海底热液多金属硫化物成矿区域地质背景与控矿因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底热液活动是20世纪海洋科学领域最重要的发现之一。现代海底热液活动及资源效应的研究已成为当前地球科学研究的热点,海底热液多金属硫化物也成为受到国际关注的海底矿藏。2010年5月,经国际海底管理局理事会批准,中国在西南印度洋获得了1万平方公里具有专属勘探权并在未来享有优先开采权的多金属硫化物资源矿区。要想全面认识海底多金属硫化物矿床,并对这些潜在资源进行开发,首先需要了解海底热液活动的分布规律、海底多金属硫化物矿形成的区域地质环境、以及区域地质背景条件对海底热液多金属硫化物矿体规模、成矿机制等的控制作用等相关科学问题。
     本论文通过广泛收集国内、外已有的调查研究成果,参考大量的文献资料,并对所获得的资料开展筛选、整理、图件编绘等工作,在对水深、重力、磁力、地震等数据资料的综合研究基础上,分析了全球海底多金属硫化物矿床空间分布与板块构造位置之间的相关性,讨论了典型多金属硫化物矿区的区域地质概况、基底岩石与沉积盖层、地球物理场、岩石圈深部结构等特征,探讨了制约海底多金属硫化物矿体形成与分布的主要控制因素,指出深部岩浆活动和断裂构造是控制海底热液系统和多金属硫化物成矿最关键的因素。
     研究表明,海底热液活动主要分布于离散型板块边界和汇聚型板块边界,其产出的板块构造位置主要可以划分为大洋中脊型(A型)构造环境、洋-弧型板块俯冲边缘形成的弧后盆地型(B型)构造环境、洋-陆型板块俯冲边缘形成的大陆边缘型(C型)构造环境以及板内热点活动型(D型)构造环境这四类。海底热液多金属硫化物的形成主要受到深部岩浆活动、断裂构造、沉积物盖层、板块扩张速率、水深、围岩类型等因素的控制,其中深部岩浆活动为多金属硫化物成矿提供了热源和矿物质元素,断裂构造为热液活动提供了重要的导矿通道和容矿裂隙。
     不同扩张速率的构造环境中深部岩浆活动、海底断裂构造特征及形成的多金属硫化物矿体均存在差异。分析认为深部岩浆活动和断裂构造是控制海底热液系统和多金属硫化物成矿最关键的因素。快、慢扩张构造环境深部岩浆活动和断裂构造的差异导致海底形成的多金属硫化物矿体规模不同。快速扩张构造环境的岩浆供给量大,但是由于岩浆侵入频繁,且断裂构造规模小,造成海底热液活动分散喷溢,形成的热液喷口小且活动时间短,多金属硫化物矿体规模小;在慢速扩张构造环境,虽然岩浆供给量小,但是岩浆活动稳定,且断裂构造规模大,有利于海底热液活动的集中喷溢,形成的热液喷口大且活动时间长,多金属硫化物矿体规模大。
Submarine hydrothermal activity is one of the most important discoveries inthe field of marine science in the20th century, the study of modern submarinehydrothermal activity and the effect of the resources and the environment has become hotspot of earth science research nowadays. Submarine hydrothermal polymetallic sulfidesalso become the seabed deposits that receive the international concern. May2010,approved by the council of International Seabed Authority, China has obtained10thousand square kilometres seabed mining areas of exclusive exploration and prioritymining rights in the Southwest Indian Ocean. In order to understand submarinepolymetallic sulfide deposits comprehensively, and exploit these potential resources, wemust know firstly the distribution of hydrothermal activity, the regional geologicalenvironment, and its effect of size, metallogenic mechanism and other aspects ofhydrothermal polymetallic sulfides.
     On the basis of the latest data of global hydrothermal vent sites (588sites),extensive existing survey research results at home and abroad, as well as a large numberof documents are collected, all the collected data are picked up, rearranged and somefigures are drawn. Based on a comprehensively study of the bathymetry, gravity,magnetic, seismic and other data, the correlation between the distribution of globalsubmarine polymetallic sulfide deposits and plate tectonic positions are analysed, thecharacters of typical hydrothermal sulfide mining areas, such as geophysical field,basement rocks, sediment caps, lithosphere structure and so on, are discussed, the maincontrolling factors that constraint the formation and distribution of the submarinepolymetallic sulfides are extracted.
