of the typical profile.
     The main conclusions of this thesis are stated as follow:
     1. The sources of groundwater and surface water and relationships between tehm are found out based on the analysis of hydrochemic components, D and 18O in these waters.
     The surface water and groundwater originate both from precipitation and are both affected by evaporation. The river is mainly recharged by groundwater which can be concluded from the contribution variation of hydrochemistry,δD andδ18O isotopes along the river flow direction. The portion of modern precipitation in groundwater decreases with depth revealed from CFCs isotopes.
     2. The special distribution characters of groundwater ages are analyzed by determining the shallow groundwater ages using the 3H and CFCs isotopes and theages of groundwater in Huanhe aquifer and Luohe aquifer using 14C.
     Age of shallow groundwater within the circulation depth of modern water is very small concluded from the calculation of 3H and CFCs. The age of shallow young groundwater is less than 20a in the area around the watershed and increases to morea than 50a along the flow line to the boundary and rivers. The 14C age of groundwater in Huanhe and Luohe aquifers is less than 5 000 years old and increases towards the rivers and boundaries in eastern, western and northern direction. The groundwater age is generally more than 10 000 years in the discharging area. The distributing characters of groundwater in Luohe aquifer is similar to the Huanhe aquifer, but the the area of groundwater with age less than 5 000 years in Huanhe aquifer is bigger than that in Luohe aquifer. The distributing rule reflects that the recharge time is earlier in Luohe aquifer and the groundwater flow rate is slower.
     3. Based on the analysis of geologic and hydrogeologic conditions, the groundwater circulation mode is estabilished according to the isotopic and hydrochemical characters on the profile. The groundwater circulation system can be divided into the local circulation system、the intermediate circulation system and the regional circulation system based on the circulation depth.
     The local circulation system arises between mesa and low-lying vicinity (river valley, lakes, and depressions) including Cenozoic aquifer system and shallow Cretaceous aquifer system (embedding depth within 100m), with circulation depth up to 100m and strong groundwater movement. In the research field, there are some lakes in different scales recharged by the local circulation system, which protects the lakes from being dry up.
     The intermediate circulation system underlies under the local circulation system with larger incidence, depth and circulation depth up to 600m. Precipitation is the main source in this circulation system, secondly the infiltration from the local circulation system. The main rivers and relatively larger lakes in the area are the discharge datum plane of the intermediate groundwater system. The regional circulation system underlies under the intermediate circulation system with quite slow groundwater runoff, and the circulation depth is between 500 to 1000m until it reaches the bottom of Cretaceous stratum. The recharge mainly depends on the precipitation in the Etuoke-Sishililiang area and lateral seepage from middle circulation system. And the groundwater discharges to the regional rivers and lakes (such as Dusituhe River, Wudinghe River and Hongjiannao Lake).
     4. The sources of main ions in groundwater is analyzed by applying the chemical components and the tracing characters of Sr and S isotopes.Then the regional representive flow path was selected and the hydrochemical path simulation model is constructed by analyzing the main factors effecting the hydrochemical evolution. At last, the main effects controlling the formation of hydrochemical and the evolutionary process in study area are found out.
     On the basis of water circulation mode research, this thesis synthesizes the application of the saturation index method, ion combination and ratio method, Sr、S isotopes technique and anti-hydrochemical path simulation to analyze the groundwater chemical formation effect, find out the basic discipline and formation mechanism of groundwater chemical evolution in the northern Cretaceous Basin of Ordos.
     (1).Lixiviation, evaporation, the cation alternative asorption influences and the mixing influence are the chief geochemistry actions controlling the groundwater hydrochemical characteristics in the northern Cretaceous Basin of Ordos.
     (2). The chief actions on the simulated flow path are the precipitation of calcite, dolomite, the solution of gypsum and potassium feldspar, the cation exchange of Ca-Na, and the solution of NaCl or plagioclase.
