铂类及砷类抗肿瘤药物与蛋白质的作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铂类和亚砷类药物是无机抗肿瘤药物中十分重要和典型的两类。铂和亚砷药物的生理学作用机制都与含硫蛋白质的相互作用密切相关。在这些蛋白中,铜转运蛋白在铂类药物的细胞摄取、转运、排出以及药效上发挥重要作用,而锌指蛋白则是亚砷化合物的极为重要的直接靶点。本论文研究了铂化合物与铜伴侣蛋白Coxl7,以及亚砷酸钠与多种锌指蛋白的相互作用机制,并且研究了一些重要的细胞环境因素对这些相互作用的影响。
     第一章是对铂类药物和亚砷化合物的生理学作用机制进行综述。主要涉及铂类药物与DNA靶点的作用以及诱导细胞凋亡的机制;铂类药物的多靶点;铂类药物与铜转运蛋白的关系;亚砷的致癌性和用于癌症治疗的双重功能,以及锌指蛋白与这两种机制的关联。
     第二章研究了顺铂和人铜伴侣蛋白Cox17的体外和体内的相互作用。我们利用大肠杆菌体系进行了Cox17蛋白的表达,利用Ni-NTA柱和凝胶过滤色谱进行了蛋白的纯化。用紫外-可见光谱、高效液相色谱、电感耦合等离子体质谱和电喷雾质谱的方法研究了Cox172s-s和顺铂的相互作用,同时实验中使用了氧化态的Cox173s-s作为对照,以研究铜结合位点在Cox17与顺铂结合中的功能。结果证实,Cox17蛋白的铜结合位点,也是顺铂的主要结合位点,顺铂通过与铜位点的自由半胱氨酸残基配位形成Pt-S键结合到Cox17上。而且Pt-S键的形成活化了顺铂的其它配位位点,使得顺铂的原始配体很容易离去,而形成四个原始配体都被取代的裸铂加合物{Pt}-COx17。此外,细胞实验证明,Cox17作为一个铜伴侣蛋白,参与顺铂向线粒体的运输。此结果是对铜转运蛋白参与顺铂细胞传递过程的结论的进一步证实和补充。
     第三章研究了三种典型铂化合物顺铂、反铂、奥沙利铂与Cox172s-s的作用机制,以及关键的生物分子谷胱甘肽(GSH)对三种不同铂化合物与Cox172s-s作用机制的影响。结果显示,三种不同的铂化合物都能够和Cox172s-s铜位点的自由半胱氨酸结合。反铂和奥沙利铂与Cox17的结合方式与顺铂不同,反铂脱去两个原始氯离子而与Cox17形成单一的单铂加合物{Pt(NH3)2}-COx17和双铂加合物{Pt2(NH3)4}-Cox17,奥沙利铂脱去原始草酸根而与Cox17形成单一的单铂加合物{Pt(DACH)}-Cox17和双铂加合物{Pt2(DACH)2}-Cox17。此外,三种铂与含铜蛋白CuICox172s-s的反应,都会引起铜从Cox17上的快速释放。可以推断,在细胞内与铂化合物的结合可能会抑制Cox17的生物学功能。同时我们发现,GSH对三种铂化合物与Cox172s-s的作用具有不同的影响。GSH的存在,对于顺铂、反铂、奥沙利铂和Cox172s-s的结合分别表现出促进、抑制、无影响三种不同的作用。这一现象与顺铂、奥沙利铂和反铂的抗肿瘤活性表现一致。更为重要的是,与GSH的反应之后,反铂和奥沙利铂被失活,顺铂不仅没有被失活,而且表现出更高的与Cox172s-s的反应活性。这些证据证明,GSH对铂类药物的生物学机制的影响可能是十分复杂多样的。
     第四章研究了亚砷酸钠与C2H2, C3H和C4型锌指的单结构域和多结构域蛋白质的作用,通过荧光方法检测了锌指蛋白与亚砷酸钠反应的亲和力和反应速率、电喷雾质谱检测了反应产物、圆二色光谱和核磁共振检测了亚砷酸钠对锌指结构变化的影响。得到了As(Ⅲ)与锌指蛋白结合的表观解离常数和准一级速率常数、结合产物组成以及、结构变化。结果表明,单锌指结构域蛋白与As(Ⅲ)的反应,在亲和力以及反应速率上都符合C4>C3H>>C2H2的趋势。C3H和C4型锌指比C2H2型对As(Ⅲ)的亲和力高两个数量级,显示出亚砷对锌指类型的选择性。对于多结构域锌指蛋白,多结构域的存在大大提高了C2H2型锌指蛋白对亚砷的亲和力,而对C3H和C4型影响很小,最终三种类型的多结构域蛋白表现出相似的亚砷反应活性。这表明配位位点的数目是影响蛋白与亚砷的亲和性强弱的最为关键的因素。
     第五章以NCp7-zf2作为模型蛋白研究了As(Ⅲ)、Zn2+对锌指蛋白的竞争关系,以及溶液环境对亚砷对锌指结构的破坏的影响;以Sp1-zf2作为模型蛋白,研究了含巯基生物小分子(GSH、Cys)对亚砷与双配位位点蛋白相互作用的影响。研究表明,亚砷和锌指蛋白的相互作用涉及到As(Ⅲ)、Zn2+对锌指蛋白的竞争结合,中性缓冲液中,Zn2+对锌指蛋白的亲和力远高于As(Ⅲ),所以亚砷不能破坏蛋白的锌指结构。但是,当受到细胞内因素(如pH值降低、GSH、 Cys、His等)的影响时,As(Ⅲ)、Zn2+的竞争会发生改变,As(Ⅲ)有可能取代锌指结构中的Zn2+。细胞因素的这种影响,主要是通过改变Zn2+与锌指蛋白的亲和力实现的,而对As(Ⅲ)与锌指蛋白的亲和力的影响较小。双巯基位点蛋白也是亚砷的重要靶点,在以Sp1-zf2蛋白为模型的研究上发现:GSH、Cys等含巯基分子可能对亚砷与双巯基配位位点蛋白的结合有重要作用。GSH、Cys的存在不仅提高了亚砷与Sp1-zf2结合的亲和力,也加快了二者的反应速率。质谱结果表明,GSH、Cys通过配位到As(Ⅲ)的第三个位点,促进了亚砷与双位点蛋白结合的稳定性。这些结果表明,砷的生理学作用机制可能受到细胞环境的重大影响。
Platinum-and arsenic-based drugs are successfully used in clinic for the cancer chemotherapies. The mechanisms of platinum and arsenite drugs are closely related to their interactions with the sulfur-containing of proteins. The sulfur-containing copper transport proteins are proposed to be important for the cellular uptake, transfer, and efflux of platinum drugs. Zinc finger proteins (ZFPs) are proved to be one of the important and direct targets of arsenite compounds. In this dissertation, the interactions of platinum compounds with the copper chaperone Cox17are investigated, and the interaction of arsenite with zinc finger proteins are studied. The influences of celluar small molecules on these interactions were also studied.
     In the first chapter, the mechanism of platinum drugs and arsenic compounds are reviewed, including the DNA targets of platinum drugs and mechanisms of DNA damage induced apoptosis; the multi-targets of platinum drugs; the relationship of platinum drugs and the copper transport proteins. The dual function of arsenic in both the carcinogenicity and the cancer chemotherapy are discussed.
