中国近海部分典型海域磷的生物地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷是海洋生物赖以生存的基础营养盐之一,它的分布及含量直接影响着海区初级生产力及浮游植物的种类、数量和分布。目前我国的研究大多数侧重水体中溶解态磷的含量和分布,对水体中颗粒态磷的研究相对较少,对总磷的外部补充机制和内部循环机制等方面的研究还有待深入。本文于2002年9月和2003年9月对中国近海有代表性的陆架区一东、黄海的6个断面、60个站位进行了2次大面调查,同时在6个代表性站位做了连续观测;于2002年8月-2003年5月对我国近海有代表性的河口区—长江口的7个断面28个站位进行了4次大面调查;于2001年8月-2003年5月对我国近海有代表性海湾—胶州湾的15个站位进行了7次大面调查,同时在2个站位做了连续观测。本论文拟在了解调查海域水体中各形态磷(溶解态无机磷(DIP)、溶解态有机磷(DOP)、颗粒态无机磷(PIP)和颗粒态有机磷(POP))的分布的同时,讨论影响各形态磷分布的因素并应用配分系数研究河口区磷在不同形态中的配分。利用本论文调查的结果和已发表的结果,讨论河流输送、大气沉降、沉积物—水界面交换以及外海交换等过程对调查海域中总磷的贡献,同时探讨生物活动在总磷内部循环中发挥的作用,从而建立较为完整的总磷收支模型。本论文的主要研究成果如下:
     东、黄海在各种水系的共同影响下(包括长江冲淡水、台湾暖流、黑潮水、黄海冷水团、对马暖流和沿岸流等),各形态磷在不同断面呈现出不同的分布特征。长江冲淡水是东、黄海各断面PIP和POP的最主要来源,因此在各断面PIP和POP浓度随离岸距离的增加迅速降低。长江冲淡水是各断面表层水体中DIP的主要来源,而黑潮中层水、台湾暖流和黄海冷水团分别是PN断面、B断面和A断面、YT断面底层DIP的主要来源,它们的贡献远远高于长江冲淡水。生物量是影响DOP浓度的主要因素,在舟山渔场附近,DOP浓度较高;在不同水团的交汇处,水体垂直对流作用增强,往往也是DOP浓度的高值区。
     潮汐是影响各形态磷分布的一个重要因素,在E1、E2、E3和E5站,由于外海水的稀释作用,使得DIP与潮位的变化趋势相反;而对于PIP和POP,由于高潮时底层再悬浮作用增强,使得PIP和POP与潮位有相同的变化趋势,且水深越浅这种趋势越明显。E4站位于长江口,2002年9月调查期间,PIP和POP
Phosphorus is often the limiting nutrient for algal growth and may limit marine productivity. At present, most studies are focused on dissolved phosphorus concentrations and distributions in our country, and little is known about the suspended paniculate phosphorus and the phosphorus dynamics. In the present dissertation, distributions, partitioning and budget of different forms of phosphorus in the coastal waters of China, i.e. the Yellow Sea and the East China Sea, the Changjiang River Estuaries and the Jiaozhou Bay, are studied detailedly. The main research work is as follows:The different forms of phosphorus are determined during two surveys on the Yellow Sea and the East China Sea in September 2002 and September 2003, respectively. The results show that the distributions of different forms of phosphorus are influenced by Changjiang River diluted water, Kuroshio, Taiwan Warm Current, and Yellow Sea Cold Water, hence the distributions of different forms of phosphorus along different sections are quite variable. The Changjiang River diluted water is the major source of PIP and POP, hence the concentrations of PIP and POP illustrate decrease onshore to offshore, and the sediment brought by Changjiang River has almost deposited in the west of 123° E. The distribution of DIP in the bottom water of section PN, section B and section A and YT are influenced by the Kuroshio Intermediate Water, Taiwan Warm Current and Yellow Sea Cold Water, respectively. At the junction of different water column, the vertical exchange and upwelling there brought amount of nutrients for phytoplankton reproduction, hence the concentrations of DOP are relatively high there.The influence of tide to distribution of phosphorus can be observed at station El,
    E2, E3 and E5. The concentrations of DIP are maximum at the ebb and are minimum at the flood, the concentrations of PIP and POP are maximum at the flood and are minimum at the ebb. At E4 station, the PIP and POP were governed by settling/resuspension induced by the cyclic changes of tidal currents in September, 2002, and were controlled by dilution of outer water in September, 2003.The Kuroshio Water is the most major source of DIP to the East China Sea, which accounts for 73% of the total DIP source. The Kuroshio Water and Yellow Sea contribute about 41% of total DOP source to the East China Sea, respectively. The Yellow Sea contribute 39% of total PP source. The Shelf Surface Water is the most major sink of phosphorus, almost in dissolved form. In the East China Sea, about 69.6 + 31.9X 109 mol of phosphorus are assimilated by plankton annually, in which about 88% of the phosphorus assimilated by plankton is recycled in the water column.The different forms of phosphorus are determined during four surveys on the Changjiang River Estuaries and its adjacent areas in October