马尾松二代育种亲本选择及种子园交配系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马尾松(Pinus. massoniana)分布广,生长快,耐干旱瘠薄,是我国南方山地主要针叶造林树种之一,广泛用于制浆造纸、建筑用材、采脂等,支撑着我国众多的造纸、木材加工、林产化工等产业发展。本文利用已达1/2轮伐期的巢式交配设计的双亲控制授粉家系遗传测定林,进一步揭示了生长、形质和材性性状所受的遗传控制方式,并为增补二代核心育种亲本筛选了一批速生优质的杂交组合和个体;其次,利用现有二代育种群体及创制的三代育种新种质,揭示了二代育种亲本生长、开花结实特性及与其遗传背景的相关性,探索了三代新种质苗期生长所受遗传控制式样,以为二代种子园建园亲本选择和强杂种优势新种质创制的二代亲本选配提供理论依据和指导;第三,针对国内较早建立且已进入正常开花结实期的二代无性系种子园,研究和揭示了亲本无性系生长、分枝及开花结实的遗传变异规律,了解了二代种子园遗传交配系统及遗传多样性状况,探索了无性系开花结实与种子园交配系统和遗传多样性的相关性,以期为马尾松二代种子园营建和优质高产的遗传经营管理提供重要的科学理论依据。主要研究结果如下:
     1、利用12年生的马尾松巢式交配设计的遗传测定林材料研究表明,除树干通直度外,不同杂交组合间、父本间以及相同父本不同母本间的生长与木材基本密度等存在显著的遗传差异。胸径、树高和单株材积及树干圆满度同时受到父本和母本效应的影响,且两者效应差异较小,而木材基本密度则主要受母本效应的影响,其母本效应是父本效应的1.56倍。马尾松胸径和木材基本密度以加性效应控制为主,显性效应次之,而树高、单株材积和树干圆满度几乎完全由加性效应控制,可依据亲本表现对其子代进行预测。比较分析发现,不同杂交组合和父本无性系其生长与木材基本密度的相关性较小,速生的杂交组合和父本无性系并不一定具有较低木材基本密度。各杂交组合生长表现与父本无性系GCA之间相关性不明显,但选配GCA高的父本无性系将会提高获得优良组合的机率。以干物质积累量和胸径等为选择指标,分别选出纸浆纤维材和锯材各10个优良杂交组合,及17个和13个优良单株(即二代育种亲本)。
     2、51个马尾松二代育种亲本无性系,7年树龄平均树高、胸径和材积分别为5.53 m,9.05 cm和0.021 m~3,马尾松二代育种亲本生长性状总体上优良,但生长性状在亲本无性系之间存在显著差异,表明二代育种群体具有丰富的遗传变异。对进入开花结实盛期的39个无性系调查发现,开花、结实等生殖性状在不同亲本无性系之间的变异程度高于生长性状。基于主要生长和生殖性状,将39个亲本无性系聚在4个类群,不同类群存在显著性状差异。类群1生长性状总体较优,雌球花、球果量也较多。类群2生长性状总体较差,开花、球果量也较少。类群3生长性状较优、雄球花数量较多,但雌球花、球果数量较少。类群4生长性状总体较差,但雌球花、球果数多。无性系的雌球花、球果数与生长量呈弱度负相关。39个亲本无性系中,共选出28个生长、生殖性状较为均衡(生长量、开花结实量均在中等或中等以上)的无性系,可将这些无性系作为候选优良亲本,结合亲本配合力的测评,从中选择优良的杂交亲本及二代种子园的建园材料。
     3、15个ISSR标记在36个二代亲本无性系中检测到,Nei’s基因多样度(h)为0.328,Shannon信息多样性指数(I)为0.476,亲本间分子遗传距离的范围是0.24~0.82,平均为0.414,在分子水平上证明马尾松二代育种群体遗传多样性较高,具有较好的高世代遗传改良潜力。基于Nei’s无偏遗传距离进行UPGMA聚类,36个无性系中的35个聚在5个类群内,聚类结果与马尾松二代亲本的遗传背景、系谱关系及产地纬度部分吻合。综合认为,在兼顾亲本配合力测定和遗传背景的基础上,优先选配来自不同聚类类群且在一定遗传距离范围内(0.264~0.529)的分子遗传距离较大的杂交亲本,将更利于提高子代的生长表现和杂种优势程度。
     4、基于二代育种亲本创制的6×6半双列交配设计三代育种新种质的配合力分析表明,除苗高线性生长期(LGD)外,苗高、地径、苗高最大生长速率(MGR)、线性生长量(TLG)和线性生长速率(LGR)的GCA和SCA均差异显著或极显著,苗高、MGR、LGD和LGR以显性基因效应控制为主,加性基因效应次之,地径几乎完全由显性基因效应控制,而TLG受加性基因效应控制略大,可能与试验亲本经过GCA间接选择有关。与亲本经GCA初步测定的二代种质研究结果相比,马尾松三代种质苗木生长性状所受遗传控制式样变化较小,只是其SCA效应有了明显提高。在马尾松二代亲本选配中,应加强亲本间特殊配合能力的筛选,以创制优良的杂交组合。
     5、对于截干矮化马尾松二代无性系种子园,其雌、雄球花量及球果数在无性系内分株间差异不显著,但在无性系间均达极显著水平,其遗传变异系数变化在37.85%~53.50%,无性系重复力皆在0.71以上。根据开花结实的调查结果,种子园无性系主要聚为雌多雄少(偏雌)、雄多雌少(偏雄)、雌雄均多(偏中)和雌雄均少(偏少)4种类型,其分别占总无性系的25.00%、29.55%、38.64%和6.82%,种子园中20%的高产无性系提供了开花结实总量的41.27%~49.15%。相关分析结果认为,理想的截干矮化马尾松二代高产无性系母树的主要形态特征为:冠幅宽、分枝长、分枝角大、树冠宽卵圆形或圆球形。在种实性状上,除种子千粒重外,球果大小和出籽性状在母树树冠阴面与阳面间差异极显著,且均以树冠阳面高于阴面,说明充足的光照有利于提高种子园种子产量。
     6、12对SSR引物在马尾松二代无性系种子园中检测到,亲本和子代群体的总平均观测杂合度(Ho)、期望杂合度(He)及多态信息含量(PIC)分别为0.402、0.446和0.399。平均每个采种母树与22个父本产生子代。在自由授粉状态下,马尾松二代种子园自交率为1.56%,自交现象很弱,其交配方式以异交为主。绝大多数亲本的雄性繁殖适合度在1.00%~3.00%之间,平均为2.00%,形成6.4个后代。马尾松有效花粉的散布距离符合正态分布,其主要散布距离集中在0~90 m,而检测到的最大散布距离为185 m。种子园花粉污染率较低,仅为4.06%。总体上,树冠南面子代亲本交配距离较北面有增加的趋势,但树冠南、北面子代父本组成数并未表现某一明显的规律。
     7、马尾松二代种子园子代群体包含了亲本群体的所有等位基因,子代与亲本具有同样高的遗传多样性,子代群体的F为0.046,纯合子过剩的现象不明显;树冠北面子代遗传多样性并未因其雌、雄球花量较树冠南面的减少而有明显的降低;雌雄均衡型和偏雌型植株子代遗传多样性基本相当,以偏雌型植株子代略大,两者F均趋于零,基本符合哈温平衡;种子园多位点异交率为1.097,异交率较高,亲本的近交现象不显著(tm-ts=-0.031);树冠南面多位点与单位点异交率均高于树冠北面;多位点异交率在偏雌与雌雄均衡型植株中基本相当,雌雄均衡型植株并未因其雌、雄球花量比例较偏雌型植株减小而呈现异交率明显降低的现象,两种类型植株的近交指数均接近于零。整体而言,研究的马尾松二代种子园生产的良种在遗传多样性上并没有因亲本受人工选择强度的增加而降低,种子园在营建时家系选择和配置均比较成功,无性系间基因交流相对充分,亲本近交现象不明显。