     In chapter2, the interaction of cisplatin and human copper chaperone Cox17was investigated. The protein was overexpressed in E. coli and purified using a Ni-NTA column and gel filtration chromatography. UV-visible spectroscopy, High Performance Liquid Chromatography (HPLC), ICP-MS and ESI-MS method were used to study the interaction of Cox172s-s with cisplatin. In order to verify the coordination of copper binding site in the cisplatin reactions, experiments are also performed on the oxidized state Cox173s.s as the control. Results show the copper binding site of Cox17is also the major binding site of cisplatin. The formation of Pt-S bond causes the release of ammine ligands of cisplatin and the nacked platinum binding is observed with long time reaction. In addition, cellular uptake assay on cancer cells demonstrates that copper chaperone protein Cox17is involved in the transport of cisplatin to mitochondrial. This result further confirmed and supplemented the conclusions that copper transport proteins are involved in cell transfer process of cisplatin.
     In chapter3, the reactions of Cox172s-s with three platinum compounds cisplatin, transplatin, and oxaliplatin have been studied, and the influences of glutathione (GSH) on these reactions have been investigated. Results show that three platinum complexes are able to bind to Cox172s-s at the copper binding site. Transplatin and oxaliplatin bind to Cox17with mode different from cisplatin. Transplatin generates {Pt(NH3)2}-Cox17and {Pt2(NH3)4}-Coxl7adducts, and oxaliplatin generates {Pt(DACH)}-Coxl7and {Pt2(DACH)2} adducts. In addition, three platinum complexes can also react with CuICox172s-s, leading to the rapid release of copper from Cox17. It can be inferred that the binding of platinum complexes can leads to disruption of the function of Cox17. Glutathione shows different effects on the platination of Cox17by different platinum complexes. When the reactions were carried out in the presence of physiological concentration of glutathione, the platination of Cox17by cisplatin, transplatin and oxaliplatin were increased, decreased and unchanged respectively. Moreover, the cisplatin-GSH adducts still show high reactivity to Cox17while transplatin-GSH and oxaliplatin-GSH adducts almost can not react with Cox17. These findings suggest that the interaction of platinum drugs with cellular proteins will be highly affected by glutathione. Moreover, the influences of glutathione are very different depending on platinum species.
     In chapter4, the reactions of sodium arsenite with different ZFPs have been investigated. The single-domain and multi-domain zinc finger proteins of C2H2, C3H and C4types are expressed for the arsenite reactions. The binding affinity and reaction rate are determined using fluorescence specctroscopy. The product identities are characterized using ESI-MS, and the protein structure perturbations are verified using Circular dichroism and2D1H-15N HSQC NMR spectroscopy. The apparent dissociation constant and the pseudo first order rate constant of the reaction of arsenite and ZFPs are calculated. Results show that both the binding affinity and reaction rates of single-domain ZFPs follow the trend of C4> C3H>> C2H2. Compared with the C2H2motif ZFPs, the binding affinities of C3H and C4motif ZFPs are nearly two orders of magnitude higher and the reaction rates are about two-fold higher. The formation of multi-domain ZFPs significantly enhances the reactivity of C2H2type of ZFPs, but has negligible effects on C3H and C4ZFPs. Consequently, the reactivities of three types of multi-domain ZFPs are rather similar. This result indicates that the number of coordination sites of protein is the most critical factor determining the binding affinity.
     In chapter5, the NCp7-zf2is used as a model protein to investigate the competition of arsenic and zinc binding to ZFPs and the influence of solution conditions on the reaction. Spl-zf2was used as a model protein to investigate the influence of small thiol-containing biomolecules (GSH, Cys) on the interaction of arsenic with two-site protein. Results show that the interaction of arsenic with ZFPs is involved in the competitive binding of arsenic and zinc to ZFPs. Zinc competes overwhelmingly with arsenic for ZFPs in nomal neutral solution, and arsenite can not interferes with zinc finger structure. However, the reaction conditions (such as pH decreases, GSH, Cys, His, etc.) can change the competitive balance of arsenite and Zn2+. Under these conditions, arsenic could replace zinc on ZFPs. The affinity of zinc and ZFPs is greatly affected while the affinity of arsenic and ZFPs is less affected under these conditions. The presence of GSH or Cys not only improves the affinity but also promotes the reaction rate of arsenic binding to Spl-zf2. The mass spectrometry results suggest that GSH or Cys promotes the stability of adducts of arsenite by coodinating to the third site of arsenic. These results suggest that the biological mechanisms of arsenic largely depend on the intracellular environment.
引文
[1]Boulikas, T., and Vougiouka, M. (2003) Cisplatin and platinum drugs at the molecular level (review), Oncol Rep 10,1663-1682.
    [2]Horwitz, S. B. (1994) Taxol (paclitaxel):mechanisms of action, Annals of Oncology 5 Suppl 6, S3-6.
    [3]Parker, W. B., and Cheng, Y. C. (1990) Metabolism and mechanism of action of 5-fluorouracil, Pharmacol Ther 48,381-395.
    [4]Rajkumar, S. V., Richardson, P. G., Hideshima, T., and Anderson, K. C. (2005) Proteasome inhibition as a novel therapeutic target in human cancer, JClin Oncol 23, 630-639.
    [5]Gibson, D. (2009) The mechanism of action of platinum anticancer agents-what do we really know about it?, Dalton T,10681-10689.
    [6]Casini, A., and Reedijk, J. (2012) Interactions of anticancer Pt compounds with proteins: an overlooked topic in medicinal inorganic chemistry?, Chemical Science 3,3135-3144.
    [7]Soignet, S. L., Maslak, P., Wang, Z. G., Jhanwar, S., Calleja, E., Dardashti, L. J., Corso, D., DeBlasio, A., Gabrilove, J., Scheinberg, D. A., Pandolfi, P. P., and Warrell, R. P. (1998) Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide, New Engl J Med 339,1341-1348.
    [8]Liu, J. X., Zhou, G. B., Chen, S. J., and Chen, Z. (2012) Arsenic compounds:revived ancient remedies in the fight against human malignancies, Curr Opin Chem Biol 16, 92-98.
    [9]Emadi, A., and Gore, S. D. (2010) Arsenic trioxide- An old drug rediscovered, Blood Rev 24,191-199.
    [10]Miller, W. H., Jr., Schipper, H. M., Lee, J. S., Singer, J., and Waxman, S. (2002) Mechanisms of action of arsenic trioxide, Cancer Res 62,3893-3903.
    [11]Zhang, X. W. (2010) Arsenic trioxide controls the fate of the PML-RAR alpha oncoprotein by directly binding PML (vol 328, pg 240,2010), Science 328,974-974.
    [12]Maier, A., Schumann, B. L., Chang, X., Talaska, G., and Puga, A. (2002) Arsenic co-exposure potentiates benzo[a]pyrene genotoxicity, Mutat Res 517,101-111.
    [13]Hartwig, A., Blessing, H., Schwerdtle, T., and Walter, I. (2003) Modulation of DNA repair processes by arsenic and selenium compounds, Toxicology 193,161-169.
    [14]Galanski, M. (2006) Recent developments in the field of anticancer platinum complexes, Recent Pat Anti-Canc 1,285-295.
    [15]Kelland, L. (2007) The resurgence of platinum-based cancer chemotherapy, Nat Rev Cancer 7,573-584.
    [16]Galanski, M., Jakupec, M. A., and Keppler, B. K. (2005) Update of the preclinical situation of anticancer platinum complexes:Novel design strategies and innovative analytical approaches, Curr Med Chem 12,2075-2094.