     The results show that submarine hydrothermal polymetallic sulfide vent sites mainly locate at divergent and convergent plate boundary. The plate tectonic positions can beclassified as four tectonic setting: mid-ocean ridge tectonic setting, back-arc basintectonic setting in the subducting plate edge of ocean-arc, continental margin tectonicsetting in the subducting plate edge of ocean-continent, intraplate hot spots tectonicsetting. The formation of submarine hydrothermal polymetallic sulfides is primarilycontrolled by deep magmatic activity, faults structure, sediment cap, spreading rate,water depth, the types of wall rock and other factors. Deep magmatic activity provideheat resource and mineral elements for the mineralization of the polymetallic sulfides,faults structure provide important guiding channels and fissures for hydrothermalactivity.
     Deep magmatic activity, submarine fault structure and the thickness of sediment inthe tectonic settings with different spreading rates are different. Deep magmatic activityand fault structure are the two most crucial controlling factors of submarine hydrothermalsystems and the mineralization of polymetallic sulfide. Different fault structure and deepmagmatic activity in fast-and slow-spreading tectonic settings contribute to different sizeof polymetallic sulfide deposits. Fast spreading tectonic settings with high magmaticbudgets, have continual diking events and small-scale fault structure. That results indispersive ejection of hydrothermal activity, small and short-lived hydrothermal vent, andsmall size of polymetallic sulfide deposits. Slow spreading tectonic settings with lowmagmatic budgets, have stable magmatic activity and large-scale fault structure. Thatcontributes to concentrated ejection of hydrothermal activity, large and longevity ofhydrothermal vents, and massive polymetallic sulfide deposits.
引文
Ames D E, Franklin J M, Hannington M D. Mineralogy and geochemistry of active and inactive chimneys and massivesulfide, Middle Valley, northern Juan de Fuca Ridge: An evolving hydrothermal system[J]. Canadian Mineralogist,1993,31:997–1024.
    Baker E T, German C R. On the global distribution of hydrothermal vent fields[A]. German C R, Lin J, Parson LM(eds.). In Mid-Ocean Ridges: Hydrothermal interactions between the lithosphere and oceans, GeophysicalMonograph Series148[C]. American Geophysical Union,2004:245-266.
    Bendel V. The white lady hydrothermal field, North Fiji back arc basin, Southwest Pacific[J]. Economic Geology,1988,88:2237-2249.
    Bohnenstiehl D. R., Dziak R. P., Tolstoy M., et al. Temporal and spatial history of the1999–2000Endeavour Segmentseismic series, Juan de Fuca Ridge[J]. Geochemistry Geophysics Geosystems,2004,5, Q09003.
    Buck R W, Delaney P T, Karson J A, et al. Faulting and Magmatism at Mid-Ocean Ridges[M]. Washington, D. C.:AGU,1998.
    Canales J P, Detrick R S, Carbotte S M, et al. Upper crustal structure and axial topography at intermediate spreadingridges: Seismic constraints from the southern Juan de Fuca Ridge[J]. Journal of Geophysical Research,2005,110,B12104, doi:10.1029/2005JB003630.
    Canales J P, Nedimovi M R, Kent G M, Carbotte S M, Detrick R S. Seismic reflection images of a near-axis melt sillwithin the lower crust at the Juan de Fuca Ridge[J]. Nature.2009,460:89-93
    Canales J P, Sohn R A, deMartin B J. Crustal structure of the Trans-Atlantic Geotraverse (TAG) segment (Mid-AtlanticRidge,26°10′N): Implications for the nature of hydrothermal circulation and detachment faulting at slowspreading ridges[J]. Geochemistry Geophysics Geosystems,2007,8, Q08007, doi:10.1029/2007GC001629.
    Carbotte S M. Detrick R S. Harding A, Canales J P, Babcock J, Kent G, Ark E V, Nedimovic M, Diebold J. Rifttopography linked to magmatism at the intermediate spreading Juan de Fuca Ridge[J]. Geology.2006,34(3):209-212
    Curewitz D, Karson J A. Geological consequences of dike intrusion at Mid-Ocean Spreading Centers[A]. Buck R W,Delaney P T, Karson J A(eds.). Faulting and Magmatism at Mid-Ocean Ridges, Geophysical Monograph Series106[C]. American Geophysical Union,1998:117-136.