and November 2002 and February and May 2003, respectively. The results show that the Changjiang River diluted water is the major source of DIP, PIP and POP, hence high concentrations of DIP, PIP and POP are observed at the Changjiang River Estuaries. The DOP has highest concentration at (123 ° E, 30.5 ° N), which was consistent with the distribution of diatom cell density. In the coastal area(west of 122.5° E), PP are the dominate form of phosphorus.The solid-solution partitioning of phosphorus can be quantified using the conditional distribution coefficient, Kd. The Lg (Kd) has highest value in Spring, followed by Summer, Autumn and Winter. The DIP brought by the Changjiang River are almost depleted, reach 89%~97%.The Changjiang is the major source of phosphorus to the East China Sea. In the Changjiang River Estuaries and its adjacent areas, about 33.9+17.9 k ton of phosphorus are assimilated by plankton annually, in which about 70.2% of the phosphorus assimilated by plankton is recycled in the water column.The different forms of phosphorus are determined during seven surveys in the Jiaozhou Bay from October 2001 to May 2003. The results show that the
    concentrations of different forms of phosphorus decreased seaward expect DOP, which had the peak value in the central. The contribution of PP to TP in the west part of Jiaozhou Bay is 1.5-2.4 folds higher than that the east part of the Jiaozhou Bay. During a tidal cycle, PIP and POP were significantly cyclic between flood and ebb governed by settling/resuspension induced by the tidal currents. There were obviously seasonal variation for different forms of phosphorus, and DIP, DOP and POP was well correlated with the biomass of phytoplankton. The DIP depletion percent values are calculated for five major rivers, which empting into the Jiaozhou Bay. The riverine DIP concentration is the key factor controlling the percent of estuarine DIP depletion. The rivers are the major source of phosphorus to the Jiaozhou Bay, contribute about 62% of total phosphorus source. In the Jiaozhou Bay, about 961.0 + 98 ton of phosphorus are assimilated by plankton annually, in which about 95% of the phosphorus assimilated by plankton is recycled in the water column.
引文
1. Ai, N. L., James, E. B., 1999. Distribution, partitioning and fluxes of dissolved and particulate organic C,N and P in the eastern North Pacific and Southern Oceans. Deep-sea Research, 47, 2287-2316.
    2. Alain, H., Daniel, D., Pierre, L., 1998. Phytoplankton spring loom of the Gironde plume waters in the Bay of Biscay: early phosphorus limitation and food-web consequences. Oceanologica, 21,279-291.
    3. Aspila, K.I., Agemian, H. and Chau, A.S.Y.,1976. A semiautomated method for the determination of inorganic, organic and total phosphorus in sediment. Analyst, 101: 187-197.
    4. Alghren, G., 1979. Test av analysmetoder for fosfatfosfor. Inst. Of Limnology Univ. Uppsala, 17 pp
    5. Anderson, L.A., Sarmiento, J.L., 1994. Redfield ratios of remineralization determined by nutrient data analysis. Glob. Biogeochem. Cycles 8, 65-80
    6. Armstrong, F.A.J., Williams, P.M., Strickland, J.D.H., 1966. Photo-oxidation of organic matter in sea water by ultra-violet radiation, analytical and other applications. Nature 211,481-483
    7. Ball, P.W.,1989. the partition of trace metal between dissolved and particulate phases in European coastal waters: A compilation of field data and comparison with laboratory studies. Netherlands Journal of Sea Research 23, 7-14.
    8. Benoit, G., Oktay-Marshall, S. D., 1994. Partitioning of Cu, Pb, Ag, Zn, Fe, Al, and Mn between filter-retained particles, colloids, and silution in six Texas estuaries. Marine Chemistry 45, 307-336.
    9. Bourg, A. C. M., 1987. Trace metal adsorption modeling and particle-water interactions in estuarine environments. Continental shelf Research 7, 1319-1332.