    [17]Wheate, N. J., Walker, S., Craig, G. E., and Oun, R. (2010) The status of platinum anticancer drugs in the clinic and in clinical trials, Dalton T 39,8113-8127.
    [18]Wang, D., and Lippard, S. J. (2005) Cellular processing of platinum anticancer drugs, Nat Rev Drug Discov 4,307-320.
    [19]Jamieson, E. R., and Lippard, S. J. (1999) Structure, recognition, and processing of cisplatin-DNA adducts, Chem Rev 99,2467-2498.
    [20]Cepeda, V., Fuertes, M. A., Castilla, J., Alonso, C., Quevedo, C., and Perez, J. M. (2007) Biochemical Mechanisms of Cisplatin Cytotoxicity, Anti-Cancer Agent Me 7,3-18.
    [21]Payet, D., Gaucheron, F., Sip, M., and Leng, M. (1993) Instability of the Monofunctional Adducts in Cis-[Pt(Nh3)(2)(N7-N-Methyl-2-Diazapyrenium)Cl](2+)-Modified DNA-Rates of Cross-Linking Reactions in Cis-Platinum-Modified DNA, Nucleic Acids Res 21, 5846-5851.
    [22]Bellon, S. F., Coleman, J. H., and Lippard, S. J. (1991) DNA Unwinding Produced by Site-Specific Intrastrand Cross-Links of the Antitumor Drug Cis-Diamminedichloroplatinum(Ii), Biochemistty-Us 30,8026-8035.
    [23]Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y., and Prives, C. (2000) The human homologs of checkpoint kinases Chkl and Cdsl (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites (vol 14, pg 289,2000), Gene Dev 14,750-750.
    [24]Zhao, H., and Piwnica-Worms, H. (2001) ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chkl, Mol Cell Biol 21,4129-4139.
    [25]Damia, G., Filiberti, L., Vikhanskaya, F., Carrassa, L., Taya, Y., D'incalci, M., and Broggini, M. (2001) Cisplatinum and taxol induce different patterns of p53 phosphorylation, Neoplasia 3,10-16.
    [26]Kepp, O., Galluzzi, L., Martins, I., Schlemmer, F., Adjemian, S., Michaud, M., Sukkurwala, A. Q., Menger, L., Zitvogel, L., and Kroemer, G. (2011) Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy, Cancer Metast Rev 30,61-69.
    [27]Persons, D. L., Yazlovitskaya, E. M., and Pelling, J. C. (2000) Effect of extracellular signal-regulated kinase on p53 accumulation in response to cisplatin, JBiol Chem 275, 35778-35785.
    [28]Wang, X. T., Martindale, J. L., and Holbrook, N. J. (2000) Requirement for ERK activation in cisplatin-induced apoptosis, JBiol Chem 275,39435-39443.
    [29]Dent, P., and Grant, S. (2001) Pharmacologic interruption of the mitogen-activated extracellular-regulated kinase/mitogen-activated protein kinase signal transduction pathway:Potential role in promoting cytotoxic drug action, Clin Cancer Res 7,775-783.
    [30]Yeh, P. Y., Chuang, S. E., Yeh, K. H., Song, Y. C., Ea, C. K., and Cheng, A. L. (2002) Increase of the resistance of human cervical carcinoma cells to cisplatin by inhibition of the MEK to ERK signaling pathway partly via enhancement of anticancer drug-induced NF kappa B activation, Biochem Pharmacol 63,1423-1430.
    [31]Wang, J. Z., Pabla, N., Wang, C. Y., Wang, W. X., Schoenlein, P. V., and Dong, Z. (2006) Caspase-mediated cleavage of ATM during cisplatin-induced tubular cell apoptosis:inactivation of its kinase activity toward p53, Am J Physiol-Renal 291, F1300-F1307.
    [32]Gonzalez, V. M., Fuertes, M. A., Alonso, C., and Perez, J. M. (2001) Is cisplatin-induced cell death always produced by apoptosis?, Mol Pharmacol 59, 657-663.
    [33]Jung, Y. W., and Lippard, S. J. (2007) Direct cellular responses to platinum-induced DNA damage, Chem Rev 107,1387-1407.
    [34]Jordan, P., and Carmo-Fonseca, M. (2000) Molecular mechanisms involved in cisplatin cytotoxicity, Cell Mol Life Sci 57,1229-1235.
    [35]Sancho-Martinez, S. M., Prieto-Garcia, L., Prieto, M., Lopez-Novoa, J. M., and Lopez-Hernandez, F. J. (2012) Subcellular targets of cisplatin cytotoxicity:An integrated view, Pharmacol Therapeut 136,35-55.
    [36]Rabik, C. A., and Dolan, M. E. (2007) Molecular mechanisms of resistance and toxicity associated with platinating agents, Cancer Treat Rev 33,9-23.
    [37]Fuertes, M. A., Alonso, C., and Perez, J. M. (2003) Biochemical modulation of cisplatin mechanisms of action:Enhancement of antitumor activity and circumvention of drug resistance, Chem Rev 103,645-662.
    [38]Lushchak, V. I. (2012) Glutathione Homeostasis and Functions:Potential Targets for Medical Interventions, Journal ofAmino Acids 2012.
    [39]Maher, P. (2005) The effects of stress and aging on glutathione metabolism, Ageing Res Rev 4,288-314.
    [40]Wang, X. Y., and Guo, Z. J. (2007) The Role of Sulfur in Platinum Anticancer Chemotherapy, Anti-Cancer Agent Me 7,19-34.
    [41]Kasherman, Y., Sturup, S., and Gibson, D. (2009) Is Glutathione the Major Cellular Target of Cisplatin? A Study of the Interactions of Cisplatin with Cancer Cell Extracts, J Med Chem 52,4319-4328.
    [42]Ishikawa, T., and Aliosman, F. (1993) Glutathione-Associated Cis-Diamminedichloroplatinum(Ii) Metabolism and Atp-Dependent Efflux from Leukemia-Cells-Molecular Characterization of Glutathione-Platinum Complex and Its Biological Significance, JBiol Chem 268,20116-20125.
    [43]Chen, H. H., and Kuo, M. T. (2010) Role of glutathione in the regulation of Cisplatin resistance in cancer chemotherapy, Met Based Drugs 2010.
    [44]Reedijk, J. (1999) Why does cisplatin reach guanine-N7 with competing S-donor ligands available in the cell?, Chem Rev 99,2499-2510.
    [45]Godwin, A. K., Meister, A., Odwyer, P. J., Huang, C. S., Hamilton, T. C., and Anderson, M. E. (1992) High-Resistance to Cisplatin in Human Ovarian-Cancer Cell-Lines Is Associated with Marked Increase of Glutathione Synthesis, P NatlAcad Sci USA 89, 3070-3074.
    [46]Mistry, P., Kelland, L. R., Abel, G., Sidhar, S., and Harrap, K. R. (1991) The Relationships between Glutathione, Glutathione-S-Transferase and Cytotoxicity of Platinum Drugs and Melphalan in 8 Human Ovarian-Carcinoma Cell-Lines, Brit J Cancer 64,215-220.
    [47]Boubakari, Bracht, K., Neumann, C., Grunert, R., and Bednarski, P. J. (2004) No correlation between GSH levels in human cancer cell lines and the cell growth inhibitory activities of platinum diamine complexes, Arch Pharm 337,668-671.
    [48]Bracht, K., Boubakari, Grunert, R., and Bednarski, P. J. (2006) Correlations between the activities of 19 anti-tumor agents and the intracellular glutathione concentrations in a panel of 14 human cancer cell lines:comparisons with the National Cancer Institute data, Anti-Cancer Drug 17,41-51.