    Davis E E, et al. Proceedings of the Ocean Drilling Program: Initial Reports[R].1992,139: College Station, TX(Ocean Drilling Program). Doi:10.2973/odp.proc.ir.139.1992
    Davis E. E., Fisher A. T., Firth J. V., et al. Proceedings of the Ocean Drilling Program: Initial Reports[R].1997, Vol.168. Ocean Drilling Program
    Dick H J B, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge[J]. Nature,2003,426:405-412.
    Dick H J B, Natland J H, Alt J C, et al. A Long In Situ Section of the Lower Ocean Crust: Results of ODP Leg176Drilling at the Southwest Indian Ridge[J]. Earth Planetary Science Letters,2000,179:31-51
    Dick H J B. Abyssal peridotides, very slow spreading ridges and ocean ridge magmatism, in: Magmatism in the OceanBasins (Saunders, A.D. and Norry, M.J. eds.)[J]. Geol. Spec. Publ.1989,(42):71-105
    Fisher, R. L., Goodwillie A. M.. The physiography of the Southwest Indian Ridge[J]. Mar. Geophys. Res.,1997,19(6),451–455
    Fisher, R. L., Jantsch M. Z., Comer R L. GEBCO Panel5.09, IHO/IOC/CHS, in GEBCO—General Bathymetric Chartof the Oceans,5th ed., Int. Hydrogr. Organ., Intergovt. Oceanic Comm., Can. Hydrogr. Ser., Ottawa, Ontario,Canada,1982.
    Fornari D J, Haymon R M, Perfit M R, et al. Axial summit trough of the East Pacific Rise9°N to10°N:Geologicalcharacteristics and evolution of the axial zone on fast-spreading mid-ocean ridge[J]. Journal of GeophysicalResearch,1998,103(B5):9827-9855.
    Fouquet Y, Charlou J L, et al. Metallogenesis in back-arc environment ents: the Lau Basin example[J]. EconomicGeology,1993,88:2254-2181.
    Fouquet Y. Where are the large hydrothermal sulfide deposits in the ocean?[J]. Philosophical Transsactions of theRoyal Society A: Mathematical, Physical and Engineering Sciences,1997,355:427-441.
    Georgen J E, Lin J, Dick H J B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspotswith the Southwest Indian Ridge: effects of transform offsets[J]. Earth and Planetary Science Letters.2001,187:283-300
    Giambalvo E R, Steefel C I, Fisher A T, et al. Effect of fluid-sediment reaction on hydrothermal fluxes of majorelements, eastern flank of the Juan de Fuca Ridge[J]. Geochimica et Cosmochimica Acta,2002,66(10):1739-1757.
    Glasby G P. The relation between earthquakes, faulting and submarine hydrothermal mineralization[J]. MarineGeoresources&Geotechnology,1998,16(2):145-175.
    Hawkins J W, Parson L M, Allan J F. Introduction to the scientific results of Leg135: Lau Basin-Tonga Ridge drillingtransect. In: Hawkins J W, Parson L M, Allan J,.(Eds.), Proceedings of the Ocean Drilling Program Leg135,Scientific Results. Ocean Drilling Program, College Station, TX,1994, pp.3-5.
    Hawkins J W. The geology of the Lau Basin. In: Taylor, B.(Ed.), Backarc Basins: Tectonics and Magmatism. PlenumPress, New York,1995, pp.63-138.
    Herzig P M, Hanning M D. Polymetallic massive sulfides at the modern seafloor A review[J]. Ore Geology Reviews,1995,10:95-115.
    Herzig P M, Hannington M D. Polymetallic massive sulfides and gold mineralization at mid-ocean ridges and insubduction-related environments[J]. In Cronan, D. S.(Ed.), Handbook of Marine Mineral Deposits: Boca Raton(CRC Press),2000,347-368.
    Hooft E E, Detrick R S. Relationship between axial morphology, crustal thickness and mantle temperature along theJuan de Fuca and Gorda Ridges[J]. Journal of Geophysical Research,1995,100:22499-22508
    Huang P Y, Solomon S C. Centroid depths of mid-ocean ridge earthquakes: Dependence on spreading rate[J]. Journalof Geophysical Research,1988,93(13):445-477.