Masson pine (P. massoniana) is one of the conifers native tree species in south china with better quality of fast growth, wide distribution and strong resistance, and used widely in papermaking, building and rosin. In this thesis, 12 years old (1/2 rotation) of P. massoniana with nested mating design was studied to reveal the mode of genetic control in growth and wood quality, some superior crossing combinations and superior individuals were screened for adding to second-generation breeding population of masson pine. The genetic variation of major growth and reproductive traits and the correlation with the genetic background of breeding parents were researched by breeding population and third-generation germplasm formulated by second-generation breeding parents, and the mode of genetic control in seedling growth were also investigated, which would provide theoretical basis and guidance for the selection of seed orchard parents and the formulation of excellent new germplasm based on the matching for second-generation parents. In addition, the genetic variation law of major growth, branching and reproductive traits was investigated in a dwarfed second generation clonal seed orchard of masson pine which had entered into normal flowering and seed setting stage, and the genetic mating system, genetic diversity and the correlation with flowering and fruiting traits were also analysised to provide important theories for genetic management in higher quality and yield of the second generation seed orchard of masson pine .The results are as follows:
     1. Male and female parents effects, additive effect and dominant effect of growth traits and wood basic density were investigated in a progeny test forestry of 12 years old of P. massoniana with nested mating design.The results showed that, except for stem straightness, there existed significant differences in growth rate and wood quality among the crossing combinations, male and female/male parents. Male and female parents effects worked on DBH, height, individual volume and stem fullness simultaneously, but the difference of effects was very little. For wood basic density, female parent effect was 1.56 times larger than male parents. DBH and wood basic density of P. massoniana were controlled by additive effect primarily, and then dominant effect, but height, individual volume and stem fullness were almost controlled by additive effect completely, progeny could be predicted by the performance of parents.The result of comparative analysis for growth and wood quality of crossing combinations and male parents clones showed that the correlation between growth and wood basic density was very little, for fast-growing male parents and crossing combinations, the wood basic density was not always low. The correlation between growth performance of crossing combinations and GCA of male parents was not obvious, but the probability to get superior crossing combinations would be raised through selecting male parent with high GCA to hybridizing. Ten superior crossing combinations and 17 and 13 superior individuals for pulp wood and saw timber were screened based on wood dry matter and DBH respectively.
