油菜植株形态结构模型及可视化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虚拟作物是对作物在三维空间中的形态结构与生长过程的计算机仿真,是植物学家进行模拟研究的重要工具。它是计算机技术在农业中应用的一个方面,也是作物栽培、作物生理生态和作物育种研究的一个新方向。虚拟作物可促进人们对作物生长过程的理解和感知,为分析作物结构功能关系、设计理想株型以及调控生长模式等提供技术支撑。
     本研究在综合国内外相关研究成果的基础上,以油菜为研究对象,基于2007—2008和2008-2009年不同品种和氮素水平试验,运用系统分析原理和数学建模技术,综合油菜各个器官形态生长过程与主要环境影响因子间的定量关系,构建了基于生长度日(GDD)的油菜主茎叶片、分枝叶片、主茎、分枝、花柄、花蕾和角果形态结构模型。应用面向对象编程设计技术,在Visual C++平台上引入OpenGL技术,构建了油菜花朵和角果的虚拟显示模型。主要研究结果如下:
     1.建立了主要效应因子模型
     运用数学建模方法,构建了温度、氮素等效应因子模型,该系列效应因子模型能较好解释和响应各因子对油菜器官形态生长动态的影响。
     2.建立了油菜营养器官形态结构模型
     根据2007—-2008年试验数据,以Logistic方程为基础,在考虑氮素影响的基础上,构建了以GDD为驱动变量的油莱主茎和分枝叶片长度、宽度、叶柄长度及主茎高度、粗度和分枝长度形态建成的动态模型。利用2008—-2009年试验资料对所建模型进行了检验,结果表明,油菜主茎叶片、分枝叶片、主茎和分枝各个器官形态结构模型的根均方差(RMSE)值分别为1.212cm (n=265)、0.791cm (n=265)、0.467cm (n=194)、0.307cm (n=60)、0.218cm (n=60)、4.234cm (n=87)、0.091cm (n=87)、2.811cm (n=60),油菜器官形态建成的模拟值与观测值具有较好的吻合度,说明模型具有较好的预测性和准确性。
     3.建立了油菜生殖器官形态结构模型
     在2007—-2008年试验的基础上,系统分析了温度、氮素对油菜花柄、花蕾和角果形态发生的影响,量化了温度、氮素与各器官形态建成的关系,构建了基于GDD和Logistic方程的花柄、花蕾和角果形态建成的动态模型。利用2008—2009年盆栽试验资料对所建模型进行了检验,结果表明,花柄、花蕾、主轴角果、一次分枝角果、二次分枝角果的长度和宽度的模拟值与观察值之间的RMSE值分别为0.167cm(n=60)、0.06cm (n=60).0.047cm (n=60)、0.012cm (n=60)、0.402cm (n=285)、0.033cm (n=285).0.449cm (n=285)、0.037cm (n=285)、0.464cm (n=285)、0.039cm(n=285)。说明花柄、花蕾和角果形态建成的模拟值与观测值具有较好的吻合度,所建模型具有较好的预测性和准确性。
     4.建立了油菜花朵和角果虚拟显示模型
     基于油菜花柄、花蕾和角果形态结构特征,利用OpenGL函数和二次曲面分别构建了油菜花柄、花蕾和角果的虚拟显示模型。在此基础上,结合油菜花朵的拓扑结构和角果的群体形态特征,实现了油菜花朵开放过程的动态模拟和角果群体的形态可视化。虚拟显示结果表明:真实感基本达到要求。
Virtual crop is a technology for the computer simulation of crop morphological structure and process of growth in 3D space, which has been into an important tool for botanist to study. It is one aspect of the computer technology applications in agriculture, and also a new method in crop cultivation, crop physiology and ecology, and crop breeding. Virtual crop can promote people's understanding and perception for the process in crop growth, which can provide technical support for analyzing of the relationship between structure and function of crops, designing ideotype, and controlling and regulating the growth mode.
     In this research, based on domestic and overseas relative studies and pot experiments of different varieties and nitrogen levels in 2007 to 2008 and 2008 to 2009,the morphological structural model of main stem leaves.branch leaves.main stem.branch,flower stalk,flower bud, and silique were constructed based on growth degree day(GDD) by using the system analysis method and mathematical modeling technique.and integrating the quantificational connection of every organ's morphologic growth and the major influencing factors of environment.And then the virtual display models of rapeseed flower and silique based on morphological structural models were developed on the plantform of Visual C++ by introducing the OpenGL and using object-oriented program design.The results were as follow:
     1. Models of the major effective factors
     The temperature,nitrogen effective models were constructed using mathematical modeling method.The morphologic dynamic development of every organs of rapeseed influenced by environment factors can be explained and reflected better by a series of effect factor models in practice.