    Humphris S E. Relation between Volcanism, Tectonism, and Hydrothermal Activity along the Mid-Ocean Ridges[R].2010
    Jacobs A M, Harding A J, Kent G M. Axial crustal structure of the Lau back-arc basin from velocity modeling ofmultichannel seismic data[J]. Earth and Planetary Science Letters2007,259:239–255
    Kappel E. S., Ryan W. B. F. Volcanic episodicity and a non-steady state rift valley along northeast Pacific SpreadingCenters: Evidence from Sea MARC I[J]. Journal of Geophysical Research,1986,91(B14),13,925–13,940
    Kelley D S, Delaney J R, Yoerger D A. Geology and venting characteristics of the Mothra Hydrothermal Field,Endeavour Segment, Juan de Fuca Ridge[J]. Geology,2001,29:959-962.
    Kleinrock M C, Humphris S E. Detailed structure and morphology of the TAG active hydrothermal mound and itsgeotectonic environment[J]. Process ODP, Initial Reports,1996,158:15-21.
    Kong L, Solomon S C, Purdy G M. Microearthquake characteristics of a mid-ocean ridge along-axis high[J]. Journal ofGeophysical Research,1992,97:1659-1685.
    Kuo B Y, Forsyth D W. Gravity anomalies of the ridge-transform system in the south Atlantic between31°S and34.5°S: upwelling centers and variations in crustal thickness[J]. Marine Geophysical Researches,1988,10:205-232.
    Lin J, Purdy G M, Schouten H, Sempere J C, et al. Evidence from gravity data for focused magmatic accretion alongthe Mid-Atlantic Ridge[J]. Nature,1990,344:627-632.
    Lupton J E,Graham D W, Delancy J R, Johnson H P. Helium isotope variations in Juan de Fuca Ridge basalts[J].Geophysical Research Letters.1993,20(17):1851-1854
    Macdonald K C, Fox P J, Perram L J, et al. A new view of the mid-ocean ridge from the behaviour of ridge-axisdiscontinuities [J]. Nature,1988,335:217-225.
    Macdonald K C. Mid-Ocean Ridge Tectonics,Volcanism and Geomorphology[J]. Department of Geological Sciencesand Marine Sciences Institute, University of California, Santa Barbara, CA, USA.doi:10.1006/rwos.2001.0094
    McGregor B A, Harrison C G A, Lavelle J W, et al. Magnetic anomaly patterns on Mid-Atlantic Ridge crest at26°N[J]. Journal of Grophysical Research,1977,82:231-328.
    Menke W, West M, Tolstoy M. Shallow crustal magma chamber beneath the axial high of the Coaxial Segment ofJuan de Fuca Ridge at the "source site" of the1993eruption[J]. Geology.2002,30:359-362
    Miller A R, Densmore C D, Degens E T, et al. Hot brines and recent iron depostits in deeps of the Red Sea[J].Geochimica et Cosmochimica Acta,1966,30(3):341-350.
    Minshull T A, Muller M R, White R S. Crustal structure of the Southwest Indian Ridge at66oE:Seismic constraints[J].Geophy. J. Int.2006,166:135-147
    Mottl J M, Wheat C G, Boulegue J. Timing of ore deposits and sill instruction at site856: Evidence from stratigraphy,alteration, and sediment pore water composition[J]. Proceedings of Ocean Drilling Program, Scientific Results,1994,139:679-693.
    Münch U, Halbach P, Fujimoto H, Shipboard scientific party, INDOYO diving cruise(MODE198leg3). Sea-floorhydrothermal mineralization from the Mt.Jourdanne, Southwest Indian Ridge. JAMSTEC[J]. Deep Sea Res.2000,16:125-132
    Munch U, Lalou C, Halbach P, et al. Relict hydrothermal events along the super-slow Southwest Indian spreading ridgenear63°56′E——mineralogy, chemistry and chronology of sulfide sample[J]. Chemical Geology,2001,177:341-349.
    Naini B, Chute J. Geophysical investigations around DSDP site251, Southwestern Indian Ocean[R].doi:10.2973/dsdp.proc.26.105.1974.
    Nath B N. Hydrothermal Minerals[R]. Geology&Geophysical Sciences,2007, Lecture notes, p.78-83.
    Normark W R, Morton J L, Koski R A, et al. Active hydrothermal vents and sulfide deposits on the southern Juan deFuca Ridge[J]. Geology,1983,11:158–163.