    10. Brian, C.P., John, W.D., Dubravko, J., 2003. Nitrogen and phosphorus transport between Fourleague Bay, LA, and the Gulf of Mexico: the role of winter cold fronts and Atchafalaya River discharge. Estuarine, Coastal and shelf Science 57, 1065-1078.
    11. Barrow, N.J., 1983. A mechanistic model for describing the sorption and desorption of phosphate and other anions on the surface charge of variable charge oxides. J.Soil Sci. 35, 273-281
    12. Bennekom, A.J., Wetsteijn, F.J., 1990. The winter distribution of nutrients in the southern bright of the North Sea and in the estuaries of the Scheldt and the Rhine Muese. Neth. J. Sea Res. 25, 75-87
    13. Berelson, W. M., et al. 1998. Benthic nutrient recycling in Port Phillip Bay, Australia. Esturine, Coastal and Shelf Science, 46:917-934
    14. Boynton, W. R., Kemp, W. M. 1985. Nutrient regeneration and oxygen consumption by sediments along an easturine salinity gradient. Mar Ecol Pro Ser., 223:45-55
    15. Broberg, O., Pettersson, K., 1988. Analytical determination of orthophosphate in water. Hydrobiology 170, 5-59
    16. Buidige, D.J., 1991. The Kinetics of organic matter minteralization in anoxic sediments. L. Mar. Res. 49, 727-761
    17. Burns, P.A., Salomon, M, 1969. Phosphate adsorption by Kaolin in saline environments. Proc. Nat. Shellfish. Ass. 59, 121-125
    18. Butler, E.E., Tibbitts, S., 1972. Chemistry survy of the Tamar Estuary 1: Properties of the waters. J.Mar. Biol. Assoc. U.K. 52, 681-699
    19. Caruso, B.S., 1999.Integrated assessment of phosphorus in the Lake Hayes catchment, South Island, New Zealand. Journal of Hydrology 229, 168-189.
    20. Carvert, S. E., 1983. Sedimentary geochemistry of silicon. In: Anton, S.E. (Ed.), Silicon Geochemistry and Biogeochemistry. Academic Press, London, pp, 143-186.
    21. Cadee, GC, Hegeman, J., 1986. Seasonal and annual variation in Phaeocystis Pouchetti in the wesaemmost inlet to the Wadden Sea during the 1973-1985 period. Neth.J.Sea Res. 20, 29-36
    22. Canvender, K.K., Mann, E.L., Chisholm, S.W., 1999. Differential response of equatorial Pacific phytoplankton to iron fertilization. Limnol. Oceanogr. 44, 237-246.
    23. Campbell, F.R., Thomas, R.F., 1970. Automated method for determining and removing silica interference in determination of soluble phosphorus in lake and stream waters. Environ. Sci. Technol. 4, 602-604
    24. Carritt, D.E., Goodgal, S., 1954. Sorption reaction and some ecological implications Deep-Sea Res. 1, 224-243
    25. Chase, E.M., Sayles, F.L., 1980. Phosphorus in suspended sediments of the Amazon River Estuarine Coastal Shelf Science 11, 381-391
    26. Chen, Y.S.R., Butler, J.N., 1983. Kinetic study of phosphate reaction with alumium oxide and Kaolinite Environ. Sci. Technol. 7, 327-332
    27. Chen, C.T.A., Wang, S.L., 1999. Carbon, alkalinity and nutrient budgets on the East China Sea cintinental shelf. Journal of Geophysical Research 104, 20675-20686.
    28. Conley, D.J., Smith, W.M., Cornwell, J.C.: 1995. Transformation of particle-bound phosphorus at the land-sea interface. Estuarine, Coastal and Shelf Science 40, 161-176.
    29. Cowan, J.L. W., Jonathan, R. 1996. Seasonal and interannual patterns of sediment-water nutrient and oxygen fluxes in Mobile Bay,Alabama(USA) : regulating factors and ecological significance.Marine Ecology Progress Series, 141: 229-245
    30. Dale, V.H., David, M.K., 2001. Seasonal, interannual and decadal variations in particulate matter concentrations and composition in subtropical north Pacific Ocean. Deep-Sea Research 48,1669-1695.