     2. The average height, DBH and volume of tested 51 clones in the second generation breeding population were 5.53 m, 9.05 cm and 0.021 m3, respectively, the overall growth performance of masson pine was superior, and significant deviation in growth traits was detected between clones, phenotype genetic variation was abundant in the second generation breeding population. For reproductive traits such as cones number, the degree of variation was higher than growth traits such as height and DBH. Base on major growth traits and reproductive traits, the 39 tested clones were clustered into 4 groups, which exhibited large degree of variation in traits. Group 1 exhibited superior growth traits and large amount of female cones and young cones, whereas group 2 exhibited poor growth traits and cones amounts. In group 3, the growth traits and male cone amount was superior, but the female cone amount was poor. Group 4 exhibited poor growth traits but large amount of female cones and young cones. There was a weak negative correlation between growth traits and female cone amounts. From 39 tested clones, 28 superior clones were selected, which could be used for controlled pollination and seed orchard parents when combined the result of combining ability.
     3. 36 parental clones from the second generation breeding population of masson pine were assessed to detect their genetic variation at molecular level using 15 selected ISSR (inter-simple sequence repeat) markers, the Nei's genetic diversity was 0.328, the Shannon's information diversity index was 0.476, and the genetic distances ranged from 0.24~0.82 with an average genetic distance of 0.414, indicated that the genetic variation of the second generation breeding population was at high level, and had the potency for advanced-generation genetic improvement. The UPGMA clustering analysis based on genetic distance were done, the 36 clones was clustered into 5 groups, and the clustering was partially consistent with the background and genealogy of the clones. It was helpful for improving the growth performance and heterosis level of progenies to select cross parents from different groups and some genetic distance range (0.264~0.529) which had greater molecular genetic distance on the basis of the combining ability and background.
     4. Combining ability of seedling growth and shoot elongation parameters for the third generation germplasm of P. massoniana were investigated in a 6×6 half diallel cross design, which the parents were selected from the second generation breeding population. The result showed that, except for linear growth day(LGD), there existed significant differences in general combining ability (GCA) and specific combining ability (SCA) of seedling height, ground diameter, maximum growth rate (MGR), linear growth rate (LGR) and total linear growth (TLG), and the dominant gene effect was predominant over the additive gene effect for seedling height, MGR, LGR and LGD, especially for ground diameter, which was almost controlled by dominant gene effect completely, but for TLG, the additive gene effect was somewhat larger than dominant gene effect. The reason for this seemed to be that the indirect selection on GCA of growth had been made for mating parents.Compared to the second generation germplasm, which the mating parents had been indirect selected on GCA of growth, the change was little of genetic control model for this traits in the third generation germplasm, only the variance component of SCA had increased significantly. During the genetic improvement of the advanced generation in P. massoniana, the selection of SCA between parents should be strengthened, which would help to produce superior cross combinations.
     5. The genetic variation law of flowering and fruiting was investigated in the dwarfed second generation clonal seed orchard of P. massoniana which had entered into normal flowering and seed setting stage. The results showed that there existed significant differences in strobilus and cone production among the different clones, but there were not among clonal ramets, the genetic variation coefficient varied from 37.85% to 53.50%, and the clone repeatability was over 0.71. The clones could be clustered into four types, partial female type, partial male type, neutral type and few type according to the law of flowering and fruiting, which accounted for 25.00%, 29.55%, 38.64% and 6.82% respectively. About 20% high yield clones provided strobilus and cone for the whole seed orchard production from 41.27% to 49.15%. The results of correlation analysis showed that the optimum mother tree form traits of the dwarfed second generation seed orchard clones with high yield were as follows: larger crown, longer branch, flatter branch angle and wide egg-shaped crown or spheroidal crown etc.. Except for thousand-seed weight, there were significant differences between shaded halves and exposed halves of tree crown in the traits of cone and seed yield, and exposed halves was superior to shaded halves in the traits, which showed that ample illumination would help to improve the yield of seed orchard.
     6. The patterns of effective pollen dispersal were explored in an experimental population of the second generation clonal seed orchard of P. massoniana. The average observed and expected heterozygosity (Ho and He) are 0.402 and 0.446 respectively in experimental population. The average polymorphic information content (PIC) is 0.399. Every mother tree with 22 male parents produced progenies. The self-crossing rate reached 1.56% in open-pollination condition, and outcrossing was primary mating mode of the second generation clonal seed orchard of P. massoniana. The reproduction contribution was changed from 1% to 3% for the most of male parents, with average of 2.00% (produced 6.4 progenies). The most pollination events were detected in the seed orchard of P. massoniana ranged from 0 to 90 m, the maximum dispersal distance reached 185 m, and accord with normal distribution. The pollen contamination was only 4.06%. For the mating distance among parents, there was an increasing tend in the south progenies of crown compared with the north, but no obvious trend arised in the male parent numbers of the south and north progenies of crown.
     7. The level of genetic diversity in progeny population was the same as in maternal population in the second generation clonal seed orchard of P. massoniana, all alleles detected in progeny population were included in maternal population, there were not obvious surplus phenomenon of homozygotes in progeny population (F=0.047). The genetic diversity was not decreasing tend with reducing of strobilus in the north crown compared with the south crown. The progeny of neutral tree had the same level of genetic diversity as in the progeny of partial female tree, which the fixation index tended to be zero and accorded with Hardy-Weinberg equilibrium. The outcrossing rate of the seed orchard was very high, with 1.097, and biparental inbreeding was not significant (tm-ts=-0.031). The multilocus outcrossing rate and singlelocus outcrossing rate in the south crown were higher than the north crown. The multilocus outcrossing rate in progeny of partial female tree was the same as in progeny of neutral tree, and the outcrossing rate was not obvious decreasing tend with proportional reducing of female and male strobilus in neutral tree compared with partial female tree, which the fixation index tended to be zero. The level of genetic diversity and outcrossing rate in the second clonal seed orchard did not decrease with the increasing of artificial selection strength, gene exchange among clones was sufficient relatively, and biparental inbreeding was not significant.