    [49]Chen, H. H. W., Song, I. S., Hossain, A., Choi, M. K., Yamane, Y., Liang, Z. D., Lu, J., Wu, L. Y. H., Siddik, Z. H., Klomp, L. W. J., Savaraj, N., and Kuo, M. T. (2008) Elevated glutathione levels confer cellular sensitization to cisplatin toxicity by up-regulation of copper transporter hCtrl, Mol Pharmacol 74,697-704.
    [50]Bernersprice, S. J., and Kuchel, P. W. (1990) Reaction of Cis-[Ptc12[Nh3]2] and Trans-[Ptcl2(Nh3)2] with Reduced Glutathione inside Human Red-Blood-Cells, Studied by H-1-[H-1] and N-15-[H-1] Dept Nmr, J Inorg Biochem 38,327-345.
    [51]Casini, A., Guerri, A., Gabbiani, C., and Messori, L. (2008) Biophysical characterisation of adducts formed between anticancer metallodrugs and selected proteins:New insights from X-ray diffraction and mass spectrometry studies, J Inorg Biochem 102,995-1006.
    [52]Sun, X., Tsang, C.-N., and Sun, H. (2009) Identification and characterization of metallodrug binding proteins by (metallo)proteomics, Metallomics 1,25-31.
    [53]Hagrman, D., Goodisman, J., Dabrowiak, J. C., and Souid, A. K. (2003) Kinetic study on the reaction of cisplatin with metallothionein, Drug Metab Dispos 31,916-923.
    [54]Kondo, Y., Woo, E. S., Michalska, A. E., Choo, K. H. A., and Lazo, J. S. (1995) Metallothionein Null-Cells Have Increased Sensitivity to Anticancer Drugs, Cancer Research 55,2021-2023.
    [55]Kasahara, K., Fujiwara, Y., Nishio, K., Ohmori, T., Sugimoto, Y., Komiya, K., Matsuda, T., and Saijo, N. (1991) Metallothionein Content Correlates with the Sensitivity of Human Small-Cell Lung-Cancer Cell-Lines to Cisplatin, Cancer Research 51, 3237-3242.
    [56]Kuo, M. T., Chen, H. H. W., Song, I. S., Savaraj, N., and Ishikawa, T. (2007) The roles of copper transporters in cisplatin resistance, Cancer Metast Rev 26,71-83.
    [57]Kuo, M. T., Fu, S. Q., Savaraj, N., and Chen, H. H. W. (2012) Role of the Human High-Affinity Copper Transporter in Copper Homeostasis Regulation and Cisplatin Sensitivity in Cancer Chemotherapy, Cancer Research 72,4616-4621.
    [58]Hua, H. Q., Gunther, V., Georgiev, O., and Schaffner, W. (2011) Distorted copper homeostasis with decreased sensitivity to cisplatin upon chaperone Atoxl deletion in Drosophila, Biometals 24,445-453.
    [59]Chvalova, K., Brabec, V., and Kasparkova, J. (2007) Mechanism of the formation of DNA-protein cross-links by antitumor cisplatin, Nucleic Acids Res 35,1812-1821.
    [60]Zwelling, L. A., Anderson, T., and Kohn, K. W. (1979) DNA-Protein and DNA Interstrand Cross-Linking by Cis-Platinum(Ii) and Trans-Platinum(Ii) Diamminedichloride in L1210 Mouse Leukemia-Cells and Relation to Cytotoxicity, Cancer Research 39,365-369.
    [61]Shin, J. N., Seo, Y. W., Kim, M., Park, S. Y., Lee, M. J., Lee, B. R., Oh, J. W., Seol, D. W., and Kim, T. H. (2005) Cisplatin inactivation of caspases inhibits death ligand-induced cell death in vitro and fulminant liver damage in mice, JBiol Chem 280, 10509-10515.
    [62]Servais, H., Ortiz, A., Devuyst, O., Denamur, S., Tulkens, P. M., and Mingeot-Leclercq, M. P. (2008) Renal cell apoptosis induced by nephrotoxic drugs:cellular and molecular mechanisms and potential approaches to modulation, Apoptosis 13,11-32.
    [63]Custodio, J. B. A., Cardoso, C. M. P., Santos, M. S., Almeida, L. M., Vicente, J. A. F., and Fernandes, M. A. S. (2009) Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability:Prevention by thiol group protecting agents, Toxicology 259,18-24.
    [64]Yang, Z. J., Schumaker, L. M., Egorin, M. J., Zuhowski, E. G., Guo, Z. M., and Cullen, K. J. (2006) Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma:Possible role in apoptosis, Clin Cancer Res 12,5817-5825.
    [65]Chauhan, S. S., Liang, X. J., Su, A. W., Pai-Panandiker, A., Shen, D. W., Hanover, J. A., and Gottesman, M. M. (2003) Reduced endocytosis and altered lysosome function in cisplatin-resistant cell lines, Brit J Cancer 88,1327-1334.
    [66]Nilsson, C., Roberg, K., Grafstrom, R. C., and Ollinger, K. (2010) Intrinsic Differences in Cisplatin Sensitivity of Head and Neck Cancer Cell Lines:Correlation to Lysosomal Ph, Head Neck-JSci Spec 32,1185-1194.
    [67]Gorlach, A., Klappa, P., and Kietzmann, T. (2006) The endoplasmic reticulum: Folding, calcium homeostasis, signaling, and redox control, Antioxid Redox Sign 8,1391-1418.
    [68]Mandic, A., Hansson, J., Linder, S., and Shoshan, M. C. (2003) Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling, JBiol Chem 278,9100-9106.
    [69]Jiang, C. C., Mao, Z. G., Avery-Kiejda, K. A., Wade, M., Hersey, P., and Zhang, X. D. (2009) Glucose-regulated protein 78 antagonizes cisplatin and adriamycin in human melanoma cells, Carcinogenesis 30,197-204.
    [70]Kim, H.-Y., Kim, B. R., Kim, G.-D., and Kim, H.-J. (2011) The effect of cisplatin on endoplasmic reticulum stress of human cervical cancer cells, Korean J Obstet Gynecol 54,175-183.
    [71]Feng, R., Zhai, W. L., Yang, H. Y., Jin, H., and Zhang, Q. X. (2011) Induction of ER stress protects gastric cancer cells against apoptosis induced by cisplatin and doxorubicin through activation of p38 MAPK, Biochem Bioph Res Co 406,299-304.
    [72]Rebillard, A., Lagadic-Gossmann, D., and Dimanche-Boitrel, M. T. (2008) Cisplatin Cytotoxicity:DNA and Plasma Membrane Targets, CurrMed Chem 15,2656-2663.
    [73]Zeng, H. H., Wang, K., Wang, B. H., and Zhang, Y. M. (1996) Studies on the thermokinetic characterisation of actin polymerization and the effect of cisplatin, Int J Biol Macromol 18,161-166.
    [74]Kim, B. E., Nevitt, T., and Thiele, D. J. (2008) Mechanisms for copper acquisition, distribution and regulation, Nat Chem Biol 4,176-185.
    [75]Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., and O' Halloran, T. V. (1999) Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase, Science 284,805-808.
    [76]Lutsenko, S. (2010) Human copper homeostasis: a network of interconnected pathways, Curr Opin Chem Biol 14,211-217.