     Based on the conclusions mentioned above, the groundwater resource can be considered to be the chief source for the energy construction, and the water supply field can be designed in the Wudinghe-Wulanmulunhe groundwater system with good groundwater quality and fast groundwater circulation.
引文
蔡德陵,李红燕,周卫建,等.无定河流域碳氮稳定同位素研究[J].地球化学,2004,33(6):619-626.
    陈宗宇,等.从黑河流域地下水年龄论其资源属性[J].地质学报,2004,(4):560-567
    丁继红.国外地下水模拟软件的发展现状与趋势[J].勘察科学技术,2002,(1):37-42.
    董维红.反向水文地球化学模拟技术在鄂尔多斯白垩系自流水盆地深层地下水14C年龄校正中的应用[M].吉林大学,2005.
    董悦安, 何明, 蒋崧,等. 河北平原第四系深层地下水36Cl同位素年龄的研究[J]. 地球科学——中国地质大学学报,2002,27(1):105-109.
    关秉钧. 我国大气降水中氚的数值推算[J].水文地质工程地质,1983,(4).
    郭永海,刘志强,吕川河,等.一种新的地下水年龄示踪剂——CFC[J].水文地质工程地质,2002,(6):30-32.
    郭永海,刘淑芬,苏锐,等.高放废物处置库预选场地水文地球化学模拟[J].地质与勘探,2003,39(6):64-67.
    郭永海,王驹,王志明,等.CFC在中国高放废物处置库预选区地下水研究中的应用[J].地球科学,2006,27(3):253-258.
    侯光才,刘方,王永和,张茂省.鄂尔多斯盆地地下水勘察报告[M].西安:西安地质矿产研究所,2006.
    侯光才,苏小四,林学钰,等.鄂尔多斯白垩系地下水盆地天然水体环境同位素组成及其水循环意义[J].吉林大学学报(地球科学版),2007,37(2):255-260.
    郎赟超,刘丛强,韩贵琳,赵志琦,李思亮.贵阳市区地表地下水化学与锶同位素研究[J].第四纪研究,2005,25(5):655-662.
    李振拴. 用水化学方法计算岩溶地下水储留时间[J]. 中国煤田地质, 1995, 7(3):55-58.
    林学钰,王金生,等.黄河流域地下水资源及其可更新能力研究[M].郑州:黄河水利出版社,2006.
    马致远,范基姣.陕西渭北东部岩溶地下水中硫酸盐的形成[J].煤田地质与勘探,2005,33(3):45-48.
    秦大军.影响地下水CFCS定年的主要因素[J].自然科学进展,2004,14(10):1199-1202
    秦大军.地下水CFC定年方法及应用[J].地下水,2005,27(6):435-437.
    钱会,窦妍,李西建,等.都思兔河氢氧稳定同位素沿流程的变化及其对河水蒸发的指示[J].水文地质工程地质,2007,(1):107-112.
    钱云平,林学钰,秦大军,王玲.应用同位素研究黑河下游额济纳盆地地下水[J].干旱区地理,2005,28(5):574-580.
    瞿思敏,包为民,石朋,等.同位素流量过程线分割研究进展与展望[J].水电能源科学,2006,24(1):80-83.
    孙继朝, 贾秀梅.地下水年代学研究[J].地球学报,1998,19(4):383-386.
    唐启义,冯明光. 实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002.
    万军伟,刘存富,晁念英,等. 同位素水文学理论与实践[M].武汉:中国地质大学出版社,2003.
    王大纯.水文地质学基础[M].北京:地质出版社,2005.
    王杰,王文科,田华,等.环境同位素在三水转化研究中的应用[J]. 工程勘察,2007,(3):31-39.
    王丽,王金生,林学钰.水文地球化学模型研究进展[J].水文地质工程地质,2003,(6):103-109.
    王焰新,孙连发,罗朝晖,等.指示娘子关泉群水动力环境的水化学_同位素信息分析[J].水文地质工程地质,1997,(3):1-5.
