MFeO_3基半导体材料制备及气敏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会生产力的发展及广大人们生活水平的提高,气敏传感器得到了越来越广泛的应用,半导体电阻式气敏传感器是目前应用最广泛的传感器之一,成为研究的热点。本研究分别采用无机盐溶胶-凝胶法制备了MFeO_3(M=Sm、La)薄膜,采用传统工艺制备旁热式烧结型元件。对制备过程和丙酮气敏性能进行了讨论,揭示了组成-工艺-结构-丙酮气敏性能的内在联系,并对两类结构的气敏性能做了比较。
     以Sm(NO_3)_3·6H2O(La(NO_3)_3·6H2O)、Fe(NO_3)_3·9H2O等无机盐为原料,以柠檬酸为络合剂,配制成浓度为0.3mol/L的前驱体溶胶,在Al2O3基片上经过浸渍-提拉、干燥、预处理和烧结等过程制备了高质量纳米晶钙钛矿相MFeO_3薄膜。用FT-IR吸收光谱分析了前驱体的结构,以TG-DSC分析讨论了前驱体在烧结过程中的变化,用XRD分析了晶相,并用SEM表征了薄膜的表面形貌。分析了掺杂MFeO_3薄膜的阻温特性,呈现半导体氧化物的特征,根据曲线计算出材料的导电激活能,与理论相符合。
     MFeO_3薄膜对低浓度丙酮气体有良好的敏感性能:SmFeO_3薄膜在测试温度为450℃时,对30ppm丙酮气体灵敏度达到20,响应时间和恢复时间分别为15s和16s;LaFeO_3薄膜的丙酮灵敏度比SmFeO_3薄膜偏高,灵敏度达到22.5,响应时间和恢复时间分别为30s和20s。从缺陷和载流子的性质入手讨论了MFeO_3薄膜的导电机制和气敏机理。深入研究了测试温度、气体浓度、掺杂和膜厚对材料性能的影响。针对烧结型传感器,系统研究了工作电压、玻璃料添加剂,贵金属Pt以及掺杂对元件电阻和气敏性能的影响,获得了气敏元件最佳性能条件为:测试电压为4.5V,掺入1mol%Pt的SmFeO_3元件对10ppm丙酮气体灵敏度达到3.2。
     比较MFeO_3薄膜和烧结型元件气敏性能发现,薄膜材料由于高的表面活性和比表面积,对丙酮的灵敏度更大。考察了两类材料的选择性、稳定性,并对MFeO_3材料的气敏机理进行了探讨。指出未来气敏器件的发展方向为薄膜型元件。材料方面选择在低温下具有变化范围小的低电阻的材料,通过微量掺杂等手段提高气敏元件的选择性。
With the improvement of social productivity and the life level of most people, gas sensors are used more and more widely. Semiconductor-typed gas sensor is one kind of most widely used gas sensors, which becomes a research hotspot at present. In this study, MFeO_3(M=Sm, La) thin films was prepared by inorganic salt sol-gel method; The indirectly heated and sintered type elements were prepared with traditional process. The synthetical processes and gas sensitive properties to acetone have been discussed. Relation of the composition, synthetical process, structure and sensitive property to acetone gas of LaFeO_3 thin films was investigated in this paper. The gas sensing properties of these two kinds of structures were compared.
     With citric acid used as complex agent , the precursor solution was prepared by dissolving Sm(NO_3)_3?6H2O(La(NO_3)_3?6H2O), Fe(NO_3)_3?9H2O and other inorganic salts into water, of which the concentration was 0.3mol/L. MFeO_3 thin films with perovskite structure nano-crystalline grains were fabricated after the dip-coating, drying, pre-heating and sintering. FT-IR, TG-DSC, XRD and SEM were used to analyze the precursor and the thin films. Resistance vs. temperature properties of MFeO_3 thin films were analyzed, which showed the characteristics of semiconductor. According to the curves the conducting activation energy was figure out, which was coincided with the theory.