    [77]Safaei, R., and Howell, S. B. (2005) Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs, Crit Rev Oncol Hemat 53,13-23.
    [78]Howell, S. B., Safaei, R., Larson, C. A., and Sailor, M. J. (2010) Copper Transporters and the Cellular Pharmacology of the Platinum-Containing Cancer Drugs, Mol Pharmacol 77,887-894.
    [79]Pabla, N., Murphy, R. F., Liu, K. B., and Dong, Z. (2009) The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity, Am J Physiol-Renal 296, F505-F511.
    [80]Lin, X., Okuda, T., Holzer, A., and Howell, S. B. (2003) The copper transporter CTR1 regulates cisplatin uptake in Saccharomyces cerevisiae (vol 62, pg 1154,2002), Mol Pharmacol 63,957-957.
    [81]Zisowsky, J., Koegel, S., Leyers, S., Devarakonda, K., Kassack, M. U., Osmak, M., and Jaehde, U. (2007) Relevance of drug uptake and efflux for cisplatin sensitivity of tumor cells, Biochem Pharmacol 73,298-307.
    [82]Komatsu, M., Sumizawa, T., Mutoh, M., Chen, Z. S., Terada, K., Furukawa, T., Yang, X. L., Gao, H., Miura, N., Sugiyama, T., and Akiyama, S. (2000) Copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance, Cancer Research 60,1312-1316.
    [83]Nakayama, K., Kanzaki, A., Terada, K., Mutoh, M., Ogawa, K., Sugiyama, T., Takenoshita, S., Itoh, K., Yaegashi, N., Miyazaki, K., Neamati, N., and Takebayashi, Y. (2004) Prognostic value of the Cu-transporting ATPase in ovarian carcinoma patients receiving cisplatin-based chemotherapy, Clin Cancer Res 10,2804-2811.
    [84]Ohbu, M., Ogawa, K., Konno, S., Kanzaki, A., Terada, K., Sugiyama, T., and Takebayashi, Y. (2003) Copper-transporting P-type adenosine triphosphatase (ATP7B) is expressed in human gastric carcinoma, Cancer Lett 189,33-38.
    [85]Samimi, G., Varki, N. M., Wilczynski, S., Safaei, R., Alberts, D. S., and Howell, S. B. (2003) Increase in expression of the copper transporter ATP7A during platinum drug-based treatment is associated with poor survival in ovarian cancer patients, Clin Cancer Res 9,5853-5859.
    [86]Samimi, G., Safaei, R., Katano, K., Holzer, A. K., Rochdi, M., Tomioka, M., Goodman, M., and Howell, S. B. (2004) Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells, Clin Cancer Res 10,4661-4669.
    [87]Palm, M. E., Weise, C. F., Lundin, C., Wingsle, G., Nygren, Y., Bjorn, E., Naredi, P., Wolf-Watz, M., and Wittung-Stafshede, P. (2011) Cisplatin binds human copper chaperone Atoxl and promotes unfolding in vitro, P Natl Acad Sci USA 108,6951-6956.
    [88]Longen, S., Bien, M., Bihlmaier, K., Kloeppel, C., Kauff, F., Hammermeister, M., Westermann, B., Herrmann, J. M., and Riemer, J. (2009) Systematic analysis of the twin cx(9)c protein family, Journal of Molecular Biology 393,356-368.
    [89]Kako, K., Tsumori, K., Ohmasa, Y., Takahashi, Y., and Munekata, E. (2000) The expression of Cox17p in rodent tissues and cells, Eur JBiochem 267,6699-6707.
    [90]Zhu, D. Y., Stumpf, C. R., Krahn, J. M., Wickens, M., and Hall, T. M. T. (2009) A 5' cytosine binding pocket in Puf3p specifies regulation of mitochondrial mRNAs, P Natl Acad Sci USA 106,20192-20197.
    [91]Quenault, T., Lithgow, T., and Traven, A. (2011) PUF proteins:repression, activation and mRNA localization, Trends Cell Biol 21,104-112.
    [92]Abajian, C., Yatsunyk, L. A., Ramirez, B. E., and Rosenzweig, A. C. (2004) Yeast Cox17 solution structure and copper(Ⅰ) binding, JBiol Chem 279,53584-53592.
    [93]Banci, L., Bertini, I., Ciofi-Baffoni, S., Janicka, A., Martinelli, M., Kozlowski, H., and Palumaa, P. (2008) A structural-dynamical characterization of human Cox17, JBiol Chem 283,7912-1920.
    [94]Banci, L., Bertini, I., Ciofi-Baffoni, S., and Tokatlidis, K. (2009) The coiled coil-helix-coiled coil-helix proteins may be redox proteins, Febs Lett 583,1699-1702.
    [95]Banci, L., Bertini, I., Cefaro, C., Cenacchi, L., Ciofi-Baffoni, S., Felli, I. C., Gallo, A., Gonnelli, L., Luchinat, E., Sideris, D., and Tokatlidis, K. (2010) Molecular chaperone function of Mia40 triggers consecutive induced folding steps of the substrate in mitochondrial protein import, P Natl Acad Sci USA 107,20190-20195.
    [96]Cobine, P. A., Pierrel, F., and Winge, D. R. (2006) Copper trafficking to the mitochondrion and assembly of copper metalloenzymes, Bba-Mol Cell Res 1763, 759-772.
    [97]Horng, Y. C., Cobine, P. A., Maxfield, A. B., Carr, H. S., and Winge, D. R. (2004) Specific copper transfer from the Cox 17 metallochaperone to both Scol and Cox11 in the assembly of yeast cytochrome c oxidase, JBiol Chem 279,35334-35340.
    [98]Leary, S. C., Kaufman, B. A., Pellecchia, G., Guercin, G. H., Mattman, A., Jaksch, M., and Shoubridge, E. A. (2004) Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase, Hum Mol Genet 13,1839-1848.
    [99]Horn, D., and Barrientos, A. (2008) Mitochondrial copper metabolism and delivery to cytochrome c oxidase, Iubmb Life 60,421-429.
    [100]Arnesano, F., Balatri, E., Banci, L., Bertini, I., and Winge, D. R. (2005) Folding studies of Cox17 reveal an important interplay of cysteine oxidation and copper binding, Structure 13,713-722.
    [101]Palumaa, P., Kangur, L., Voronova, A., and Sillard, R. (2004) Metal-binding mechanism of Cox17, a copper chaperone for cytochrome c oxidase, Biochem J382,307-314.
    [102]Voronova, A., Meyer-Klaucke, W., Meyer, T., Rompel, A., Krebs, B., Kazantseva, J., Sillard, R., and Palumaa, P. (2007) Oxidative switches in functioning of mammalian copper chaperone Cox17, Biochem J 408,139-148.
    [103]Oswald, C., Krause-Buchholz, U., and Rodel, G. (2009) Knockdown of Human COX 17 Affects Assembly and Supramolecular Organization of Cytochrome c Oxidase, Journal of Molecular Biology 389,470-479.
    [104]Remacle, C., Coosemans, N., Jans, F., Hanikenne, M., Motte, P., and Cardol, P. (2010) Knock-down of the COX3 and COX 17 gene expression of cytochrome c oxidase in the unicellular green alga Chlamydomonas reinhardtii, Plant Mol Biol 74,223-233.
    [105]Sideris, D. P., Petrakis, N., Katrakili, N., Mikropoulou, D., Gallo, A., Ciofi-Baffoni, S., Banci, L., Bertini, I., and Tokatlidis, K. (2009) A novel intermembrane space-targeting signal docks cysteines onto Mia40 during mitochondrial oxidative folding, J Cell Biol 187,1007-1022.