     2. The morphological structural models of vegetative organs were constructed According to the data in 2007 to 2008,based on the logistic equation and the influence of Nitrogen,the morphological structural models or organs such as main stem leaves,branch leaves,main stem and branch of rapeseed were constructed whose drive variable is GDD.The models were validated by using data in 2008 to 2009,the result showed that the value of RMSE of morphological structural models of the length, width and petiole length of main stem leaf,the length and width of branch leaf,the height and width of main stem and the length branch were 1.212cm (n=265),0.791cm (n=265),0.467cm (n=194);0.307cm (n=60),0.218cm(n=60),4.234cm(n=87,0.091cm(n=87),2.811cm(n=60) respectively, which showed that the simulated value of rapeseed's main stem leaf,branch leaf,main stem and branch morphological structural models and the observed value were fitted better, the simulation of rapeseed organ's morphological structural model was accurate, and the prediction were better.
     3. The morphological structural models of reproductive organs were constructed
     Bsed on the data in 2007 to 2008, the morphological structural model of flower stalk,flower bud and silique were constructed based on GDD and logistic equation by using the system analysis method and mathematical modeling technique,and integrating the quantificational connection of every organ's morphologic growth and the temperature and nitrogen. The models were validated by using data in 2008 to 2009,the result showed that the value of RMSE of morphological structural models of the length and width of flower stalk,flower bud,silique of main stem,first branch and secondry branch were 0.167cm (n=60),0.06cm (n=60),0.047cm (n=60),0.012cm (n=60),0.402cm (n=285),0.033cm (n=285),0.449cm (n=285),0.037cm (n=285),0.464cm (n=285),0.039cm (n=285) respectively, which showed that the simulated value of rapeseed's flower stalk, flower bud and silique of main stem.first branch.secondry branch morphological structural models and the observed value were fitted better, the simulation of rapeseed organ's morphological structural model was accurate, and the prediction were better.
     4. The virtual display models of rapeseed flower and silique were constructed
     Based on the morphological character of rapeseed flower and silique,the virtual display model of flower and silique were constructed using OpenGL functions and quadric surface.Further more,It fulfilled the dynamic simulation of the bloom of rape flowers and the visualization of silique population with the topological structure of rape flower and the morphological character of silique population. KEY WORDS:rapeseed; effective factors; morphological structural models; virtual display models; GDD; OpenGL
引文
[1]欧中斌.油菜生长可视化仿真关键技术研究[D].湖南农业大学硕士论文,2004.
    [2]高亮之.农业模型学基础[M].香港:天马图书有限公司,2004.
    [3]刘尚合,周万珍,孙秋红.静电放电电磁脉冲理论建模与作用机理研究进展[J].河北科技大学学报,2005,26(2):87-92.
    [4]LIU Yu-di, LU Han-cheng. Three-Dimensional Variables Allocation in Mesoscale Models[J]. Journal of Tropical Meteorology,2004,10(2):123-132.
    [5]王书华,毛汉英,王静忠.生态足迹研究的国内外近期进展[J].自然资源学报.2002,17(6):776-782.
    [6]陶涛,刘遂庆,李树平.城市水资源管理模型的研究进展[J].水资源与水工程学报.2005,16(1):60-63.
    [7]武震,于栋,张淳,等.颈椎病动物模型的研究进展[J].中国中医骨伤科杂志,2005,13(4):50-52.
    [8]石春林.水稻形态建成模型及虚拟生长研究[D].南京农业大学博士学位论文,2006.
    [9]Basso B, Ritchie J T, Pierce F J,et al. Spatial validation of crop models for precision agriculture [J]. Agriculture System,2001,68:97-112.
    [10]Cavero J, Plant R E, Shennan C,et al. Modeling nitrogen cycling in tomato-safflower and tomato-wheat rotations[J]. Agricultural System,1999,60(2):123-135.
    [11]Reddy K R, Hodgs H F, Mckinion J M. Crop modeling and applications:A cotton example[J]. Advances in Agronomy,1997,59:225-289.
    [12]Rosenzweig C, Parry M L. Potential impact of climate change on world food supply[J]. Nature, 1994,367:133-138.
    [13]金之庆,葛道阔,高亮之,等.我国东部样带适应全球变化的若干粮食生产对策的模拟研究[J].中国农业科学,1998,31(1):51-58.
    [14]石春林,金之庆.基于WCSODS的小麦渍害模型及其在灾害预警上的应用[J].应用气象学报,2003,14(4):462-468.
    [15]Prusinkiewicz P. Modeling of spatial structure and development of plants:a review[J].Scientia Horticulturate,1998,74:113-149.