引文
Baril CP,Verhaegen D,Vignern PH,et al.Structure of the specific combining ability between two species of Eucalyptus.Theoretical and Applied Genetics,1997,94(4):796~803
    Bilir N,Kang KS,Lindgren D.Fertility variation and effective number in the seed production areas of Pinus radiata and Pinus pinaster.Silvae Genetica,2003,52(2):75~77
    Boes TK,Brandle JR,Lovett WR.Characterization of flowering phenology and seed yield in a Pinus sylvestris clonal seed orchard in Nebraska.Canadian Journal of Forest Research,1991,21:1721~1729
    Botstein D,White RL,Skolnick M,et al.Construction of a genetic linkage map in man using restriction fragment length polymorphisms.American Journal of Human Genetics,1980,32(3),314~331
    Broeck AV,Cottrell J,Quataert P,et al.Paternity analysis of Populus nigra L. offspring in a Belgian plantation of native and exotic poplars.Annals of Forest Science,2006,7(63):783~790
    Brown AHD,Burton JJ,Jarosz AM.Isozyme analysis of plant mating systems.Dioscorides Press,1989,73~86
    Brown AHD.Genetic characterization of plant mating system in plant species.Sunderland :Sinauer Associate Inc,1990,43~63﹠145~162
    Burczyk J.Mating system variation in a scots pine clonal seed orchard.Silvae Genetica,1998,47(2–3):155~158
    Cervera MT,Storme V,Soto A.Intraspecific and interspecific genetic and phylogenetic relationships in the genus Populus based on AFLP markers.Theoretical and Applied Genetics,2005,111(7):1440~1456
    Chaix G,Gerber S,Razafimaharo V,et al.Gene flow estimating with microsatellites in a Malagasy seed orchard of Eucalyptus grandis.Theoretical and Applied Genetics,2003,107(4):705~712
    Denti D,Scheon DJ.Self-fertilization rates in white spruce:effects of pollen and seed production.Heredity,l988,79(4):284~288
    Devlin B,Roeder K,Ellstrand NC.Fractional paternity assignment,theoretical development and comparison to other methods.Theoretical and Applied Genetics,1988,76(3):369~380
    Diaz R,Merlo E.Genetic variation in reproductive traits in a clonal seed orchard of Prunus avium in Northern Spain.Silvae Genetica,2008,57(3):110~118
    Di-Giovanni F,Kevan PG.Factors affecting pollen dynamics and its importance to pollen contamination are view.Canadian Journal of Forest Research,1991,21:1155~1170
    EI-Kassaby YA,Parkinson J,Davitt WJB.The effect of crown segment on the mating system in a Douglas-fir(Pseudotsuga menziesii(Mirb)Franco)seed orchard.Silvae Genetica,1986,35(4):149~155
    EI-Kassaby YA,Rernolds KS.Reproductive phenology,parental balance and supplemental mass pollination in a sitka spruce seed orchard.Forest Ecology and Management,1990,31(1):45~54
    El-Kassaby YA,Stoehr MU,Reid D,et al.Clonal-row versus random seed orchard designs: interior spruce mating system evaluation.Canadian Journal of Forest Research,2007,37:690~696
    Erickson VT,Adams WT.Mating system among individual ramets in a Douglas-fir seed orchard.Canadian Journal of Forest Research,1990,20(10):1672~1675
    Farris MA,Mitton JB.Population density,outcrossing rate and heterozygote superiority in ponderosa pine.Evolution,1984,38(5):1151~1154
    Feng FJ,Zhao D,Sui X,et al.Study on mating system of P. koraiensis in natural population based on cpSSR technology.Advanced Materials Research,2011,183-184:700~704
    Fernandes L,Rocheta M,Cordeiro J,et al.Genetic variation,mating patterns and gene flow in a Pinus pinaster Aiton clonal seed orchard.Annals of Forest Science,2008,65(7):706~805
    Fu-Juan Feng,Xin Sui,Min-Min Chen,et al.Mode of pollen spread in clonal seed orchard of Pinus koraiensis.Journal of Biophysical Chemistry,2010,1(1):33~39
    Fyfe JL,Bailey NTJ.Plant breeding studies in leguminous forage crops.I:Natural cross-breeding in winter beans.The Journal of Agricultural Science,1951,41(4):371~378
    Gaiotto FA,Bramucci M,Grattapaglia D.Estimation of outcrossing rate in a breeding population of Eucalyptus urophylla with dominant RAPD and AFLP markers.Theoretical and Applied Genetics,1997,95(5-6):842~849
    Gerber S,Chabrier P,Kremer A.Famoz: a software for parentage analysis using dominant, codominant and uniparentally inherited markers.Molecular Ecology Notes,2003,3(3):479~481.