    31. Delaney, M.L., 1998. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Glob. Biogeochem. Cycles 12, 563-572.
    32. Dick, W.A., Tabatabai, M.A., 1977. Determination of orthophosphate in aqueous solutions containing labile organic and inorganic phosphorus compounds. J. Environ. Qual. 6, 82-85
    33. Dugdale, R.C., Wilkerson, F.P., 1998. Silicate regeneration of new production in the equatorial Pacific
     upwelling. Nature 391, 270-273
    34. Edmond, J.M., Sprivack, A., 1985. Chemical dynamics of the estuary of the Changjiang Continental Shelf Res. 4, 17-36
    35. Edward, C, Liba, G, 1997. Biogeochemical phosphorus mass balance for Lake Baikal, southeastern Siberia, Russia. Marine Geology, 139, 5-19
    36. Edzwald, J.K., Toensing, D.C.,1976. Phosphate adsorption reaction with clay minerals. Environ. Sci. Technol. 10,485-490
    37. Fang, T.H., 1999. Partitioning and behaviour of different forms of phosphorus in the Tanshui Estuary and one of its tributaries, Northern Taiwan. Estuarine, Coastal and Shelf Science 50, 689-701.
    38. Fang, T.H.: 2004. Phosphorus speciation and budget of the East China Sea, Continenta Shelf Research 24, 1285-1299.
    39. Fisher T. R. , Carson P. R. and Barber R. T.. Sediment nutrient Regeneration in Three North Carolina Estuaries. Estuarine, Coastal and Science, 1982,14:101-116
    40. Follmi, K.B.,1996. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth Sci. Rev. 40, 55-124
    41. Fox, L.E., Sayer, S.L., Wofsy, S.C., 1985. Factors controlling the concentrations of soluble phosphorus in the Mississippi estuary. Limnol. Oceangor. 30, 826-832
    42. Fox, L.E., Sager, S.L., Wofsy, S.C., 1986. The chemical control of soluble phosphorus in the Amazon River and estuary. Geochim. Cosmochim. Acta 5, 783-794
    43. Froelich, P.N., Bender, M.L., Luedtke, N.A., Heath, GR., Devries, T, 1982. The marine phosphorus cycling. Am. J. Sci. 282, 474-511
    44. Froelich, P.N., 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism. Limnol. Oceanogr. 33, 649-668
    45. Friedl, G, Dinkel C, Wehrli B. 1998. Benthic fluxes of nutrients in the northwestern Black Sea. Marine Chemistry, 62: 77-88
    46. Fettweis M., Sae M., Monbaliu J.: 1998. Seasonal, neap-spring and tidal variation of cohesive sediment concentration in the Scheldt Estuary, Belgium. Estuarine Coastal and Shelf Science. 47,21-36.
    47. Fox, L. E.: 1993.The chemistry of aquatic phosphate: inorganic processes in rivers. Hydrobiologia 253, 1 -16.
    48. Gessner, F., 1960. Untersuchungen uber den phosphathathaushalt des Amazonaz Intern. Rev. Gesamten Hydrobiol. 45, 339-345
    49. Giblin,A.B.,1997. Benthic metabolism and nutrient cycling in Boston Harbor,Massachusetts.Estuaries, 20(2): 346-364
    50. Graham, W.F., Duce, R.A., 1979. Atmospheric pathways of the phosphorus cycle. Geochim. Cosmochim. Acta 43,1195-1208.
    51. Graham, W.F., Duce, R.A., 1981. Atmospheric input of phosphorus to remote tropical island. Pac. Sci. 35, 241-255
    52. Graham, W.F., Duce, R.A., 1982. The Atmospheric transport of phosphorus to the Western North Atlantic. Arm. Environ. 16, 1089-1097.
    53. Gregor, B., 1970. Denudation of the continents. Nature 228, 273-275.
    54. Gong, G.C., Liu, K.K., 1995. Summer time hydrography and Tsungai, S., Iseki, K., Koike, T., Oba, T., Global Fluxes of Carbon and its Related Substances in the Coastal Sea-Ocean-Atmosphere System. M&J Intenations, Yokohama, Japan, pp, 6-52
    55. Grayson, R.B., Gippel, C.J., Finlayson, B.L., 1997. Catchment-wide impacts on water quality: the use of 'snapshot' sampling during stable flow. J. Hydrol. 199,121-134,
    56. Grabemann I., Uncles R. J., Krause G., et al.: 1997. Behaviour of turbidity maxima in the Tamar (UK) and Weser (FRG) Estuaries. Estuarine Coastal and Shelf Science. 45(2),235-246.
    57. Honeyman, B. D., Santschi, P. H.: 1988. Metals in aquatic systems. Limnol. Sci. Technol. 22, 862-871
    58. Hansen, A.L., Robinson, R.J., 1953. The determination of organic phosphorus in seawater using perchloric acid oxidation. J. Mar. Res. 12, 31-42
    59. Howarth, R.W., Jensen, H.S., Marino, R., Postma, H., 1995. Transport to and processing of P in nearshore and oceanic waters. In Tiessen, H. (Ed.), Phosphorus in the Global Environment. Wiley, New York, pp. 323-328.