    Parson L M, Hawkins J W. Two-stage ridge propagation and the geological history of the Lau Back-arc Basin[R]. In:Hawkins J W, Parson L M, Allan J.(Eds.), Proceedings of the Ocean Drilling Program Leg135, Scientific Results.Ocean Drilling Program, College Station, TX,1994, pp.819-828.
    Parson L M, Wright I C. The Lau-Havre-Taupo back-arc basin: a southward-propagating, multi-stage evolution fromrifting to spreading[J]. Tectonophysics,1996,263:1-22.
    Parson L, Sauter D, Mendel V, et al. Evolution of the axial geometry of the Southwest Indian Ocean Ridge between themelville fracture zone and the Indian Ocean Triple Junction-Implications for segmentation on verySlow-Spreading Ridges[J]. Marine Geophysical Researches,1997,19:535-552.
    Patriat P, Sauter D, Munschy M, Parson L. A survey of the Southwest Indian Ridge Axis between Atlantis II FractureZone and the Indian Ocean Triple Junction: Regional setting and large scale segmentation[J]. Marine GeophysicalResearches.1997,19:457-480
    Petersen S, Kuhn K, Kuhn T, et al. The geological setting of the ultramafic-hosted Logatchev hydrothermal field(14°45′N, Mid-Atlantic Ridge) and its influence on massive sulfide formation[J]. Lithos.,2009,112:40–56.
    Pruis M J, Johnson H P. Tapping into the sub-seafloor: examining diffuse flow and temperature from an activeseamount on the Juan de Fuca Ridge[J]. Earth and Planetary Science Letters.2004,217:379-388
    Robigou V, Delaney J R, Stakes D S. Large massive sulfide deposits in a newly discovered active hydrothermal system,the High-Rise Field, Endeavour Segment, Juan de Fuca Ridge[J]. Geophysical Research Letters,1993,20(17):1887-1890.
    Rona P A, Thompson G, Mottl M J et al. Hydrothermal activity at the TAG hydrothermal field, Mid-Atlantic Ridgecrest at26°N[J]. J Geophys Res,1984,89:11365-11377.
    Rona P A. Hydrothermal mineralization at oceanic ridges[J]. Canadian Mineralogist,1988,26:431-465.
    Rona, P A, Scott S D. A special issue on sea-floor hydrothermal mineralization: new perspectives[J]. EconomicGeology,1993,88(8):1935-1976.
    Rona, P A. Criteria for recognition of hydrothermal mineral deposits in oceanic crust[J]. Economic Geology,1978,73:135-160.
    Seyler M, Lorand J P, Toplis M J, Godard G. Asthenospheric metasomatism beneath the mid-ocean ridge: evidencefrom depleted abyssal peridotites[J]. Geology.2004,32(4):301-304
    Sinton J M, Detrick R S. Mid-Ocean Ridge Magma Chambers[J]. Journal of Geophysical Research,1992,97(B1):197-216.
    Sudarikov S M, Roumiantsev A B. Structure of hydrothermal plumes at the Logatchev vent field,14°45′N,Mid-Atlantic Ridge: evidence from geochemical and geophysical data[J]. Journal of Volcanology and GeothermalResearch,2000,101:245-252.
    Thompson G, Humphris S E, Schroeder B et al. Active vents and massive sulfides at26°N (TAG) and23°N (SnakePit) on the Mid-Atlantic Ridge[J]. Can Mineral,1988,26:697-711.
    Turcotte D L, Schubert G. Geodynamics,2nd ed[M]. Cambridge, New York, Melbourne: Cambridge University Press,2002.
    Wheat C. G. and Mottl M. J. Hydrothermal circulation, Juan de Fuca Ridge eastern flank: Factors controlling basementwater composition[J]. J. Geophys. Res.1994,99:3067–3080
    William S D. Wilcock J R. Mid-ocean ridge sulfide deposits: Evidence for heat extraction from magma chambers orcracking fronts?[J]. Earth and Planetary Science Letters.1996,145:49-64.
    Wilson, D S. Tectonic history of the Juan de Fuca Ridge over the last40million years[J]. Journal of GeophysicalResearch,1988,93,11,863–11,876
    Wilson, D. S. Confidence intervals for motion and deformation of the Juan de Fuca plate[J]. Journal of GeophysicalResearch.1993,98:16053–16071
    Wilson D. S., Hey R. N., Nishimura C. Propagation as a mechanism of reorientation of the Juan de Fuca Ridge[J].Journal of Geophysical Research,1984,89:9215–9225
    Wooldridge A L, Haggerty S E, Rona P A, et al. Magnetic properties and opaque mineralogy of rocks from selectedseafloor hydrothermal sites at oceanic ridges[J]. Journal of Geophysical Research,1990,95:12351-12374.