    [16]蒋丽萍,陈树人.虚拟植物的研究进展[J].农机化研究.2006,(4):4-6.
    [17]陈国庆.小麦形态建成模型及虚拟小麦研究[D].山东农业大学硕士学位论文,2004.
    [18]Ritche J T, Otter S. Description and performance of CERES-Wheat:A user-oriented wheat yield model[J]. USDA-ARS ARS,1985,38:159-175.
    [19]曹卫星.国外小麦生长模拟研究的进展[J].南京农业大学学报,1995,18(1):10-14.
    [20]杨宁.油菜生育动态计算机模拟[D].湖南农业大学硕士学位论文,2003.
    [21]De Wit C T. Photosynthesis of leaf canopies.In:Agricultural Research Report[J]. Wageningen: Pudoc.1965,663.
    [22]Duncan W G, Loomis R S, Williams W A,et al. A model for simulating photosynthesis in plant communities[J]. Hilgardia,1967,38:181-205.
    [23]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:文化出版社,2000:209-210.
    [24]戚昌瀚,殷新佑.作物生长模拟的研究进展[J].作物杂志,1994,(4):1-2.
    [25]Penning de Vries FWT, Jansen DM, ten Berge HFM and Bakema A著,朱德峰,闵绍楷译.几种一年生作物生长的生态生理过程模拟[M].北京:中国农业出版社,1991.
    [26]曹永华.美国CERES作物模型及其应用[M].世界农业.1991,(9):52-55.
    [27]Ritehie J T. IBSNAT and CERES-R ICE model[M]. in:Weather and Rice, IRRI,1987,271-282.
    [28]殷新佑,戚昌瀚.水稻生长日历模型及其应用研究.作物学报[J],1994,20(3):339-346.
    [29]F.彭宁德弗里斯著,王馥棠译.植物生长与作物生产的模拟[M].北京:科学出版社,1988,40-57.
    [30]梁振兴,刘兴海主编.小麦产量形成的栽培技术原理[M].北京:北京农业大学出版社,1994.
    [31]黄金龙主编.小麦生产系统研究[M].北京:北京农业大学出版社,1994.
    [32]冯利平.小麦生长发育模拟模型[D].南京农业大学博士学位论文.1995
    [33]曹宏鑫.小麦群体与土壤水分及氮动态的模拟优化决策研究[D].南京农业大学博士学位论文,1997.
    [34]Gougriaan J. A simple and fast numerical method for the computation of daily totals of crop photosynthesis[J]. Agric. For. Meteorol., 1986,38:249-254.
    [35]Karin Wisiol, John D, Hesketh. Plant Growth Modeling for Resource Management[M]. CRC Press. Inc:Boca Raton, Florida,1994.
    [36]Modeling for Crop-Climate-Soil-Pest System and Its Applications in Sustainable Crop Production[M], Nanjing:Jiangsu Academy of Agricultural Sciences,1998.
    [37]曹宏鑫,金之庆,石春林,葛道阔.高亮之.中国作物模型系列的研究与应用[J].农业网络信息,2006,(5):45-48.
    [38]高亮之,金之庆,黄耀.陈华,李秉柏.水稻栽培计算机模拟优化决策系统[M].北京:中国农业科技出版社,1992.
    [39]曹宏鑫,董玉红.孙立荣,王法宏.张立民,等.作物模拟技术在小麦栽培中应用的研究[J].中国农业科学,2003:36(3),342-348.
    [40]马新明.棉花蕾铃发育及产量形成的模拟模型[D].南京农业大学博士学位论文,1996.
    [41]郑国清,段韶芬,阎书波,吕冰清.玉米叶龄与器官发育模拟模型.玉米科学,2003,11(4):63-66.
    [42]CAO Hong-xin. ZHANG Charles, LI Guang-ming. ZHANG Bao-jun, ZHAO Suo-lao.et al. Researches of Decision-making System for Rape Optimization-Digital Cultivation Based on Simulation Models.in:The Third International Conference on Intelligent Agricultural Information Technology[C], Beijing:China Agriculture Sciences & Technology Press,2005,285-292.
    [43]骆世明,陈春焕,刘振宁.水稻高产栽培的计算机模拟研究[J].山东农业大学学报(增刊),1992,23(9):87-94.
    [44]诸叶平,张建兵,孙开梦,鄂越,雪燕.小麦-玉米连作环境模拟与智能决策系统[J].计算机与农业,2001,41-44.
    [45]朱艳,曹卫星,戴廷波,孙传范.小麦栽培氮肥运筹的动态知识模型[J].中国农业科学,2003,36(9):1006-1013.