     The MFeO_3 thin films exposed to low concentration acetone gas showed good sensing properties. The sensitivity of SmFeO_3 to 30ppm acetone gas was 20, the response time was 15s, and the recovery time was 16s at the testing temperature of 450°C. The sensitivity of LaFeO_3 thin film was higher. The sensitivity was 22.5, the response time and the recovery time were 30s and 20s respectively. Its conductive and sensitive mechanism was proposed, with the types and concentration of defects and conductive carrier discussed. The effects of testing temperature, gas concentration, doping and film thickness to the properties of MFeO_3 thin films were deeply studied. The effects of testing voltage, glass frit, noble metal Pt and doping to the properties of the indirectly heated and sintered elements were systematic studied. It was found that the SmFeO_3 element has optimal gas sensing properties to 10ppm acetone, which doped 1mol% Pt at testing voltage 4.5V.
     Comparing to the properties of the thin film and sintered elements, it was seen that the sensitivity to acetone of thin film was higher because of high surface activity and specific surface area. The selectivity, the stability and the gas sensing mechanisms of MFeO_3 was discussed. It is pointed that the developing direction of gas sensor is thin film kinds elements. Materials of low resistance at low temperature are selected, of which the selectivity is improved by little doping methods.
引文
[1]李平,余萍,肖定全,气敏传感器的近期进展,功能材料,1999,30(2): 126~128
    [2]陈长庆,胡明,吴霞宛,气敏传感器的发展,材料导报,2003,17(1):33~35
    [3]邵立勤,新材料领域未来发展方向,新材料产业,2004,(01):25~30
    [4] Braver P, Ann Phy, 1936,(25): 609~612
    [5] B. Bott, T. A. Jones, B. Mann, The detection and measurement of CO using ZnO single crystals, Sensors and Actuators, 1984, 5(1): 65~73
    [6] Y. Liu, W. Zhu, O. K. Tan et al, Structural and gas sensing properties of ultrafine Fe2O3 prepared by plasma enhanced chemical vapor deposition, Materials Science and Engineering B, 1997, 47(2): 171~176
    [7] Yuta Matsushima, Yukie Nemoto, Tsutomu Yamazaki et al, Fabrication of SnO2 particle-layer on the glass substrate using electrospray pyrolysis method and the gas sensitivity for H2, Sensors and Actuators B: Chemical, 2003, 96(1-2): 133~138
    [8] K.Park, D. J. Seo, Gas sensing characteristics of BaTiO3-based ceramics, Materials Chemistry and Physics, 2004, 85(1): 47~51
    [9] L. Chambona, A. Paulya, J. P. Germain et al, A model for the responses of Nb2O5 sensors to CO and NH3 gases, Sensors and Actuators B: Chemical, 1997, 43(1-3): 60~64
    [10] M. Ferroni, V. Guidi, G..Martinelli et al, Characterization of a nanosized TiO2 gas sensor, Nanostructured Materials, 1996, 7(7): 709~718
    [11] A. D. Brailsford, M.Yussouff, E. M. Logothetis et al, Experimental and theoretical study of the response of ZrO2 oxygen sensors to simple one-reducing-gas mixtures, Sensors and Actuators B: Chemical, 1997, 42(1): 15~26