    [106]Banci, L., Bertini, I., McGreevy, K. S., and Rosato, A. (2010) Molecular recognition in copper trafficking, Nat Prod Rep 27,695-710.
    [107]Banci, L., Bertini, I., Cefaro, C., Ciofi-Baffoni, S., and Gallo, A. (2011) Functional Role of Two Interhelical Disulfide Bonds in Human Cox17 Protein from a Structural Perspective, JBiol Chem 286,34382-34390.
    [108]Banci, L., Bertini, I., Ciofi-Baffoni, S., Hadjiloi, T., Martinelli, M., and Palumaa, P. (2008) Mitochondrial copper(Ⅰ) transfer from Cox17 to Scol is coupled to electron transfer, P Natl Acad Sci USA 105,6803-6808.
    [109]Chen, G. Q., Shi, X. G., Tang, W., Xiong, S. M., Zhu, J., Cai, X., Han, Z. G., Ni, J. H., Shi, G. Y., Jia, P. M., Liu, M. M., He, K. L., Niu, C., Ma, J., Zhang, P., Zhang, T. D., Paul, P., Naoe, T., Kitamura, K., Miller, W., Waxman, S., Wang, Z. Y., deThe, H., Chen, S. J., and Chen, Z. (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL).1. As2O3 exerts dose-dependent dual effects on APL cells, Blood 89,3345-3353.
    [110]Ratnaike, R. N. (2003) Acute and chronic arsenic toxicity, Postgrad Med J 79,391-396.
    [111]Mazumder, D. G. (2000) Diagnosis and treatment of chronic arsenic poisoning, United Nations Synthesis Report on Arsenic in Drinking Water.
    [112]Zhao, C. Q., Young, M. R., Diwan, B. A., Coogan, T. P., and Waalkes, M. P. (1997) Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression, PNatl Acad Sci USA 94,10907-10912.
    [113]Hsu, C. H., Yang, S. A., Wang, J. Y., Yu, H. S., and Lin, S. R. (1999) Mutational spectrum of p53 gene in arsenic-related skin cancers from the blackfoot disease endemic area of Taiwan, Brit J Cancer 80,1080-1086.
    [114]Wang, T. C., Jan, K. Y., Wang, A. S. S., and Gurr, J. R. (2007) Trivalent arsenicals induce lipid peroxidation, protein carbonylation, and oxidative DNA damage in human urothelial cells, Mutat Res-Fund Mol M 615,75-86.
    [115]Shi, H. L., Hudson, L. G., Ding, W., Wang, S. W., Cooper, K. L., Liu, S. M., Chen, Y., Shi, X. L., and Liu, K. J. (2004) Arsenite causes DNA damage in keratinocytes via generation of hydroxyl radicals, Chem Res Toxicol 17,871-878.
    [116]Ding, W., Hudson, L. G., and Liu, K. J. (2005) Inorganic arsenic compounds cause oxidative damage to DNA and protein by inducing ROS and RNS generation in human keratinocytes, Mol Cell Biochem 279,105-112.
    [117]Okui, T., and Fujiwara, Y. (1986) Inhibition of Human Excision DNA-Repair by Inorganic Arsenic and the Comutagenic Effect in V79 Chinese-Hamster Cells, Mutation Research 172,69-76.
    [118]Ding, W., Hudson, L. G., Sun, X., Feng, C., and Liu, K. J. (2008) As(III) inhibits ultraviolet radiation-induced cyclobutane pyrimidine dimer repair via generation of nitric oxide in human keratinocytes, Free Radic Biol Med 45,1065-1072.
    [119]Qin, X. J., Hudson, L. G., Liu, W., Timmins, G. S., and Liu, K. J. (2008) Low concentration of arsenite exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity, Toxicol Appl Pharmacol 232,41-50.
    [120]Antman, K. H. (2001) Introduction: the history of arsenic trioxide in cancer therapy, Oncologist 6 Suppl 2,1-2.
    [121]Carney, D. A. (2008) Arsenic trioxide mechanisms of action--looking beyond acute promyelocytic leukemia, Leuk Lymphoma 49,1846-1851.
    [122]Chen, G. Q., Shi, X. G., Tang, W., Xiong, S. M., Zhu, J., Cai, X., Han, Z. G., Ni, J. H., Shi, G. Y., Jia, P. M., Liu, M. M., He, K. L., Niu, C., Ma, J., Zhang, P., Zhang, T. D., Paul, P., Naoe, T., Kitamura, K., Miller, W., Waxman, S., Wang, Z. Y., de The, H., Chen, S. J., and Chen, Z. (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL):I. As2O3 exerts dose-dependent dual effects on APL cells, Blood 89,3345-3353.
    [123]Shao, W. L., Fanelli, M., Ferrara, F. F., Riccioni, R., Rosenauer, A., Davison, K., Lamph, W. W., Waxman, S., Pelicci, P. G., Lo Coco, F., Avvisati, G., Testa, U., Peschle, C., Gambacorti-Passerini, C., Nervi, C., and Miller, W. H. (1998) Arsenic trioxide as an inducer of apoptosis and loss of PML/RAR alpha protein in acute promyelocytic leukemia cells, JNatl Cancer Ⅰ 90,124-133.
    [124]Perkins, C., Kim, C. N., Fang, G. F., and Bhalla, K. N. (2000) Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2, or Bcl-x(L), Blood 95,1014-1022.
    [125]Rousselot, P., Labaume, S., Marolleau, J. P., Larghero, J., Noguera, M. H., Brouet, J. C., and Fermand, J. P. (1999) Arsenic trioxide and melarsoprol induce apoptosis in plasma cell lines and in plasma cells from myeloma patients, Cancer Research 59,1041-1048.
    [126]Roboz, G. J., Ritchie, E. K., Curcio, T., Provenzano, J., Carlin, R., Samuel, M., Wittenberg, B., Mazumdar, M., Christos, P. J., Mathew, S., Allen-Bard, S., and Feldman, E. J. (2008) Arsenic Trioxide and Low-dose Cytarabine in Older Patients With Untreated Acute Myeloid Leukemia, Excluding Acute Promyelocytic Leukemia, Cancer 113,2504-2511.
    [127]Hermine, O., Dombret, H., Poupon, J., Arnulf, B., Damaj, G., Lefrere, F., Rousselot, P., Tibbi, A., Solbes-Latourette, S., Fermand, J. P., Brouet, J. C., Degos, L., Varet, B., The, H. D., and Bazarbachi, A. (2000) Phase Ⅱ trial of arsenic trioxide (AS2O3) and combination of alpha interferon (INF) and AS2O3 in patients with relapsed/refractory adult T-cell leukemia (ATL). Blood 96,342a-342a.
    [128]Guo, W., Tang, X., Tang, S., and Yang, Y. (2006) Preliminary report of combination chemotherapy including Arsenic trioxide for stage Ⅲ osteosarcoma and Ewing sarcoma], Zhonghua wai ke za zhi [Chinese journal of surgery] 44,805.
    [129]Akao, Y., Mizoguchi, H., Kojima, S., Naoe, T., Ohishi, N., and Yagi, K. (1998) Arsenic induces apoptosis in B-cell leukaemic cell lines in vitro:activation of caspases and down-regulation of Bcl-2 protein, Brit JHaematol 102,1055-1060.