    [46]朱艳,曹卫星,戴廷波,姜东.小麦目标产量设计及适宜品种选择的动态知识模型[J].应用生态学报,2004,15(2):231-236.
    [47]朱艳,曹卫星,周治国,田永超.冬小麦生长适宜动态指标的知识模型[J].中国农业科学,2004,37(1):43-50.
    [48]曹宏鑫,石春林,金之庆.植物形态结构模拟与可视化研究进展[J].中国农业科学.2008.41(3):669-677.
    [49]Room P, Hanan J, Prusinkiewicz P. Visual plants:new perspectives for ecologists, pathologists and agricultural scientists[J]. Trends in Plant Science,1996,1(1):33-38.
    [50]Room P M, Hanan J S. Virtual cotton:a new tool for research, management and training. In: Constable G A, Forrest N W(ed). The Proceedings of the World Cotton Research Conference [J]. Challenging the Future. CSIRO Australia,1995:40-44.
    [51]Prusinkiewicz P. Modeling of spatial structure and development of plants:a review. Scientia Horticulture,1998,74:113-149.
    [52]刘岩.基于生物量的水稻地上部植株形态结构模型及可视化研究[D].扬州大学硕士学位论文[D].2009.
    [53]Ulam S. On some mathematical properties connected with patterns of growth of figures. In: Proceedings of Symposia on Applied Mathematics [J]. American Mathematical Society,1962. 215-224.
    [54]Cohen D. Computer simulation of biological pattern generation processes[J]. Nature,1967,216: 246-248.
    [55]Lindenmayer A. Mathematical models for cellular interactions in development[D]. Journal of Theoretical Biology,1968,18:280-315.
    [56]郭焱.李保国.虚拟植物的研究进展[J].科学通报.2001,46(4):273-280.
    [57]马韫韬,郭焱,展志刚,等.玉米生长虚拟模型GREENLAB-Maize的评估[J].作物学报.2006,32:956-963.
    [58]丁维龙,赵星,熊范纶,等.虚拟植物建模及其软件开发进展[J].模式识别与人工智能,2002.15:435-441.
    [59]Honda H, Tomlinson P B. Fisher J B. Two geometrical models of branching of botanical trees [J]. Annals of Botany.1982,49:1-11.
    [60]Fisher J B. A quantitative analysis of terminalia branch. In:Tomlinson, et al. Tropical Trees as Living Systems [M]. New York:Cambridge University Press,1978.285-320.
    [61]Halle F, Oldeman R A A, Tomlinson P B. Tropical Trees and Forests:An architectural analysis [M]. Berlin:Springer-Verlag,1978.
    [62]Hunt R. Plant growth analysis:the rationale behind the use of the fitted mathematical function[J]. Annals of Botany,1979,43:245-249.
    [63]Prusinkiewicz PW, Remphrey WR, Davidson CG,et al. Modeling the architecture of expanding Fraxinus pen-Nsylvanica shoots using L-systems[J]. Can J Bot,1994,72:701-714.
    [64]de Reffye P, Houllier F. Modelling plant growth and architecture:some recent advances and applications to agronomy and forestry[J]. Current Science,1997.73(11):984-992.
    [65]赵星,de Reffye P.熊范纶,胡包钢,展志岗.虚拟植物生长的双尺度自动机模型[J].计算机学报,2001,24(6):608-615.
    [66]赵星,de Reffye P,熊范纶,胡包钢.康孟珍.基于双尺度自动机模型的植物花序模拟.计算机学报,2003.26(1):116-124.
    [67]Chen SG, Impens I, Ceulemans,et al. Measurement of gapfraction of fractal generated canopies using digitalized image analysis[J]. Agric for Meteorol,1993,65:245-259.
    [68]Smith GS. Gurtis JP, Edwards CM. A method for analyzing plang architecture as it relates to fruit quality using three-dimensional computer graphics[J]. Annals of Botany.1992,70:265-269.
    [69]Prusinkiewicz P. A look at the visual modeling of plant using L-systems.Agronomie [M].1990,19: 211-224.
    [70]Mech R, Prusinkiewicz P,et al. Visual Models of Plants Interacting with Their Environment [A]. Computer Graphics Proceedings:Annual Conference Series[C],1996,397-410.
    [71]Prusinkiewicz P. Modeling of spatial structure and development of plants:a review[J]. Scientia Horticulturae.1998.74:113-149.
    [72]Lintermann B,Deussen O.Interactive modeling of branching structures[J].IEEE Computer Graphics & Applications,1999,19(1):56-65.
    [73]Kurth. W. Growth Grammar interpreter GROGRA2.4:A software tool for the 3-dimensional interpretation of stochastic,sensitive growth grammars in the context of plant modeling. Introduction and Reference Manual[M]. Gottingen:Universitat gottingen.1994.