    [12]刘迎春,叶湘滨,传感器原理、设计与应用,长沙:国防科技大学出版社,1997,212~218
    [13]马丽杰,日本气体传感器产业化发展现状,云南大学学报(自然科学版),1997,19(2):211~216
    [14] Bong-Ki Min, Soon-Don Choi, Undoped and 0.1wt% Ca-doped Pt-catalyzed SnO2 sensors for CH4 detection, Sensors and Actuators B: Chemical, 2005, 108(1-2): 119~124
    [15]刘文利,俞琳,高建华等,一种新型CO气敏双层薄膜材料,中国环境监测,2001,17(5):46~48
    [16]李平,余萍,肖定全,气体传感器的近期进展,功能材料,1999,30(2):126~128
    [17] Qinghai Wu, kwang-Man Lee, Chung-Chiun Liu, Development of chemical sensors using microfabrication and micromachining techniques, Sensors and Actuators B: Chemical, 1993, 13(1-3): 1~6
    [18] T. Matsumura, N. Sonoyama, R. Kanno et al, Lithiation mechanism of new electrode material for lithium ion cells—theα-Fe2O3-SnO2 binary system, Solid State Ionics, 2003, 158(3-4): 253~260
    [19] Jyh-Jier Ho, Y. K. Fang, K. H. Wu et al, High sensitivity ethanol gas sensor integrated with a solid-state heater and thermal isolation improvement structure for legal drink-drive limit detecting, Sensors and Actuators B: Chemical, 1998, 50(3): 227~233
    [20]滑春生,吴功园,Pd-MOSFET稳定性研究,电子,1990,(1):13~16
    [21] A. Fuchs, M. B?gner, T.Doll et al, Room temperature ozone sensing with KI layers integrated in HSGFET gas sensors, Sensors and Actuators B: Chemical, 1998, 48(1-3): 296~299
    [22]索辉,赵毅,阮圣平等,La0.7Sr0.3FeO3纳米晶薄膜的制备及FET式气敏元件的研制,功能材料,2000,(31):59~61
    [23]江舟,陈耐生,杨叔苓,酞菁配合物的结构和气敏性,结构化学,2001,20(5):331~338
    [24]谢丹,蒋亚东,姜健壮等,基于电荷流动晶体管的新型气敏传感器,半导体学报,2001,22(7):933~936
    [25]刘崇学,陈明光,贝承训等,气体传感器的发展概况和发展方向,计算机自动测量与控制,1999,7(2):54~56
    [26]陈威,王常珍,李光强等,LaF3固体电解质室温定氢的传感性研究,东北大学学报(自然科学版),1995,16(4):376~379
    [27]肖恺,闫一功,雷良才等,固态电解质氢传感器的研究进展,腐蚀科学与防护技术,2001,13(3):165~168
    [28]丰达明,化学传感器进展,广东有色金属学报,1995,5(2):155-160
    [29]王玉田,孟宗,刘卫东,环境监测与光纤传感器,世界科技研究与发展,2001,23(6):15~17
    [30] KLAINER S M, Environmental applications of fiher optic chemical sensors, Optical Chemical Sensors, 1991, 28(6):83~96
    [31]井口征士,传感工程,北京:科学出版社,2001,130~136
    [32] JIN W, STEWARR G, CULSHAW B, Source noise limitation in a fiber optics gas sensors using a broadband source, Applied Optics, 1994, 35(5): 55~62
    [33]赵平刚,陈丽华,白旭东等,石英谐振式CO2气敏元件,传感器技术,2001,20(9):30~31
    [34] M.Rapp, R. Stanzel, M. V. Schickfus, Gas detection in the ppb-range with a high frequency, high sensitivity surface acoustic wave device, Thin Solid Films, 1992, 210, 474~476
    [35]全宝富,邱法斌,电子功能材料及元器件,长春:吉林大学出版社,2001,83~110
    [36]杨芬,张鹏翔,浅谈钙钛矿气敏材料,云南冶金,2004,33(3):46~48
    [37]卢旭晨,钙钛矿型稀土复合氧化物薄膜合成及气敏性研究:[博士学位论文],天津,天津大学,1998
    [38]陆佩文,无机材料科学基础,武汉:武汉工业大学出版社,1996,43~44
    [39] Wang Yude, Sun Xiaodan, Li yangfeng et al, Perovskite-type NiSnO3 used as the ethanol sensitive material. Solid-state Electron, 2000, 44(11): 2009~2014
    [40]冯玉杰,蔡伟民,周定,BaPbO3的生成及EXAFS研究,无机化学学报,1998,14(3):272~275
    [41]夏熙,潘存信,固体反应法制备纳米LaCoyMn1-yO3系复合氧化物及其表征,应用化学,2001,18(2):96~99
    [42]郑文君,庞文琴,新型钙钛矿的水热合成和表征,无机材料学报,2000,15(2):275~280
    [43]傅希贤,孙艺环,王俊珍等,LaFel-xCuxO3光催化降解水溶性染料的活性,催化学报,1996,20( 6):623~627