    [130]Pelicano, H., Carney, D., and Huang, P. (2004) ROS stress in cancer cells and therapeutic implications, Drug Resist Update 7,97-110.
    [131]Kapahi, P., Takahashi, T., Natoli, G., Adams, S. R., Chen, Y., Tsien, R. Y., and Karin, M. (2000) Inhibition of NF-kappa B activation by arsenite through reaction with a critical cysteine in the activation loop of I kappa B kinase, JBiol Chem 275,36062-36066.
    [132]Studzinski, G. P., and Harrison, L. E. (1999) Differentiation-related changes in the cell cycle traverse, Int Rev Cytol 189,1-58.
    [133]Li, Y. M., and Broome, J. D. (1999) Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells, Cancer Research 59,776-780.
    [134]Klug, A., and Rhodes, D. (1987) Zinc Fingers- a Novel Protein Fold for Nucleic-Acid Recognition, Cold Spring Harb Sym 52,473-482.
    [135]Laity, J. H., Lee, B. M., and Wright, P. E. (2001) Zinc finger proteins:new insights into structural and functional diversity, Curr Opin Struc Biol 11,39-46.
    [136]Hamadeh, H. K., Trouba, K. J., Afshari, C. A., and Germolec, D. (2002) Coordination of altered DNA repair and damage pathways in arsenite-exposed keratinocytes, Toxicol Sci 69,306-316.
    [137]Hartwig, A., Asmuss, M., Ehleben, I., Herzer, U., Kostelac, D., Pelzer, A., Schwerdtle, T., and Burkle, A. (2002) Interference by toxic metal ions with DNA repair processes and cell cycle control:Molecular mechanisms, Environ Health Persp 110,797-799.
    [138]Hartwig, A., Pelzer, A., Asmuss, M., and Burkle, A. (2003) Very low concentrations of arsenite suppress poly(ADP-ribosyl)ation in mammalian cells, Int J Cancer 104,1-6.
    [139]Ding, W., Liu, W., Cooper, K. L., Qin, X. J., de Souza Bergo, P. L., Hudson, L. G., and Liu, K. J. (2009) Inhibition of poly(ADP-ribose) polymerase-1 by arsenite interferes with repair of oxidative DNA damage, JBiol Chem 284,6809-6817.
    [140]Piatek, K., Schwerdtle, T., Hartwig, A., and Bal, W. (2008) Monomethylarsonous acid destroys a tetrathiolate zinc finger much more efficiently than inorganic arsenite: Mechanistic considerations and consequences for DNA repair inhibition, Chem Res Toxicol 21,600-606.
    [141]Soria, E. A., Eynard, A. R., Quiroga, P. L., and Bongiovanni, G. A. (2007) Differential effects of quercetin and silymarin on arsenite-induced cytotoxicity in two human breast adenocarcinoma cell lines, Life Sci 81,1397-1402.
    [142]Lynn, S., Lai, H. T., Gurr, J. R., and Jan, K. Y. (1997) Arsenite retards DNA break rejoining by inhibiting DNA ligation, Mutagenesis 12,353-358.
    [143]Levine, A. J. (1997) p53, the cellular gatekeeper review for growth and division, Cell 88, 323-331.
    [144]Tang, F., Liu, G., He, Z., Ma, W. Y., Bode, A. M., and Dong, Z. (2006) Arsenite inhibits p53 phosphorylation, DNA binding activity, and p53 target gene p21 expression in mouse epidermal JB6 cells, Mol Carcinog 45,861-870.
    [145]Yih, L. H., and Lee, T. C. (2000) Arsenite induces p53 accumulation through an ATM-dependent pathway in human fibroblasts, Cancer Res 60,6346-6352.
    [146]Hainaut, P., and Mann, K. (2001) Zinc binding and redox control of p53 structure and function, Antioxid Redox Signal 3,611-623.
    [147]Stoica, A., Pentecost, E., and Martin, M. B. (2000) Effects of arsenite on estrogen receptor-alpha expression and activity in MCF-7 breast cancer cells, Endocrinology 141, 3595-3602.
    [148]Davey, J. C., Bodwell, J. E., Gosse, J. A., and Hamilton, J. W. (2007) Arsenic as an endocrine disruptor:effects of arsenic on estrogen receptor-mediated gene expression in vivo and in cell culture, Toxicol Sci 98,75-86.
    [149]Chatterjee, A., and Chatterji, U. (2010) Arsenic abrogates the estrogen-signaling pathway in the rat uterus, Reprod Biol Endocrinol 8,80.
    [150]Simons, S., Chakraborti, P. K., and Cavanaugh, A. H. (1990) Arsenite and cadmium (Ⅱ) as probes of glucocorticoid receptor structure and function, JBiol Chem 265, 1938-1945.
    [1]Ohtsu, A., Shimada, Y., Shirao, K., Boku, N., Hyodo, I., Saito, H., Yamamichi, N., Miyata, Y., Ikeda, N., Yamamoto, S., Fukuda, H., and Yoshida, S. (2003) Randomized phase III trial of fluorouracil alone versus fluorouracil plus cisplatin versus uracil and tegafur plus mitomycin in patients with unresectable, advanced gastric cancer: The Japan Clinical Oncology Group Study (JCOG9205), J Clin Oncol 21,54-59.
    [2]Kubota, K., Watanabe, K., Kunitoh, H., Noda, K., Ichinose, Y., Katakami, N., Sugiura, T., Kawahara, M., Yokoyama, A., Yokota, S., Yoneda, S., Matsui, K., Kudo, S., Shibuya, M., Isobe, T., Segawa, Y., Nishiwaki, Y., Ohashi, Y., and Niitani, H. (2004) Phase Ⅲ randomized trial of docetaxel plus cisplatin versus vindesine plus cisplatin in patients with stage IV non-small-cell lung cancer: The Japanese taxotere lung cancer study group, J Clin Oncol 22,254-261.
    [3]Bunn, P. A. (1989) The Expanding Role of Cisplatin in the Treatment of Non-Small-Cell Lung-Cancer, Semin Oncol 16,10-21.
    [4]Barr, M. P., Gray, S. G., Hoffmann, A. C, Hilger, R. A., Thomale, J., O'Flaherty, J. D., Fennell, D. A., Richard, D., O'Leary, J. J., and O'Byrne, K. J. (2013) Generation and Characterisation of Cisplatin-Resistant Non-Small Cell Lung Cancer Cell Lines Displaying a Stem-Like Signature, Plos One 8.
    [5]Kaiser, L. R., Nguyen, Kaiser, and Kim, J. (1996) Gene therapy for lung cancer: Enhancement of tumor suppression by a combination of sequential systemic cisplatin and adenovirus-mediated p53 gene transfer-Discussion, J Thorac Cardiov Sur 112, 1376-1377.
    [6]Roth, J. A., Swisher, S. G., and Meyn, R. E. (1999) p53 tumor suppressor gene therapy for cancer, Oncology-Ny 13,148-154.
    [7]Wislez, M., and Cadranel, J. (2008) The place of targeted therapy in the management of the patient with non-small cell lung cancer, Oncologie 10,540-544.
    [8]Suzuki, C., Daigo, Y., Kikuchi, T., Katagiri, T., and Nakamura, Y. (2003) Identification of COX 17 as a therapeutic target for non-small cell lung cancer, Cancer Research 63, 7038-7041.
    [9]Oswald, C., Krause-Buchholz, U., and Rodel, G. (2009) Knockdown of Human COX 17 Affects Assembly and Supramolecular Organization of Cytochrome c Oxidase, Journal of Molecular Biology 389,470-479.