    [74]Takenaka A. A Simulation model of tree architecture development based on growth response to local light enviorment[J]. Journal of Plant Research.1994,107:321-330.
    [75]Blaise F. Simulation du parallelisme dans la croissance des plants et application[D]. PhD Thesis of Universite Louis Pasteur,1991.
    [76]Mech R.,et al. Visual Models of Plants Interaction with Their Environment[A]. Computer Graphics Proceedings:Annual Conference Series[C].1996,397-410.
    [77]Perttunen J.,et al. LIGNUM:A tree model based on simple structural uints[J]. Ann.Bot.,1996,77: 87-98.
    [78]De Reffye P, Fourcaud T, Blaise F, Barthelemy D, Houllier F. A Function model of tree growth and tree architecture[J]. Silva Fennica,1997,297-311.
    [79]Hongping Yan, Mengzhen Kang, Philippe de Reffye, Michael Dingkuhn. A dynamic architectural plant model simulating resource-dependent growth[J]. Annals of Botany,2004,93 (5):591-603.
    [80]Yan Guo, Yuntao Ma, Zhigang Zhan, Baoguo Li, Michael Dingkuhn, Delphine Luquet, Philippe de Reffye. Parameter optimization and field validation of the functional-structural model GREENLAB for maize[J]. Annals to Botany,2006,97:217-230.
    [81]Room P M, Hanan J S. Virtual cotton:a new tool for research, management and training [A]. In: Constable G A et al.Proceedings of the World Cotton Research Conference-1 Challenging the Future [C]. Brisbane. Melbourne:CSIRO Australia,1995:40-44.
    [82]Hanan J S. Virtual plants-integrating architectural and physiological models[J]. Environmental Modeling and Software with Environmental Data News,1997.12(1):35-42.
    [83]Hanan J S, Hearn A B. Linking physiological and architectural models of cotton[J]. Agricultural System,2003,75:47-77.
    [84]Fournier C,Andrieu B. A 3D architectural and process-based model of maize development[J]. Annals of Botany,1998.81:233-250.
    [85]Buck-Sorlin G H. L-system model of the vegetative growth of winter barley[J]. Agronomi e,2002, 22:691-702.
    [86]Watanabe T, Hanan J S, Room P M. Virtual Rice:Ⅰ.Measurement and specification of three-dimensional structure [J]. Japan Journal of Crop Science,1999,68:68-69.
    [87]Watanabe T, Room P M, Hanan J S. Virtual Rice:simulating the development of plant architecture[J]. International Rice Research Notes,2001.26(2):60-62.
    [88]Watanabe T. Hanan J S, Room P M. Virtual Rice:Ⅱ. Simulation of architecture and development by using L-system [J]. Japanese Journal of Crop Science,1999,68:70-71.
    [89]Watanabe T, Hanan J S. Room P M.et al. Rice Morphogenesis and Plant Architecture: Measurement,Specification and the Reconstruction of Structural Development by 3D Architectural Modelling[J]. Annals of Botany,2005,95:1131-1143.
    [90]Guo Y, Ma Y T. Zhan Z G,et al. Parameter optimization and field validation of the functional-structural model GreenLab for maize [J]. Annals of Botany,2006,97:217-230.
    [91]赵星,de Reffye P,熊范纶,等.虚拟植物生长的双尺度自动机模型[J].计算机学报,2001,24:608-615.
    [92]赵星,de Reffye P,熊范纶,等.基于双尺度自动机模型的植物花序模拟[J].计算机学报.2003.26(1):116-124.
    [93]赵春江,王纪华,吴华瑞,等.小麦叶形空间分布的模拟模型及推理系统[J].农业工程学报,2002,18(5):221-225.
    [94]宋有洪,郭焱,李保国等.基于器官生物量构建植株形态的玉米虚拟模型[J].生态学报,2003,23(12):2579-2586.
    [95]李磊.虚拟作物平台中植物建模技术的研究[D].西安交通大学硕士学位论文,2004.
    [96]Buck-Sorlin G H, Kniemeyer O, Kurth W. Barley morphology,genetics and hormonal regula-tion of internodes elongation modeled by a relational growth grammar[J]. New Phytologist,2005,166: 859-867.
    [97]谭子辉.小麦植株形态建成的模拟模型研究[D].南京农业大学硕士学位论文,2006.
    [98]Hackett C, Rose D A. A model of the extension and branching of a seminal root of barley, and its use in studying relations between root dimensions. I.The model[J]. Australian Journal of Biology Science,1972,25:669-679.