    Godt MJW,Hamrick JL,Edwards-Burke MA,et al.Comparisons of genetic diversity in white spruce(Picea glauca) and jack pine (P. banksiana) seed orchards with natural populations.Canadian Journal of Forest Research,2001,31:943~949
    Goto S,Miyahara F,Ide Y.Identification of the male parents of half-sib progeny from Japanese black pine (Pinus thunbergii Parl.) clonal seed orchard using RAPD markers.Breeding Science,2002,52:71~77
    Hansen OK,Kj?r ED.Paternity analysis with microsatellites in a Danish Abies nordmanniana clonal seed orchard reveals dysfunctions.Canada Journal of Forest Research,2006.36(4):1054~1058
    Jones ME,Shepherd M,Henry R,et al.Pollen flow in Eucalyptus grandis determined by paternity analysis using microsatellite markers.Tree Genetics﹠Genomes,2008,1(4):37~47
    Jose MA,Iban E,Silvia A,et a1.Inheritance mode of fruit traits in melon:heterosis for fruit shape and its correlation with genetic distance.Euphytica,2005,144(1):31~38
    Kalinowski ST,Taper ML,Marshall TC.Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment.Molecular Ecology,2007,16(5):1099~1106
    King JN,Carson MJ,Johnson GR.Analysis of disconnected diallel mating designs.Ⅰ:Results from a third generation progeny test of the new Zealand radiata pine improvement programme.Silvae Genetica,1997,47(2-3):80~87
    Kopp RF,Smart LB,Maynard CA.Predicting within-family variability in juvenile height growth of Salix based upon similarity among parental AFLP fingerprints.Theoretical and Applied Genetics,2002,105(1):106~112
    Korshikov II,Demkovich AE.Genetic polymorphism of plus-tree clones and their seed progeny in the scotch pine clone plantation.Cytology and Genetics,2010,1(44):28~36
    Kroon J,Wennstrom U,Prescher F,et al.Estimation of clonal variation in seed cone production over time in a scots pine seed orchard.Silver genetica,2009,58(1):53~62
    Ledig FT,Hodgskiss PD,Johnson DR.Genetic diversity,genetic structure and mating system of Brewer spruce,a relict of the arcto-tertiary forest.American Journal of Botany,2005,92(12):1975~1986
    Leite SMM,Bonine CA,Mori ES.Genetic variability in a breeding population of Eucalyptus urophylla.Silvae Genetica,2002,51(5-6):253~256
    Lewandowski A,Burczyk J.Mating system and genetic diversity in natural population of European larch and stone pine located at higher elevations.Silvae Genetica,2000,49(3):l58~l61
    Lexer CB,Heinze S,Gerber S,et al.Microsatellite analysis of maternal half-sib families of Quercus robur, pedunculate oak: II. inferring the number of pollen donors from the offspring,Theoretical and Applied Genetics,2000,100(6):858~865
    Lian CL,Miwa M,Hogetsu T.Outcrossing and paternity analysis of Pinus densiflora (Japanese red pine)by microsatellite polymorphism.Heredity,2001,1(87):88~98
    Marshall TC ,Slate J,Kruuk LE,et al.Statistical confidence for likelihood based paternity inference in natural populations.Molecular Ecology,1998,7:639~655
    Matziris D.Variation in cone production in a clonal seed orchard of black pine.Silvae Genetica,1993,42(2/3):136~141
    Meagher C.Analysis of paternity within a natural population of Chamaelirium luteum. I.Identification of most-likely male parents.American Naturalist,1986,128:199~215
    Meagher TR,Thompson E.Analysis of parentage for naturally established seedling of Chamaelirium luteum(Liliaceae).Ecology,1987,68:803~812
    Moriguchi Y,Tani N,Itoo S,et al.Gene flow and mating system in five Cryptomeria japonica D. Don seed orchards as revealed by analysis of microsatellite markers.Tree Genetics&Genomes,2005,1(4):174~183
    Moriguchi Y,Yamazaki Y,Taira H,et al.Mating patterns in an indoor miniature Cryptomeria japonica seed orchard as revealed by microsatellite markers.New Forests,2009,3(39):261~273
    Muona O.Population genetics in forest tree improvement.Plant population genetics,breeding and genetic resources.Sunderland:Sinauer Associates Inc,1990,282~298
    Murawski DA,Hamrick JL.The effect of the density of flowering individuals on the mating systems of nine tropical tree species.Heredity,1991,67(2):l67~174
    O’Connell LM,Viard F,Russell J,et al.The mating system in natural populations of western redcedar(Thuja plicata).Canadian Journal of Botany,2001,79(6):753~756
    Parantainen A,Pulkkinen P.Flowering and airborne pollen occurrence in a Pinus sylvestris seed orchard consisting of northern clones.Scandinavian Journal of Forest Research,2003,18(2):111~11
    Part D . Mating system in a clonal Douglas fir (Pseudotsuga menziesii (Mirb) Franco) seed orchard.II.Effective pollen dispersal.Annals of Forest Science,1995,52(3):213~222
    Pellmyr O,Massey LK,Hamrick J L,et al.Genetic consequences of specialization:yucca moth behavior and self-pollination in yuccas.Oecologia,1997,109(2):273~278
    Ritland K,Jain K.A model for the estimation of outcrossing rate and gene frequencies using a independent loci.Heredity,1981,47(1):35~52