    60. House, W.A., Jickells, T.D. Edwards, A.C., et al., 1998. Reactions of phosphorus with sediments. Soil Use and Management. Special Issue 14, 1-9
    61. Hutchins, D.A., Bruland, K.W., 1998. Iron-limited diatom growth and Si:N ratios in a coastal upwelling regime. Nature 400, 659-661.
    62. Ingall, E.D., Van Capellen, P., 1990. Relation between sedimentation ate and burial of organic phosphorus and organic carbon in marine sediments. Geochim. Cosmochim. Acta 54, 373-386
    63. Ichikawa, H., Chaen, M., 2000. Seasonal variation of heat and freshwater transports by the Kuroshio in the East China Sea. Journal of Marine System 24, 119-229.
    64. Jahnke, R.A., 1996. The global ocean flux of particulate organic carbon: Areal distribution and magnitude. Glob. Biogeochem. Cycles 10, 71-88
    65. Judson, S., 1968. Erosion of the land. Am. Scientist 56, 356-374.
    66. Justic, D., Rabalais, N.N., Turner, R.E., et al., 1995. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Est. Coastal Shelf Sci. 40, 339-356
    67. Karl, D.M, Letelier, R., Tupas, L., et al., 1997. The role of nitrogen fixation in biochemical cycling in the subtrophical North Pacific Ocean. Nature 388, 533-538 Ormaza, F.I., Statham, P.J., 1991. The determination of dissolved inorganic phosphorus in natural waters at nanomolar concentrations using a long capillary call detector. Anal. Chim. Acta 244, 63-70
    68. Koroleff, F., 1983. Determination of nutrients. In: Grasshoff, K., Ehrherd, M., Kremling, K. (Eds.), The Enzymes. Academic Press, New York, pp. 305-346
    69. Krasshoff, K., Ehrhardt, M., Kremling, K.: 1999. Methods of Seawater Analysis. Verlag Chemie
    70. .Krom, M.D., Berner,R.A., 1980. Adsorption of phosphate in anoxic marine sediments. Limnol. Oceanogr. 25, 797-806
    71. Katrin, T., 2002. Phytoplankton, pelagic community and nutrients in deep oligotrophic alpine Lake: ratios as sensitive indicators of the use of P-resources. Water Research 37, 1583-1592.
    72. Lebo, M.E, Sharp, J.H.: 1992. Modeling phosphorus cycling in a well mixed coastal plain estuary. Estuarine, Coastal and Shelf Science 35, 235-252.
    73. Lewis, B. L., Landing, W. M, 1991. The biogeochemistry of manganese and iron in the Black Sea. Deep Sea Res., 38: 773-803
    74. Liu, S. M., Zhang, J., Li, D. J.: 2004. Phosphorus cycling in sediments of the Bohai and Yellow Seas. Estuary, Coastal and Shelf Science, 59, 209-218.
    75. Liu, Z., Wei, H., Liu, GS., Zhang, J., 2004. Simulation of water exchange in Jiaozhou Bay by average residence time approach. Estuary, Coastal and Shelf Science 61,25-35.
    76. Liu, S.M., Zhang, J., 2000. Chemical oceanography of nutrient elements in the Bohai Sea, Yellow Sea and East China Sea. Marine Science Bulletin 2, 76-85.
    77. Liu, S.M., Zhang, J., Chen, H. T., et al., 2001. Nutrients in the Changjinang and its tributaries. Biogeochemistry. 62, 1-18.
    78. Lancelot, C, Billen, G, Sournia, A., et al., 1987. Phaeocystis blooms and nutrient enrichment in the contiental coastal zone of the North Sea. Ambio 16, 38-47
    79. Lee, T., Barg, E., Lal, D., 1992. Techniques for extraction of dissolved inorganic and organic phosphorus from large volumnes of seawater. Anal. Chim. Acta 260,113-121
    80. Michael, R. P., Martin, T. A.: 1997. Seasonal variability in phosphorus speciation and deposition in a calcareous, eutrophic lake. Marine Geology, 139, 47-59.
    81. Morris, A.: 1986. Removal of trace metals in the very low salinity zone of the Tamar estuary England. Sci. Total Environ. 49, 297-304.
    82. Masahiro, S., Ellery D. I., 2001. Concentrations of lipid phosphorus and its abundance in dissolved and paniculate organic phosphorus in coastal seawater. Marine Chemistry 75, 141-149.