    [44]蒋正静,戴洁,张志兰等,锌、镉掺杂纳米级钛酸铅的制备及对活性翠蓝的光催化降解,应用化学,2001,18(7):552~555
    [45]王晓萍,徐廷献,斐清钢,用可溶性无机盐制备薄膜,材料研究学报,1998,12(2):199~20
    [46]白树林,傅希贤,桑丽霞等,钙钛矿ABO3型复合氧化物的光催化活性变化趋势与分析,高等学校化学学报,2001,22(4):663~665
    [47] Enrico Traversa, Patrizia Nunziante, Masatomi Sakamoto et al, Thermal evolution of the nanosized LaFeO3 powers from the thermal decomposition of heteronuclear complex, La[Fe(CN)6].5H2O, Journal of Materials Research, 1998, 13(5): 1335~1344
    [48] Mria Cristina Carotta, Giuliano Martinelli, Yoshihiko Sadaoka et al, Gas-sensitive electrical properties of perovskite-type SmFeO3 thick films, Sensors and Actuators B, 1998, 48(1-3): 270~276
    [49]宋宽秀,傅希贤,单志兴等,用离子熔盐法制备光催化剂MTiO3(M=Mg,Ca,Sr,Ba),天津大学学报,1995,28(4):546~550
    [50]刘韩星,刘志坚,欧阳世翕,微波合成SrTiO3的反应机理,化学学报,1999,57:472~478
    [51]黄云辉,王哲明,朱淘等,自掺杂锰基氧化物La1-xMnO3+δ的电化学制备,高等学校化学学报,2001,22(1):6~9
    [52]卢旭晨,李佑楚,韩铠等,陶瓷薄膜制备及应用,材料导报,1999,13(6):35~38
    [53]陆裕东,王歆,庄志强,BaPbO3导电薄膜的制备、结构及性能研究,无机材料学报,2007,22(1):138~142
    [54] Zheng Hong, Sorensen O T, Integrated sensors based Mg-doped SrTiO3 fabricated by screen-printing, Sensors and Actuators B, 2000, 65(1-3): 299~301
    [55] M. Stojanovi?, R. G. Haverkamp, C. A. Mims et al, Synthesis and Characterization of LaCr1-xNixO3 Perovskite Oxide Catalysts, Journal of Catalysis, 1997, 166(2), 315~323
    [56] Galasso F S, Perovskites and High Tc Superconductors, New York: Gordon and Breach Science Publishers, 1990
    [57] Rao C N R, Chemistry of Oxides Superconductors, oxford: Blackwell Science Publications, 1998
    [58] Vanderah T A, Chemistry of Superconductors(Materials Preparation, Chemistry, Characterization and Theory), New Jersey: Noyes Publications, 1992
    [59] Acquarone M, High Temperature Superconductors (Models and Measurements), Singapore: World Scientific Publishing Co., 1996
    [60] Goodenough J B et al, Chemistry of High Temperature Superconductors, London: World Scientific, 1991
    [61]梁敬魁等,高Tc氧化物超导体系的相关系和晶体结构,北京:科学出版社,1994
    [62] Von Heomolt R, et al, Giant negative magnetoresistance in perovskitelike LaBaMnO3 ferromagnetic-film, Phys. Rev. Let., 1993, 71(14): 2331~2334
    [63] C. N. R. Rao, R. Mahesh, A. K. Raychaudhuri et al, Giant magnetoresistance, charge ordering and other novel properties of perovskite manganates, Journal of Physics and Chemistry of Solids, 1998, 59(4): 487~501
    [64] B. Raveau, A. Maignan, C. Martin, Colossal Magnetoresistance Manganite Perovskites: Relations between Crystal Chemistry and Properties, Chemistry of Materials, 1998, 10(10): 2641~2652
    [65] Kurt R. Kendall, Carlos Navas, Julie K. Thomas, Recent developments in perovskite-based oxide ion conductors, Solid State Ionics, 1995, 82(3-4): 215~223
    [66] Coey J M D, Mixed-valence manganites, Advances in Physics, 1999, 48(2): 167~172
    [67] N. N. Toan, S. Saukko, V. Lantto, Gas sensing with semiconducting perovskite oxide LaFeO3, Physica B, 2003, 327(2-4): 279~282