    Ritland K . Multilocus mating system program MLTR v3.2 , 2008 ,http://genetics.forestry.ubc.ca/ritland/programs
    Robledo-Arnuncio JJ,Gil L.Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total-exclusion paternity analysis.Heredity,2005,94(1),13~22
    Schmidtling RC,Hipkins V.Genetic diversity in longleaf pine (Pinus palustris):influence of historical and prehistorical events.Canadian Journal of Forest Research,1998,28:1135~1145
    Schmidtling RC.Genetic variation in fruitfulness in a loblolly pine (pinus taeda L.) seed orchard.Silvae Genetica,1983,32(3/4):76~80
    Schnabel A,Hamrick JL.Understanding the population genetic structure of Gleditsia triacanthos L:the scale and pattern of pollen geneflow.Evolution,1995,49(5):921~931
    Sehoen DJ,Brown AHD.Whole-and within-flower self-pollination in Glycine argyrea and G.clandestine and the evolution of autogamy.Evolution,1991,45:1651~1665
    Shaw DV , Brown AHD . Optimum number of marker loci for estimating outcrossing in plant populations.Theoretical and Applied Genetics,1982,61(4):321~325
    Shaw DV,Kahler AL,Allard RW.A multilocus estimator of mating system parameters in plant populations.Proceedings of the National Academy of Sciences,1981,78(2),1298~1302
    Shen HH,Rudin D,Lindgren D.Study of the pollination pattern in a Scots pine seed orchard by means of isozyme analysis.Silvae Genetica,1981,30(l):7~15
    Smith DM.Maximum moisture content method for determining specific gravity of small wood samples.US Forest Service,Forest Products Laboratory,1954
    Smouse PE,Meagher TR.Genetic analysis of reproductive contributions in Chamaelirium luteum(L.) Gray(Liliaceae).Genetics,1994,136(1):3l3~332
    Snow AA,Lewis PO.Reproductive traits and male fertility in plants:empirical approaches,Annual review of ecology and systematics,1993,24:331~351
    Sorensen F.Estimate of self-fertility in coastal Douglas-fir from in breeding studies.Silvae Genetica,1971,20(4):115~120
    Sprague GF,Tatum LA.General and specific combining ability in single crosses of corn.Journal of the American Society of Agronomy,1942,34(4):923~932
    Teissicr DCJ.Breeding strategies with poplars in Europe.Forest Ecology and Management,1984,(8):33~39
    Teklewold A,Becker HC.Comparison of phenotypic and molecular distances to predict heterosis and F1 performance in Ethiopian mustard (Brassica carinata A.Braun).Theoretical and Applied Genetics,2006,112(4):752~759
    Watkins L,Levin DA.Outcrossing rates as related to plant density in Phlox drummondii.Heredity,1990,65(1):8l~89
    Whitehead DR.Wind pollination:some ecological and evolutionary perspectives.Orlando Florida: Academic Press,1983,97~108
    Woods JH , Heaman JC . Effect of different inbreeding levels on filled seed production in Douglas-fir.Canadian Journal of Forest Research,1989,19(1):54~59
    Yanchuk AD.General and specific combining ability from disconnected partial diallels of coastal douglas-fir.Silvae Genetica,1996,45(1):37~45
    Yeh FC,Yang R.Popgene, version 1.32.2000,http://www.ualberta.ca
    Yu CY,Hu SW,Zhao HX,et al.Genetic distances revealed by morphological characters,isozymes,proteins and RAPD markers and their relationships with hybrid performance in oilseed rape(Brassicanapus L.).Theoretical and Applied Genetics,2005,110(3):511~518
    Yu SB,Li JX,Xu CG,et a1.Identification of quantitative trait loci and epistatic interactions for plant height and heading data in rice.Theoretical and Applied Genetics,2002,104(4):619~625
    Zelener N,Poltri SNM,Bartoloni N,et al.Selection strategy for a seedling seed orchard design based on trait selection index and genomic analysis by molecular markers:a case study for Eucalyptus dunnii.Tree Physiology,2005,25(11),1457~1467
    Zhang QF,Zhou ZQ,YangGP,et a1.Molecularmarker heterozygosity and hybrid performance in indica and japonica rice.Theoretical and Applied Genetics,1996,93(8):1218~1224
    Zhang ZW,Sui JJ,Mei L,et a1.Pollen dispersal and its spatial distribution in a seed orchard of Larix kaempferi (Lamb)Carr.Silvae Genetica,2008,57(4–5):256~261
    Zhou Y,Bui T,Auckland LD.Undermethylated DNA as a source of microsatellites from a conifer genome.Genome,2002,45:91~99
    Zobel BJ,Talbert JT.Applied Forest Tree Improvement.USA:John Wiley,1984
    Clark,顾红雅,瞿礼嘉等.植物分子生物学实验手册.高等教育出版社﹠施普林格出版社,1998,1~21
    艾畅.马尾松无性系种子园遗传多样性及其自由授粉子代父本组成研究.南京林业大学硕士论文,2004,18~20
    艾畅,徐立安,赖焕林等.马尾松种子园的遗传多样性与父本分析.林业科学,2006,42(11):146~150
    包满珠.园林植物育种学.北京:中国农业出版社,2004
    陈家宽,杨继.植物进化生物学.武汉:武汉大学出版社,1994,232~280
    陈敬德.马尾松无性系种子园产量变异的研究.南京林业大学学报,1998,22(3):81~85
    陈小勇.自然植物种群的亲本分析及其在生态学研究中的应用.生态学杂志,1999,18(2):30~35
    陈小勇,宋永昌.黄山青冈(Cyclobalano Psisglanea)个体繁殖适合度.生态学报,2000,19(5):677~632
    陈小勇,宋永昌.自然定居青冈幼苗的亲本分析.武汉植物学研究,2001,8(3):174~180
    陈晓阳,沈熙环,杨萍等.林木种子园开花物候特点的研究.北京林业大学学报,1995,17(1):10~18
    陈晓阳,沈熙环.林木育种学.北京:高等教育出版社,2005
    陈友力.马尾松无性系种子园球花量变化研究.福建林业科技,2001,28(2):50~53
    陈岳武.杉木种子园花粉数量的研究.南京林业大学育种室阵岳武论文选集,南京:南京林业大学出版,1989,44~54
    崔党群.Logistic曲线方程的解析与拟合优度测验.数理统计与管理,2005,24(1):112~115.