    温小虎,许彦卿,苏建平,等.额济纳盆地地下水盐化特征及机理分析[J].中国沙漠,2006,26(5):836-841.
    肖化云,刘丛强,李思亮.贵阳地区夏季雨水硫和氮同位素地球化学特征[J].地球化学,2003,32(3):248-254.
    薛禹群,叶淑君,谢春红.多尺度有限元法在地下水模拟中的应用[J].水利学报,2004,(7):7-13.
    薛禹群,谢春红.地下水数值模拟[M].北京:科学出版社,2007.
    杨郧城,侯光才,马思锦.鄂尔多斯盆地地下水中氚的演化及其年龄[J].西北地质,2004,37(1):95-100.
    姚文辉,陈佑蒲,刘坚,等.衡阳大气硫同位素组成环境意义的研究[J].环境科学研究,2003,16(3):3-5.
    张洪霞,宋文.地下水数值模拟的研究现状与展望[J].2007,13(11):794-796.
    张伟,刘丛强,梁小兵.硫同位素分馏中的生物作用及其环境效应[J].地球与环境,2007,35(3):223-227.
    张宗祜,沈照理,薛禹群,等.华北平原地下水环境演化[M].北京:地质出版社,2000.
    赵继昌,耿冬青,彭建强,等.长江河源区的河水主要元素与Sr同位素来源[J].水文地质工程地质,2003,(2):88-98.
    郑荣才,文华国,HaiRuo Qing,等.青西凹陷下沟组湖相热水沉积岩锶同位素地球化学特征[J].中国科技论文在线.
    郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000.
    祝晓彬.地下水模拟系统(GMS)软件[J].水文地质工程地质,2003,(5):53-55.
    Brian G. Katz et al. Timescales for nitrate contamination of spring waters, northern Florida, USA [J]. Chemical Geology 179 2001 167-186.
    Busenberg E, et al. Use of Chlorofluoromethanes ( CCl3F and CCl2F2) as hydrologic tracers and age2dating tools : Example2 The alluvium and terrace system of Central Oklahoma. Water Resources Research , 1992 , 28 : 2257.
    Craig H. Isotopic variation in meteoric waters [J]. Science, 1961, 133: 1702-1703.
    E. Lakshmanan, R. Kannan, M. Senthil Kumar. Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district Tamil Nadu of India [J]. Environmental Geosciences, 2003,10(4): 157-166.
    Feng H. Lu,William J. Meyers, Martin A. Schoonen. S and O (SO4) isotopes, simultaneous modeling, and environmental significance of the Nijar messinian gypsum, Spain[J]. Geochimica et Cosmochimica Acta, 2001,65(18):3081-3092.
    GHASSEMI F ,MOLSON J W,FALKLAND A. Three2dimensional simulation of the Home Island freshwater lens :preliminary results[J]. Environmental Modelling &Software ,1999 ,14 :181O190.
    Ian Clark and Peter Fritz, Environmental Isotopes in Hydrogeology[M]. Springer,1997.
    J.A.Corcho Alvarado, R.Purtschert, K.Hinsby, L.Troldborg, etal. 36Cl in modern groundwater dated by a multi-tracer approach (3H/3He, SF6, CFC-12 and 85Kr) a case sTudy in quaternary sand aquifers in the Odense Pilot River Basin, Denmark[J]. Applied Geochemistry, 20 (2005) 599–609.
    James D. Happell et al, Apparent CFC and 3H/3He age differences in water from Floridan Aquifer springs[J]. Journal of Hydrology (2005)1-17.
    Karen C. Rice, Hornberger GM. Comparison of hydrochemical tracers to estimate source contributions to peak flow in a small, forested, headwater catchment [J]. Water Resources Research, 1998, 34 (7) : 1 755 - 1 766.