    83. Millward,GE., Turner, A., 1995. Trace metals in estuaries. In Trace Elements in Natural Waters (Salbu, B. & Steinnes, E., eds). CRC Press, Boca Raton, FL, pp. 223-25.
    84. Mach, D.L., Ramirez, A., Holland, H.D., 1987. Oceanic phosphorus and carban in marine sediments. Am. J.
     Sci. 278, 245-273
    85. Macintyre, H.L., Geiger, R.J., Miller, D.C.: 1996. Microphytobenthos: The ecological role of the Nisecret garden of unvegetated, Shallow-water marine habitats. I. Distribution, Abundance and primary production. Estuaries, 19, 186-201.
    86. Martin, J.M., Meybeck, M.: 1979. Elemental mass-balance of material carried by major world rivers. Marine Chemistry 7, 173-206.
    87. Mayer, L.M., Gloss, S.P., 1980. Buffering of silica and phosphate in a turbid river. Limnol. Oceanogr. 25, 12-22
    88. Menzel, D.W., Corwin, N., 1965. The measurement of total phosphorus in seawater based on the liberaion of organically bound fractions by persulfate oxidation. Limnol. Oceanogr. 10, 280-282
    89. Meybeck, M., 1982. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 282, 401-450.
    90. Mortimer, C.H., 1971. Chemical exchanges between sediments and water in the Great Lakes-speculation on probable regulatory mechanisms. Limnol. Oceanogr. 16, 387-404
    91. Nixon, S.W., 1995. Coastal marine eutrophication: a definition. Social causes, and future concerns. Ophelia 41, 199-219
    92. Nixon, S.W., Ammerman, J.W., Atkinson, L.P. et al, 1996. The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. The Netherlands:Kluwer Academic Publishers, 141-180.
    93. Nixon, S. W., Oviatt, C, Hsle, S.S. 1976. Nitrogen regeneration and the metabolism of coastal marine bottom communities. The symposium of the British Ecological Society, Blckwell: Oxford, 269-283
    94. Olsen, C. R., Cutshall, N. H., 1982. Pollutant-particle associations and dynamics in coastal marine enviroment: A review, Marine Chemistry 11, 501-533.
    95. Osmond, R, 1887. Surune reaction pouvant servir on dosage colorimetrique du phospore dans le fonts, les acrers. Bull. Soc. Chem. Paris 47, 745-748
    96. Prastka, K., Sanders, R., Jickrl, T., 1998. Has the role of estuaries as sources or sink of dissolved inorganic phosphorus changed over time ? Results of a Kd study. Marine Pollution Bulletin 36, 718-728.
    97. Paerl, H.W., 1985. Enhancement of marine primary production by nitrogen enriched acid rain. Nature, 315, 747-749.
    98. Patrick, W.H., Khalid, R.A., 1974. Phosphate release and sorption by soils and sediemnts: Effects of aerobic and anaerobic conditions Science 186, 53-55
    99. Ridal, J.J., Moore, R.M., 1990. A re-examination of the measurement of dissolved organic phosphorus in seawater. Mar. Chem. 29, 19-31
    100. Redfield, A.C., Ketchum, B.H., Richards, F.A., 1963. The influence of organisms on the composition of seawater. In: Hill, M.N.(Ed.), The Sea. Interscience. pp. 26-27
    101. Reimers, C.E., Ruttenberg, K.C., Canfield, D.E., et al., 1996. porewater pH and authigenic phases formed in
     the uppermost sediments of the Santa Barbara Basin. Geochim. Cosmochim. Acta 60, 4037-4057
    102. Romakevich, E.A., 1984. Geochemistry of Organic Matter in the Ocean. Springer Verlag, New York, 334 pp
    103. Ruttenburg, K.C., 1993. Reasscement of the oceanic residence time of phosphores . Chem. Geol. 104, 405-409
    104. Schenau, S.J., De Lange, GJ.:2001. Phosphorus regeneration vs. burial in sediments of the Arabian Sea. Marine Chemistry 75,201-217.
    105. Shen, Z.L.: 2001. Historical changes in nutrient structure and its influences on phytoplankton composition in Jiaozhou Bay, Estuarine Coastal and Shelf Science 52, 211-224.
    106. Sun, Y.L., Sun, C. Q., Wang, X. C, Tian, H., 1994. Numerical modeling of the circulation and the pollutant dispepsion in Jiaozhou Bay, Journal of Ocean University of Qingdao, 105-119.