    [99]Hackett C, Rose D A. A model of the extension and branching of a seminal root of barley, and its use in studying relations between root dimensions. Ⅱ. Results and inference from manipulation of the model[J]. Australian Journal of Biology Science,1972.25:680-690.
    [100]Diggle A J. Rootmap-a model in three-dimensional coordinates of the growth and structure of fibrous root system [J]. Plant and Soil,1988,105(2):169-178.
    [101]Clausnitzer V,Hopmans J W.Simulaneous modeling of transient three-dimensional root growth and soil water flow[J]. Plant Soil,1994.164(2):299-314.
    [102]金明现,王天铎.玉米根系生长及向水性的模拟[J].植物学报,1996,38(5):384-390.
    [103]Tsutsumi D, Kosugi K, Mizuyama T. Root-system development and water-extraction model considering hydrotropism[J]. Soil Science Society of American Journal,2003,67:387-401.
    [104]Lynch J P, Nielsen K L, Davis R D, et al. Simroot:modeling and visualization of root systems [J]. Plant and Soil,1997,188(1):139-151.
    [105]严小龙.廖红,杨茂.根构型分析在豆科作物磷效率研究中的应用[J].中国农业科技导报.1999,(1):40-43.
    [106]樊小林,史正军.吴平.水肥(氮)对水稻根构型参数的影响及其基因型差异[J].西北农林 科技大学学报.2002,30(2):1-5.
    [107]刘炳成,刘伟,刘俐华,金弋.冬小麦根系生长的三维仿真模拟[J].华中科技大学学报(自然科学版),2005,33(9):65-67.
    [108]汪宝卿.张仁和.油菜生长发育的计算机模拟与应用研究进展[J].西北农业学报.2004,13(2):180-185.
    [109]Kiniry J R, Major D J, Izaurralde R C,et al. EPIC model parameters for cereal, oilseed and forage crop in the north Great Plain region[J]. Can J Plant Science,1983,63,1063-1065.
    [110]Petersen C T, Svendsen H, Hansen S,et al. Parameter assessment for simulation of biomass production and nitrogen uptake in winter rape[J]. Europe J Agronomy,1995,4:77-89.
    [111]Habekotte B. A model of the phonological development of winter oilseed rape(Brassica napus L.)[J]. Field Crop Research,1997,54(2-3):127-136.
    [112]Husson F, Wallach D, Vandeputte B. Evaluation of CECOL.a model of winter rape(Brassica napus L.)[J]. Europe J Agronomy,1997,8(3-4):205-214.
    [113]Gabrielle B, Denoroy P, Gosse G,et al. Development and evaluational of a CERES-type model for winter oloseed rape[J]. Field Crop Research,1998,57(1):95-111.
    [114]欧中斌,廖桂平,喻飞.虚拟植物生长建模[J].系统仿真学报2006(18)suppl.1:291-293.
    [115]廖桂平,官春云.甘蓝型油菜(Brassica napus)干物质积累、分配与转移的特性研究[J].作物学报,2002,28(1):52-58.
    [116]廖桂平,官春云,吴泉源.李爱平,等.油菜生产专家系统知识库构建[J].作物研究,2002(3):118-121.
    [117]刘洪,金之庆.油菜发育动态模拟模型[J].应用气象学报.2003,14(5):634-640.
    [118]刘铁梅,胡立勇,赵祖红,等.油菜发育过程及生育期机理模型的研究Ⅰ.模型的描述[J].中国油料作物学报.2004,26(1):27-31.
    [119]胡立勇,刘铁梅,郑小林,等.油菜发育过程及生育期机理模型的研究Ⅱ.模型的检验和评价[J].中国油料作物学报.2004,26(2):51-55.
    [120]曹宏鑫,张春雷,李光明,等.油菜生长发育模拟模型研究[J].作物学报,2006,32(10):1530-1536.
    [121]汤亮.朱艳,刘铁梅,等.油菜生育期模拟模型研究[J].中国农业科学,2008,41(8):2493-2498.
    [122]汤亮,朱艳.鞠昌华,曹卫星.油菜地上部干物质分配与产量形成模拟模型[J].应用生态学报,2007,18(3):526-530.
    [123]汤亮,朱艳.曹卫星.油菜绿色面积指数动态模拟模型[J].植物生态学报,2007,31(5):897-902.
    [124]刘铁梅,张琼,邱枫,刘铁芳,等.油菜器官间干物质分配动态的定量模拟.中国油料作物学报[J].2005,27(1):55-59.
    [125]刘铁梅,曹凑贵,黄勇.林丰成,等.油菜物质生产与积累的模拟模型[J].华中农业大学学报.2003,(6)533-537.