    Kaufmann R.S.et al., The naTural distribution of tritium, Physical Review, 93:1337-1344
    Lovelock J E. Atmospheric fluorine compound as indicators of air movement s[J]. NaTure,1971, 230:379.
    Maloszewski P, Zuber A. Determining the Turnover time of ground water systems with the aid of environmental tracers , IModels and their applicability[J]. Journal of Hydrology,1982,57:207-2311.
    Munnich K.O., Messugen des. 14C-gehaltesvon hartem groundwasser [J]. NaTurwisenschaf ten, 1957, 44: 2853- 2868.
    N. Subba Rao. Geochemistry of groundwater in parts of GunTur district, Andhra Pradesh, India[J]. Envirnmental Geology, 2002, (41): 552-562.
    Naoto Takahata, Yuji Sano. Helium flux from a sedimentary basin[J]. Applied Radiation and Isotopes 52 (2000) 985-992.
    Odum H T. Strontium in naTural waters [J]. Inst. Mar. Sci, 1957, 4:22-37.
    P.Collon, W.Kuschera, H.H.Loosli, etc. 81Kr in the Great Artesian Basin, Australia a new method for dating very old groundwater[J]. Earth and Planetary Science Letters, 182(2000)103-113.
    Peter Torssander, Carl-Magnus, Morth,Risto Kumpulainen. Chemistry and sulfur isotope investigation of industrial wastewater contamination into groundwater aquifers Pite County N Sweden[J]. Journal of Geochemical Exploration, 88(2006) 64-67.
    Ph. Ne′grel, E. Petelet-Giraud. Strontium isotopes as tracers of groundwater-induced floods: the Somme case sTudy (France)[J]. Journal of Hydrology 305 (2005) 99–119.
    Plummer LN. Geochemical modeling of water-rock interaction: past, present, fuTure. Water Rock Interaction, Volume 1: Low TemperaTure Environments[M]. Netherlands: U.S. Geological Survey, 1992, 23-33.
    Plummer L N, Eric C.Prestemon and David L.Parkhurst. An interactive code (NETPATH) for modeling Net geochemical reactions along a flow Path, U.S. Geological Survey, 1994.
    Plummer L N, Rupert M G, Busenberg E, et al. Age of irrigation water in groundwater from the Snake River Plain aquifer, South-Central Idaho[J]. Groundwater, 2000, 38:264-283.
    Qin Dajun & Wang Hao, Chlorofluorocarbons and 3H/3He in groundwater— Applications in tracing and dating young groundwater[J]. Science in China, 2001,44:29-34
    R. Umar, A. Absar. Chemical characteristics of ground-water in parts of the Gambhir river basin, Bharatpur district, Rajasthan, India [J]. Envirnmental Geology,2003, (44): 535-544.
    S.Bouhlassa, A. Aiachi. Groundwater dating with radiocarbon: application to an aquifer under semi-arid conditions in the south of Morocco[J]. Applied Radiation and Isotopes, 2002(56): 637–647.
    SCHEIBE T, YABUSAKI S. Scaling of flow and transport behavior in heterogeneous groundwatersystems[J] . Advances in Water Resources, 1998, 22(3):223-238.
    Scott C.Doney etal. A model function of the global bomb tritium distribution in precipitation, 1960-1986, Journal of Geophysical Research, 1992, 97(4): 5481- 5492.
    Shawan S D, Andrew L H. Strontium and carbon isotope constraints on carbonate-solution interactions and inter2aquifer mixing in groundwaters of the semi-arid Murray Basin. Australia[J]. Journal of Hydrology, 2002, 262: 50-67.
    Thompson G M, Hayes J M. Trichloromethane in groundwater : A possible t racer and indicator of groundwater age[J] . Water Resource Research, 1979, 15 : 546 -554.
    W.M. Edmunds, Jinzhu Ma, W. Aeschbach-Hertig, etal. Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China [J]. Applied Geochemistry 21 (2006) 2148–2170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700