    [68] Maria Cristina, Carotta Giuliano Martinelli, Yoshihiko Sadaoka et al, Gas-sensitive electrical properties of perovskite-type SmFeO3 thick films, Sensors and Actuators B, 1998, 48(1-3): 270~276
    [69] Y. D. Wang, J. B. Chen, X. H. Wu, Preparation and gas-sensing properties of perovskite-type SrFeO3 oxide, Materials Letters, 2001, 49(6): 361~364
    [70] Hiromichi Aono, Enrico Traversa, Masatomi Sakamoto et al, Crystallographic characterization and NO2 gas sensing property of LnFeO3 prepared by thermal decomposition of Ln-Fe hexacyanocomplexes, Ln[Fe(CN)6].nH2O, Ln=La, Nd, Sm, Gd, and Dy, Sensors and Actuators B, 2003, 94(2): 132~139
    [71]牛新书,杜卫民,杜卫平等,NdFeO3纳米晶的合成及气敏性能,中国稀土学报,2003,21(5):550~553
    [72] Ling-bing Kong, Yu-sheng Shen, Gas-sensing property and mechanism of CaxLa1?xFeO3 ceramics, Sensors and Actuators B: Chemical, 1996, 30(3): 217~221
    [73] P. Ciambelli, S. Cimino, L. Lisi et al, La, Ca and Fe oxide perovskites: preparation, characterization and catalytic properties for methane combustion, Applied Catalysis B: Environmental, 2001, 33(3): 193~203
    [74]陈代荣,焦秀玲,缺陷化合物La2/3TiO3-λ(λ=0.000~0.046)粉末的水热合成,无机材料学报,1998,13(3):333~338
    [75]孙永安,孙立波,王显胜,稀土钙钛矿型LaMnO3+λ系列化合物的结构计算与分析,世界地质,2005,24(1):102~104
    [76]赵馨,杨秋华,崔津津,So1-Gel法低温合成SrFeO3-λ纳米晶的机理研究,硅酸盐通报,2007,26(4):636~639
    [77] Stojanovi? M, Haverkamp R G, Mimsc A et al, Synthesis and characterization of LaCr1-xNixO3 Perovskite oxide catalysts, Journal of Catalysis, 1997, 166(2): 315~323
    [78]李建平,微结构气敏传感器与电子鼻研究:[博士学位论文],北京,中国科学院电子学研究所,2000
    [79] PASIERB P, KOMORNICKI S, GAJERSKI R, Electrochemical gas sensor materials studied by impedance spectroscopy, Journal of Electroceramics, 2002, 8(1): 57~64
    [80] QUAH S, DANOWSKI K, PANTANO P, Therapeutic micro and nanotechnology Section: microwell array photoimprint lithography: micropost sensors and guidance of PC12 neurite process, Biomedical Microdevices, 2002, 4(3): 123~130
    [81]吴玉锋,田彦文,韩元山等,气体传感器研究进展和发展方向,计算机测量与控制,2003,11(10):731~734
    [82]黄剑锋,溶胶-凝胶原理与技术,北京:化学工业出版社,2005,58~60
    [83]侯峰,La-Ni-O系薄膜复合材料氧敏性能的研究:[博士学位论文],天津,天津大学,2001
    [84]杜希文,材料分析方法,天津:天津大学出版社,2006,166~195
    [85]古彦飞,络合-聚合法制备LaFeO3半导体薄膜及其丙酮气体敏感性能研究:[硕士学位论文],天津,天津大学,2005
    [86]全宝富,邱法斌,电子功能材料及元器件,长春:吉林大学出版社,2001,29~33
    [87] Maria Cristina Carotta, Giuliano Martinelli, Yoshihiko Sadaoka et al, Gas-sensitive electrical properties of perovskite-type SmFeO3 thick films, Sensors and Actuators B, 1998, 48(1-3): 270~276
    [88] A. W. Adamson(著),顾惕人译,表面的物理化学,北京:科学出版社,1984~1985
    [89]程传煊,表面物理化学,北京:科学技术文献出版社,1995
    [90]袁庆华,李蕾,刘文利等,纳米金属氧化物气敏薄膜厚度效应的实验规律和理论,实验室研究与探索,2005,24(11):22~25
    [91] Ogawa H, Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films, J. Appl. Physics, 1982, 53: 4448~4455
    [92]陆栋,固体物理学,上海:上海科技出版社,2003,156~180
    [93]潘海波,陈耐生,林德娟等,TiO2基氧化物半导体氧敏传感器的研究开发进展,功能材料与器件学报,2001,7(1):101~106
    [94]娄向东,赵晓华等,ABO3钙钛矿复合氧化物研究进展,传感器技术,2002,21(7):5~8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700