    [126]廖桂平,官春云,陈社员.基础Web的油菜生产专家系统的研究与应用[J].农业系统科学与综合研究.2005,(21):8-12.
    [127]朱艳,沈维祥,曹卫星,田永超.油菜栽培管理知识模型及决策支持系统研究[J].农业工程学报,2004,(6):141-144.
    [1]刘后利.实用油菜栽培学[M].上海:上海科学技术出版社,1985.
    [2]中国农业科学院油料作物研究所.中国油菜栽培学[M].北京:农业出版社,1987.
    [3]刁操全.作物栽培学各论(南方本)[M].北京:中国农业出版社,1994.
    [4]任春玲.油料作物高效栽培新技术[M].北京:中国农业出版社,2000.
    [5]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:文化出版社,2000.
    [6]高亮之.农业模型学基础[M].香港:天马图书有限公司,2004.
    [7]欧中斌.油菜生长可视化仿真关键技术研究[D].湖南农业大学硕士论文.2004.
    [8]杨宁.油菜生育动态计算机模拟[D].湖南农业大学硕士学位论文,2003.
    [1]de Reffye P, Blaise F, Chemouny S,et al. Calibration of hydraulic growth model on the architecture of cotton plant[J].Agronomie,1999,19(3/4):265-280.
    [2]Meng-zhen Kang, Evers J B, Vos J,et al. The derivation of sink functions of wheat organs using the Greenlab model [J]. Annals of botany,2007,1-10.
    [3]展志岗,王一鸣,de Reffye P,等.冬小麦植株生长的形态构造模型研究[J].农业工程学报,2001,17(5):6-10.
    [4]宋有洪,郭焱,李保国,等.基于植株生物量构建植株形态的玉米虚拟模型[J].生态学报,2003,23(11):2333-2341.
    [5]陈国庆.小麦形态建成模型及虚拟小麦研究[D].济南:山东农业大学,2004.
    [6]郭新宇,赵春江,刘洋,等.基于生长模型的玉米三维可视化研究[J].农业工程学报,2007,23(3):121-125.
    [7]石春林.水稻形态建成模型及虚拟生长研究[D].南京:南京农业大学,2006.
    [8]刘岩,陆建飞,曹宏鑫,等.基于生物量的水稻叶片主要几何属性模型研究[J].中国农业科学.2009,42(11):4093-4099.
    [9]周娟,姜爽,陈兵林,等.棉花茎枝叶形态模型研究[J].棉花学报.2009,21(3):206-211.
    [10]常丽英,顾东祥,张文宇等.水稻叶片伸长过程的模拟模型[J].作物学报,2008,34(2):311-317.
    [11]中国农业科学院油料作物研究所.中国油菜栽培学[M].北京:农业出版社,1987.
    [12]曹宏鑫,张春雷,李光明,等.油菜生长发育模拟模型研究[J].作物学报,2006,32(10):1530-1536.
    [13]刘后利.实用油菜栽培学[M].上海:上海科学技术出版社,1985.
    [14]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:高等教育出版社,2003.
    [15]高亮之.农业模型学基础[M].香港:天马图书有限公司,2004.
    [1]Watanabe T, Room P M, Hanan J S. Virtual Rice:simulating the development of plant architecture[C]. International Rice Research Notes,2001,26(2):60-62.
    [2]石春林.水稻形态建成模型及虚拟生长研究[D].南京农业大学博士学位论文,2006.
    [3]谭子辉.小麦植株形态建成的模拟模型研究[D].南京农业大学硕士学位论文,2006.
    [4]陈国庆.小麦形态建成模型及虚拟小麦研究[D].山东农业大学硕士学位论文,2004.
    [5]姜爽.基于棉花形态模型的虚拟生长系统研究[D].南京农业大学硕士学位论文,2007.
    [6]廖桂平,李棉卫,欧中斌,等.基于参数L-系统的油菜花朵与花序生长可视化研究[J].农业工程学报,2009,25(4):150-156.
    [7]中国农业科学院油料作物研究所.中国油菜栽培学[M].北京:农业出版社,1987.
    [8]刘后利.实用油菜栽培学[M].上海:上海科学技术出版社,1985.
    [9]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:高等教育出版社,2003.
    [l]宋有洪,郭焱,李保国,等.基于器官生物量构建植株形态的玉米虚拟模型[J].生态学报,2003,23(12):2579-2586.
    [2]Guo Y, Ma Y T, Zhan Z Qet al. Parameter optimization and field validation of the function-structural model CREENLAB for maize[J]. Annals of Botany,2006,97:217-230.
    [3]陈国庆,张吉旺,董树亭.基于可视化的超级玉米生长模拟系统[J].中国农业科学,2009,42(9):3361-3367.