    董贞荣,陈进明,王青锋.泽苔草交配系统的RAPD分析.武汉植物学研究,2006,24(2):167~170
    樊明亮.马尾松无性系种子园亲本及子代性状变异与亲本选择.南京林业大学硕士学位论文,2003
    方乐金,施季森.杉木种子园种子产量及其主导影响因子的分析.植物生态学报,2003,27(2):235~239
    方乐金,施季森.杉木种子园无性系结实稳定性的遗传变异.南京林业大学学报,2004,28(1):17~20
    郭华,王孝安,肖娅萍.植物交配系统及其在植物保护中的应用.西北植物学报,2003,23(5):852~859
    何田华,葛颂.植物种群交配系统、亲本分析以及基因流动研究.植物生态学报,2001,25(2)144~154
    黄双全,郭友好.传粉生物学的研究进展.科学通报,2000,45(3):225~237
    金国庆,秦国峰,周志春等.马尾松无性系种子园球果产量的遗传变异.林业科学研究,1998,11(3):277~284.
    金国庆,秦国峰,周志春等.马尾松无性系种子园结实初期异交水平分析.林业科学研究,2000,13(5):464~468
    金国庆,周志春,秦国峰等.马尾松种子园无性系结实与生长习性的关系.林业科学研究,2004,17(2):38~44
    金国庆,秦国峰,储德裕等.马尾松测交系杂交子代生长性状遗传分析.林业科学,2008,44(1):70~76
    金国庆,秦国峰,刘伟宏等.马尾松生长性状交配效应的遗传分析及杂交组合选择.林业科学, 2008,44(6):28~33
    孔繁玲.植物数量遗传学.北京:中国农业出版社,2006,115~285
    赖焕林.马尾松种子园交配系统研究.南京林业大学博士论文,1996.
    赖焕林,王明麻.马尾松人工群体交配系统研究.林业科学,1997,33(3):219~224
    李力,施季森,陈孝丑等.杉木两水平双列杂交亲本配合力分析.南京林业大学学报,2000,24(5):9~13
    李梅,甘四明.杉木杂交亲本分子遗传变异与子代生长相关的研究.林业科学研究,2001,14(1):35~40
    李梅,施季森,李发根.杉木第2代育种群体优良基因型的RAPD遗传变异.林业科学,2007,43(12):50~55
    李善文,张志毅,于志水等.杨树杂交亲本分子遗传距离与子代生长性状的相关性.林业科学,2008,44(5):150~154
    李悦,张春晓.油松育种系统遗传多样性研究.北京林业大学学报,2000,22(1):12~19
    李周岐.鹅掌楸属杂种优势的研究.南京林业大学博士学位论文,2000
    李周岐,王章荣.林木杂交育种研究新进展.西北林学院学报,2001,16(4):93~96
    李周歧,王章荣.用RAPD标记进行鹅掌楸杂种识别和亲本选配.林业科学,2002,38(5):153~159
    梁一池.杉木配合力第一轮回的选择:Ⅰ遗传参数估计及配合力效应分析.福建林学院学报,1999,19(3):193~196
    刘青华,金国庆,储德裕等.基于马尾松测交系子代的生长、干形和木材密度的配合力分析.南京林业大学学报,2011,35(2):8~14
    马常耕.从世界杨树杂交育种的发展和成就看我国杨树育种研究.世界林业研究,1994,(3):23~29
    马常耕.我国杨树杂交育种的现状与发展对策.林业科学,1995,31(1):60~66
    冒维维,高红胜,薄天岳.菜薹雄性不育相关基因的ISSR分子标记筛选.分子植物育种,2009,7(1):40~44
    秦国峰,周志春,金国庆.马尾松优树自由授粉家系的生产力评价.林业科学研究,1997,10(5):472~477
    沈熙环.林木育种学.北京:中国林业出版社,1990,135~152
    沈熙环.种子园技术.北京:科学技术出版社,1992
    沈熙环.创造条件向高世代育种发展:种子园优质高产技术.北京:中国林业出版社,1994
    苏晓华,张绮纹.世界扬树杂交育种亲本利用的进展及对策.世界林业研究,1992,(2):29~33
    隋心.红松无性系种子园子代的父本分析及遗传多样性的研究.东北林业大学硕士论文,2009
    孙亚光.利用SSR分子标记检测鹅掌楸属树种交配格局与基因流,南京林业大学硕士论文,2007,8~9
    孙亚光,李火根.利用SSR分子标记检测鹅掌楸雄性繁殖适合度与性选择.分子植物育种,2008,6(1):79~84
    孙亚光,李火根,张红莲.鹅掌楸配子选择与雄性繁殖适合度.植物学报,2010,45(1):52~58
    覃开展,罗筱娥.马尾松种子园无性系生长结实规律研究.广西林业科学,2001,30(1):28~31
    谭健晖.马尾松种子园无性系开花习性研究.广西林业科学,2001,30(2):76~78
    谭小梅,金国庆,张一等.截干矮化马尾松二代无性系种子园开花结实的遗传变异.东北林业大学学报,2011,39(4):39~42
    王崇云,党承林.植物的交配系统及其进化机制与种群适应.武汉植物学研究,1999,17(2):163~172
    王明庥.林木遗传育种学.中国林业出版社,2001,226~227
    王鹏良.马尾松无性系种子园多年份子代遗传多样性分析.南京林业大学硕士学位论文,2006
    王凭青,吴明生,王远亮.作物杂种优势预测与遗传机理的研究进展.作物杂志,2003,11~14
    王英强,张奠湘,陈忠毅.益智传粉生物学的研究.植物生态学报,2005,29(4)599~609
    王赵民,陈益泰.杉木主要生长性状配合力分析及杂种优势的利用.林业科学研究,1988,1(6):614~623
    王峥峰,彭少麟,任海.小种群的遗传变异和近交衰退.植物遗传资源学报,2005,6(1):101~107
    徐进,王章荣,陈亚斌等.马尾松种子园无性系结实量、种实性状及遗传参数的分析.林业科学,2004,40(4):201~205.