    107. Sharp, J.H., Culberson, C.H., Church, T.m.,1982. The chemistry of the Delaware estuary. General considerations. Limnology and oceangraphy 27, 1015-1028.
    108. Seitzinger, S.P., Kroeze, C, 1987. Global distribution of noyrous oxide production and N inputs in freshwater and coastal marine ecosystems. Global Biogeochemical Cycles. 12, 93-113.
    109. Smil, V., 1990. Nitrogen and phosphorus. In The Earth as Transformed by Human Action, pp. 423-436, eds B.L. Turner, W.C.Clark, R.W. Kates, J.F., Richards, J.T. Mathews and W.B. Meyer.Cambridge University Press, Cambridge, U.K.
    110. Smith, R.E., Harrison, W.G, Harris, L., 1985. Phosphorus exchange in marine microplankton communities near Hawaii. Mar. Biol. 86, 75-84
    111. Stefansson, U., Richard, F.A., 1970. Processes contributing to the nutrient distributions off the Columbia River and Strait of Juan de Fuca Limnol. Oceanogr. 8, 394-410
    112. Strickland, J.D.H., Austin, K.H., 1960. On the forms, balance and cycle of phosphorus observed in the coastal and oceanic waters of northeastern Pacific. J. Fish. Res. Can. 17, 337-345
    113. Strickland, J.D.H., Parson, T.R., 1972. A practical handbook of seawater analysis. Fisheries Research Board of Canada, Ottawa, pp. 45-46
    114. Stirling, H.P., Wormald, A.P., 1977. Phosphate/Sediment interaction in Tolo and Long Harbours, Hongkong and its role in estuarine phosphorus availability Estuarine Coastal. Mar. Sci. 5, 631-642
    115. Stumm,W., Morgan,J., 1970. Case studies: Phosphorus, Iron and Manganese In Stumm, W. and J. Morgan (Eds.) Aquatic Chemistry, Academic 514-525
    116. Turner, A., Tyler, A. O.: 1997. Modeling adsorption and desorption processes in estuaries in Biogeochemistry of Intertidal Sediments, pp. 42-58, eds T. D.Jickells and J. E. Rae. Cambridge University Press, Cambridge, U. K.
    117. Turner, A., Millward, G E., Schuchardt, B., 1992. Trace metal distribution coefficients in the Weser Estuary. Continental Shelf Research 12, 1277-1292.
    118. Turner, A.,1996. Trace metal partitioning in estuaries: importance of salinity and particle concentration. Marine Chemistry 54, 27-39.
    119. Tanaka, K., 1988. Phosphate adsorption and desorption by the sediment in the Chikugo River Estuary, Japan Bull. Seikai Reg.Fish res. Lab. 66, 1-12
    120. Treguer, P., Nelson, D.M.,et at., 1995. The silica balance in the world ocean: a re-estimate. Science, 268, 375-379.
    121. Tribble, J.S., Avidson, R.S., Lane, M., 1995. Crystal chemistry and thermodynamic and kinetic properties of calcite, dolomite, apatite, and biogenic silica: applications to petrologic problems. Sedim. Geol. 95, 11-37
    122. Tyrell, T., 1999. The relative influence of nitrogen to phosphorus on oceanic primary production. Nature 400, 525-531
    123. Wollast, R., 1982. Behaviour of organic carbon, nitrogen and phosphorus in the Scheldt estuary. Thalassia afugoslavica 18, 11-34.
    124. White, R.E., Taylor, A.W.,1977. Effect ofpH on phasphate adsorption and isotopic exchange in acid soil at low and high additions of soluble phosphate. J.Soil Sci. 28, 48-61
    125. Williams, P.J., 1975. Biological and chemical aspects of dissolved organic material in sea water. 2nd edn. In: Rilry, J.P., Skirrow, G. (Eds,), Chemical Oceanography vol Academic Press, New York, 301 pp
    126. Zhang, J., 1996. Nutrient elements in large Chinese estuaries. Continental Shelf Research, 16(8), 1023-1045.
    127. Zhang, J., Chen, S.Z., Liu, S.M. et al., 1999. Factors influencing changes in rainwater composition from ruban versus remote regions of the Yellow Sea. Journal of Geophysical Research. 104, 1631-1644.
    128. Zhang, J., 1996. Nutrient elements inmlarge Chinese estuaries. Continental Shelf Research. 16(8), 1023-1045.
    129. Zwolsman, J.J.G., 1994. Seasonal variability and biogeochemistry of phosphorus in the Scheldt Estuary, south-west Netherland. Estuarine, Coastal and Shelf Science 39, 227-248.