    Zervas C, Lin J, Rona P. Asymmmetric V-shaped gravity stripes at the Mid-Atlantic Ridge26°N[J]. ESO, AmericanGeophysical Union Transactions,1990,71:1572.
    Zierenberg R A, Fouquet Y, Miller D J, et al. The deep structure of a sea-floor hydrothermal deposit[J]. Nature,1998,392:485-488.
    别风雷,李胜荣,侯增谦等.现代海底多金属硫化物矿床[J].成都理工学院学报,2000,27(4):335-342.
    陈弘,朱本铎,崔兆国.海底热液矿床地质和地球化学特点研究[J].热带海洋学报,2006,25(2):79-84.
    陈新明,高宇清,吴鸿云等.海底热液硫化物的开发现状[J].矿业研究与开发,2008,28(5):1-5.
    崔汝勇.大洋中大型热液硫化物矿床的形成条件[J].海洋地质动态,2001,17(2):1-5.
    戴宝章,赵葵东,蒋少涌.现代海底热液活动与块状硫化物矿床成因研究进展[J].矿物岩石地球化学通报,2004,23(3):246-254.
    邓希光.大洋中脊热液硫化物矿床分布及矿物组成[J].南海地质研究,2007,00:54-64.
    高爱国.海底热液活动研究综述[J].海洋地质与第四纪地质,1996,16(1):103-110.
    侯增谦,莫宣学.现代海底热液成矿作用研究现状及发展方向[J].地学前缘,1996,3(3-4):263-273.
    季敏.现代海底典型热液活动区环境特征分析[D].青岛:中国海洋大学,2004
    李粹中.海底热液多金属矿床的研究现状[J].海洋地质与第四纪地质,1992,12(4):75-86.
    李怀明.现代海底热液硫化物矿体内部流体过程的模拟实验研究[D].青岛:中国海洋大学,2008.
    李军.现代海底热液块状硫化物矿床的资源潜力评价[J].海洋地质动态,2007,23(6):23-30.
    李三忠,张国伟,刘保华.洋底动力学——从洋脊增生系统到俯冲消减系统[J].西北大学学报(自然科学版),2009,39(3):434-443.
    李文渊.现代海底热液成矿作用[J].地球科学与环境学报,2010,32(1):15-23.
    林文洲.现代海底热液成矿作用综述[J].成都理工学院学报,2000,27(增刊):264-267.
    栾锡武.现代海底热液活动区的分布与构造环境分析[J].地球科学进展,2004,19(6):931-938.
    梅厚钧(译).大西洋中脊上活动的水热成矿体系的钻探结果[J].地质地球化学,1996,5:38-39.
    牛宏伟,阮爱国,李家彪,等.洋中脊构造及地震调查现状[J].华南地震,2009,29(4):72-84.
    唐勇,和转,吴招才等.大西洋中脊Logatchev热液区的地球物理场研究[J].海洋学报,2012,34(1):120-126.
    吴世迎.大洋钻探与深海热液作用[J].地球科学进展,1995,10(3):223-228.
    吴世迎主编.世界海底热液硫化物资源[M].北京:海洋出版社,2000:1-271.
    鄢全树,石学法,李乃胜.西南太平洋劳海盆地质学研究进展[J].海洋地质与第四纪地质,2010,(01):131-140.
    杨耀明,石学法,刘季花等.海底热液硫化物区域成矿演变与控制因素探讨[J].矿物学报,2007,增刊,367-368.
    尤·阿·博格达诺夫,陈邦彦(摘译).大西洋中脊的TAG热液场[J].海洋地质,2007,4:34-49.
    曾志刚,秦蕴珊.大洋钻探对海底热液活动研究的贡献[J].地球科学进展,2003,18(5):764-772.
    曾志刚,秦蕴珊,翟世奎.大西洋中脊TAG热液区硫化物中流体包裹体的He-Ne-Ar同位素组成[J].中国科学(D辑),2000,30(6):628-633.
    郑彦鹏,李官保。海底多金属硫化物形成的区域地质背景条件与控矿因素[J].矿物学报,2007(增刊):375-376.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700