    徐树堂,尤国春,赵洪义.樟子松无性系种子园种子生产及其苗木培育.内蒙古农业大学学报,2005,26:(4):122~124
    续九如.林木数量遗传学.北京:高等教育出版社,2006
    薛康.油松开花结实规律的研究.北京林业大学学报,1992,14(1):34~38
    杨国梁,王军毅,孔杰等.罗氏沼虾大规模家系构建与培育技术研究.海洋水产研究,2008,29(3):62~66
    杨培华,樊军锋,刘永红等.油松种子园开花结实规律研究进展.西北林学院学报,2005,20(3):96~101
    杨培华,樊军锋,刘永红等.我国油松种子园研究现状.林业科技开发,2006,20(6):5~9
    姚文华,谭静,陈洪梅等.玉米杂种优势类群的研究进展.玉米科学,2006,14(5):30~34
    于飞,张庆文,孔杰等.大菱鲆不同进口群体杂交后代的早期生长差异.水产学报,2008,32(1):58~64
    喻方圆,陈幼生,肖石海等.杉木种子园球果产量预测方法的研究.林业科学,1997,33(3):225~233
    张爱民.植物育种亲本选配的理论和方法.北京:中国农业出版社,1994,1~12
    张大勇,姜新华.植物交配系统的进化、资源分配对策与遗传多样性.植物生态学报,2001,25(2):130~143
    张冬梅,李悦,沈熙环等.油松改良系统中的三种群体交配系统.北京林业大学学报,2000,5(3):13~18
    张冬梅,沈熙环,何田华.利用等位酶对油松无性系种子进行父本分析.植物生态学报,2001,25(2):166~174
    张冬梅,孙佩光,沈熙环等.油松种子园自由授粉与控制授粉种子父本分析.植物生态学报,2009,33(2):302~301
    张帆,毛盛贤.乌鸡的性状遗传率、遗传相关和杂种优势.首都师范大学学报,1996,17(2):79~83
    张华新,沈熙环.林木种子园生殖系统研究进展.林业科学,2002,38(2),l29~l34
    张建章,游昌顺.杉木半双列杂交后代生长性状的配合力分析.浙江林学院学报,1998,15(2):138~144
    张萍,周志春,金国庆等.木荷种源苗高生长参数变异研究.林业科学研究,2006,19(1):61~65
    张薇,龚佳,季孔庶.马尾松实生种子园遗传多样性分析.分子植物育种,2008,4(6):717~723
    张薇.马尾松实生种子园交配系统与遗传多样性分析.南京林业大学硕士论文,2008
    张薇,龚佳,季孔庶.马尾松实生种子园交配系统分析.林业科学,2009,45(6):22~26
    张向群.玉米自交系两种配合力在杂种一代的表现.作物学报,1987,13(2):135~142
    张一,储德裕,金国庆等.马尾松1代育种群体遗传多样性的ISSR分析.林业科学研究,2009,22(6):772~778
    张一,储德裕,金国庆等.马尾松亲本遗传距离与子代生长性状相关性分析.林业科学研究,2010,23(2):215~220
    张一,谭小梅,周志春等.马尾松二代育种亲本主要生长性状和ISSR遗传变异.分子植物育种,2010,3(8):501~510
    赵阿凤.马尾松无性系指纹图谱构建.南京林业大学硕士学位论文,2005
    赵素君,欧江涛,白文林.杂种优势遗传基础的研究进展.西南民族学院学报(自然科学版),2002,28(3):327~330
    赵颖,金国庆,周志春等.马尾松苗木生长和根系性状的GCA/SCA及磷素环境影响.林业科学,2009,45(6):27~33
    钟伟华.林木遗传育种实践与探索.广东科技出版社,2008,149~154
    周志春,金国庆,秦国峰.马尾松纸浆材重要经济性状配合力及杂种优势分析,林业科学,2004,40(4):52~57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700