    130.陈立奇,杨旭林,杨荣坤等,1992。黑潮海域上空气溶胶化学特征。黑潮调查研究文选(四),195-307
    131.陈洪涛,陈淑珠,张经等,2002.南黄海水中各种形态磷的分布变化特征.海洋环境科学,21(1),9-13
    132.东野脉兴,1996.海洋中磷的循环与沉积作用.化工矿产地质,18(3),191-194
    133.顾德宇,汤荣坤,余群,1995.大亚湾沉积物间隙水的无机磷硅氮营养盐化学.海洋学报,17(5):73-80
    134.顾宏堪,李国基,1979.胶洲湾底质溶液中的氮和磷.海洋与湖沼,10(2):103-111
    135.郭玉洁,杨责禹:1992.浮游植物.胶州湾生态学和生物资源.北京:科学出版社,136-169.
    136.焦念志,李德尚,1989.悬浮沉积物对磷酸盐的吸附和释放及藻类对磷的利用.青岛海洋大学学报,19,27-34
    137.李徽翡,赵保仁,2001.渤、黄、东海夏季环流的数值模拟.海洋科学,25(1):28-32
    138.廖先贵,张湘君,1984.渤海湾间隙水的地球化学特征.海洋学报,6(5):615-625
    139.刘东艳,孙军,陈洪涛,张利永:2003.2001年夏季胶州湾浮游植物群落的结构特征.青岛海洋大学学 报.33(3),366-374.
    140.刘东艳.孙军,钱树本:2002.胶州湾浮游植物研究Ⅱ环境因子对浮游植物群落变化的影响.青岛海洋大学学报,32(3),415-421.
    141.刘福寿,王揆洋:1992.胶州湾沿岸河流及其地质作用.海洋科学,1,25-27.
    142.刘素美,张经,于志刚等,J 999.渤海莱州湾沉积物-水界面溶解无机氮的扩散通量.环境科学,20(2):12-16
    143.刘素美,2000.黄、渤海沉积物-水界面营养盐的交换及其质量平衡.青岛海洋大学博士学位论文.
    144.戚晓红,刘素美,张经等,2003.东海赤潮高发区沉积物营养盐再生速率的研究.应用生态学报,14(7),1112-1116.
    145.丘耀文,王肇鼎,高红莲,彭云辉,1999.大亚湾养殖水域沉积物-海水界面营养盐扩散通量.热带海洋,18(3):83-89
    146.任玲,张曼平,孙军等,2003.胶州湾内外水体部分化学、生物因子的调查分析.青岛海洋大学学报,33(4),557-564.
    147.沈志良,陆家平,刘兴俊,1991.黄河口附近海区沉积物间隙水中的营养盐.海洋学报,13(3):407-411
    148.沈志良,陆家平,刘兴俊,1987.长江下游无机氮和磷酸盐的分布及其河口的转移过程.海洋科协集刊,28,69-77
    149.沈志良,陆家平,刘兴俊.黄河口附近海区沉积物间隙水中的营养盐.海洋学报,1991,13(3):407-411
    150.孙湘平,1987.东海黑潮表层流路的初步分析.黑潮调查研究论文集,海洋出版社,1-14
    151.唐启升,苏纪兰,2000.中国海洋生态系统动力学研究.北京:科学出版社,150-153
    152.万小芳,吴增茂等,2002.南黄海和东海海域营养盐等物质大气入海通量的再分析,海洋环境科学,21(4),14-18.
    153.王荣,焦念志,李超伦等:1995.胶州湾的初级生产力和新生产力.海洋科学集刊,36,181-194.
    154.吴玉霖,傅月娜,张永山等,2004.长江口海域浮游植物分布及其与径流量的关系.海岸与湖沼,25(3),246-251
    155.徐韧.长江口及其临近海域赤潮管理基本分析.海洋调查管理,1994,11(4):36-38
    156.杨世伦,孟翊,张经等,2003.胶州湾悬浮体特征及其对水动力和排污的响应.科学通报,48,2493-2498.
    157.张国森,陈洪涛,张经等,2003.长江口地区大气湿沉降中营养盐的初步研究.应用生态学报,14(7),1101-1116.
    158.赵亮,魏皓,赵建中,2002.胶州湾水交换的数值研究.海洋与湖沼,33(1),23-27.
    159.郑全安,吴隆业:1992.胶州湾遥感研究Ⅱ.动力学参数计算.海洋与湖沼,23(1),1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700