    [4]陈国庆,朱艳,刘惠,等.基于形态模型的小麦器官和单株虚拟生长系统研究[J].农业工程学报,2007,23(3):126-130.
    [5]伍艳莲,曹卫星,汤亮,等.基于OpenGL的小麦形态可视化技术[J].农业工程学报,2009,25(1):121-126.
    [6]石春林,朱艳,汤亮,等.水稻穗结构的定量特征与虚拟表达的初步研究[J].作物学报,2007,33(4):652-656.
    [7]刘晓东,罗轶先,郭新宇,等.基于NURBS曲面的玉米叶生长过程中的形态建模[J],计算机工程与应用,2004,14:201-204.
    [8]刘晓东,曹云飞,刘国荣,等.基于NURBS曲面的水稻叶形态建模[J].微电子学与计算机,2004.21(9):117-124.
    [9]郑文刚,郭新宇,赵春江,等.玉米叶片几何造型研究[J].农业工程学报,2004,20(1):152-154.
    [10]廖桂平,李棉卫,欧中斌,等.基于参数L-系统的油菜花朵与花序生长可视化研究[J].农业工程学报,2009,25(4):150-156.
    [11]钟南,罗锡文,秦琴.基于生长函数的大豆根系生长的三维可视化模拟[J].农业工程学报,2008723(4):179-182.
    [12]刘慧杰,靳海亮.基于VC++的OpenGL三维图形开发设计[J].计算机与数字工程,2009,37(7):122-124.
    [13]费广正,芦丽丹,陈立新.可视化OpenGL程序设计[M].北京:清华大学出版社,2001.
    [14]刁操铨.作物栽培学各论(南方本)[M],北京:中国农业出版社,1994.
    [15]高恩婷.基于VC++的OpenGL三维应用程序的设计[J].苏州大学学报(自然科学版),2007,23(04):38-41.
    [16]刘金定,武艳莲,梁敬东.基于OpenGL的荷花开放过程模拟.安徽农业科学,2008,36(25):11054-11056.
    [17]邓彦斌,胡正海.油菜花蜜腺的发育过程及组织化学变化.西北植物学报,1995,15(6):14-18.
    [1]Lindenmayer A. Mathematical models for cellular interactions in development[J], Theeoretical Population Biology,1968.18(3):280-315.
    [2]Chen S, Impens I, Ceulemans R, Kockelbergh F. Measurement of gap fraction of of fractal generated canopies using digitalized image analysis[J]. Agricultural and Forest Meteorology, 1993.65(3-4):245-259.
    [3]De Reffye P. Edelin C. Francon J, Jaeger M. Puech C. Plant models faithful to botanical structure and development[J]. Computer Graphics.1988.22(4):151-158.
    [4]Jaeger M. de Reffye P. Basic concepts of computer simulation of plant growth[J]. Bitsci.1992. 17(3):275-291.
    [5]Godin C. Guedon Y, Costes E, Caraglio Y.Measuring and analyzing plants with the AMAP software[A]In:Michalewicz M T,ed.Plants to Ecosystems---Advances in Computational Life Sciences[C].Melbourne:CSIRO Australia,1997,53-84.
    [6]石春林,金之庆,曹卫星.水稻植株的虚拟生长[J].江苏农业学报,2006,22(2):105-108.
    [7]陈国庆.小麦形态建成模型及虚拟小麦研究[D].山东农业大学硕士学位论文,2004.
    [8]陈国庆,朱艳,刘慧,等.基于形态模型的小麦器官和单株虚拟生长系统研究[J].农业工程学报,2007.23(3):126-130.
    [9]郭新宇,邓旭阳,郑文刚,等.玉米叶片形态建成的三维可视化研究[J].玉米科学,2004,12(专刊):27-30
    [10]郭新宇,赵春江,刘萍,等.基于生长模型的玉米三维可视化研究[J].农业工程学报,2007,23(3):121-125.
    [11]姜爽.基于棉花形态模型的虚拟生长系统研究[D].南京农业大学硕士学位论文,2007.
    [12]刘洪,金之庆.油菜发育动态模拟模型.应用气象学报[J],2003,14(5):634-640.
    [13]曹宏鑫,张春雷,李光明,等.油菜生长发育模拟模型研究[J].作物学报,2006,32(10):1530-15 36.
    [14]汤亮,朱艳,刘铁梅,等.油菜生育期模拟模型研究[J].中国农业科学,2008,41(8):2493-2498.
    [15]汤亮,朱艳,曹卫星.油菜绿色面积指数动态模拟模型[J].植物生态学报,2007,31(5):897-902

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700