    [10]Kuo, M. T., Fu, S. Q., Savaraj, N., and Chen, H. H. W. (2012) Role of the Human High-Affinity Copper Transporter in Copper Homeostasis Regulation and Cisplatin Sensitivity in Cancer Chemotherapy, Cancer Research 72,4616-4621.
    [11]Kuo, M. T., Chen, H. H. W., Song, I. S., Savaraj, N., and Ishikawa, T. (2007) The roles of copper transporters in cisplatin resistance, Cancer Metast Rev 26,71-83.
    [12]Abada, P., and Howell, S. B. (2010) Regulation of Cisplatin cytotoxicity by cu influx transporters, Met Based Drugs 2010,317581.
    [13]Boal, A. K., and Rosenzweig, A. C. (2009) Crystal Structures of Cisplatin Bound to a Human Copper Chaperone, J Am Chem Soc 131,14196-+.
    [14]Arnesano, F., Banci, L., Bertini, I., Felli, I. C., Losacco, M., and Natile, G. (2011) Probing the Interaction of Cisplatin with the Human Copper Chaperone Atoxl by Solution and In-Cell NMR Spectroscopy, J Am Chem Soc 133,18361-18369.
    [15]Banci, L., Bertini, I., Blazevits, O., Calderone, V., Cantini, F., Mao, J. F., Trapananti, A., Vieru, M., Amori, I., Cozzolino, M., and Carri, M. T. (2012) Interaction of Cisplatin with Human Superoxide Dismutase, J Am Chem Soc 134,7009-7014.
    [16]Palumaa, P., Kangur, L., Voronova, A., and Sillard, R. (2004) Metal-binding mechanism of Cox17, a copper chaperone for cytochrome c oxidase, Biochem J 382,307-314.
    [17]Bertini, I. (2011) Cox 17 is a copper chaperone and a redox protein, Abstr Pap Am Chem S241.
    [18]Armstrong, J. S. (2006) Mitochondria:a target for cancer therapy, Brit J Pharmacol 147, 239-248.
    [19]Cullen, K. J., Yang, Z. J., Schumaker, L., and Guo, Z. M. (2007) Mitochondria as a critical target of the chemotheraputic agent cisplatin in head and neck cancer, J Bioenerg Biomembr 39,43-50.
    [20]Ferrin, G., Linares, C. I., and Muntane, J. (2011) Mitochondrial drug targets in cell death and cancer, Curr Pharm Des 17,2002-2016.
    [21]Preston, T. J., Abadi, A., Wilson, L., and Singh, C. (2001) Mitochondrial contributions to cancer cell physiology: potential for drug development, Adv Drug Deliver Rev 49, 45-61.
    [22]Park, S. Y., Chang, I., Kim, J. Y., Kang, S. W., Park, S. H., Singh, K., and Lee, M. S. (2004) Resistance of mitochondrial DNA-depleted cells against cell death-Role of mitochondrial superoxide dismutase, J Biol Chem 279,7512-7520.
    [1]Bemers-Price, S. J., Ronconi, L., and Sadler, P. J. (2006) Insights into the mechanism of action of platinum anticancer drugs from multinuclear NMR spectroscopy, Prog Nucl Mag Res Sp 49,65-98.
    [2]Miller, S. E., Gerard, K. J., and House, D. A. (1991) The Hydrolysis Products of Cis-Diamminedichloroplatinum(Ii).6. A Kinetic Comparison of the Cis-Isomers and Transisomers and Other Cis-Di(Amine)Di(Chloro)Platinum(Ii) Compounds, Inorg Chim Acta 190,135-144.
    [3]Lippert, B. (1996) Trans-diammineplatinum(II):What makes it different from cis-DDP? Coordination chemistry of a neglected relative of cisplatin and its interaction with nucleic acids, Met Ions Biol Syst 33,105-141.
    [4]Dolgova, N. V., Olson, D., Lutsenko, S., and Dmitrlev, O. Y. (2009) The soluble metal-binding domain of the copper transporter ATP7B binds and detoxifies cisplatin, Biochem J 419,51-56.
    [5]Sze, C. M., Khairallah, G. N., Xiao, Z. G., Donnelly, P. S., O'Hair, R. A. J., and Wedd, A. G. (2009) Interaction of cisplatin and analogues with a Met-rich protein site, J Biol Inorg Chem 14,163-165.
    [6]Calderone, V., Casini, A., Mangani, S., Messori, L., and Orioli, P. L. (2006) Structural investigation of cisplatin-protein interactions:Selective platination of His 19 in a cuprozinc superoxide dismutase, Angew Chem Int Edit 45,1267-1269.
    [7]Aprile, F., and Martin Jr, D. S. (1962) Chlorotriammineplatinum (II) ion. Acid hydrolysis and isotopic exchange of chloride ligand, Inorganic Chemistry 1,551-557.
    [8]Wheate, N. J., Walker, S., Craig, G. E., and Oun, R. (2010) The status of platinum anticancer drugs in the clinic and in clinical trials, Dalton T 39,8113-8127.
    [9]Di Francesco, A. M., Ruggiero, A., and Riccardi, R. (2002) Cellular and molecular aspects of drugs of the future:oxaliplatin, Cell Mol Life Sci 59,1914-1927.
    [10]Zhang, S. Z., Lovejoy, K. S., Shima, J. E., Lagpacan, L. L., Shu, Y., Lapuk, A., Chen, Y., Komori, T., Gray, J. W., Chen, X., Lippard, S. J., and Giacomini, K. M. (2006) Organic cation transporters are determinants of oxaliplatin cytotoxicity, Cancer Research 66, 8847-8857.
    [11]Jerremalm, E., Eksborg, S., and Ehrsson, H. (2003) Hydrolysis of oxaliplatin-Evaluation of the acid dissociation constant for the oxalato monodentate complex, J Pharm Sci 92,436-438.
    [12]Lucas, M. F. A., Pavelka, M., Alberto, M. E., and Russo, N. (2009) Neutral and Acidic Hydrolysis Reactions of the Third Generation Anticancer Drug Oxaliplatin, J Phys Chem B 113,831-838.
    [13]Jerremalm, E., Wallin, I., and Ehrsson, H. (2009) New Insights Into the Biotransformation and Pharmacokinetics of Oxaliplatin, J Pharm Sci 98,3879-3885.
    [14]Jerremalm, E., Wallin, I., Yachnin, J., and Ehrsson, H. (2006) Oxaliplatin degradation in the presence of important biological sulphur-containing compounds and plasma ultrafiltrate, Eur J Pharm Sci 28,278-283.
    [15]Ishikawa, T., and Aliosman, F. (1993) Glutathione-Associated Cis-Diamminedichloroplatinum(Ii) Metabolism and Atp-Dependent Efflux from Leukemia-Cells-Molecular Characterization of Glutathione-Platinum Complex and Its Biological Significance, J Biol Chem 268,20116-20125.
    [16]Chen, H. H., and Kuo, M. T. (2010) Role of glutathione in the regulation of Cisplatin resistance in cancer chemotherapy, Met Based Drugs 2010.
    [17]Chen, H. H. W., Song, I. S., Hossain, A., Choi, M. K., Yamane, Y., Liang, Z. D., Lu, J., Wu, L. Y. H., Siddik, Z. H., Klomp, L. W. J., Savaraj, N., and Kuo, M. T. (2008) Elevated glutathione levels confer cellular sensitization to cisplatin toxicity by up-regulation of copper transporter hCtrl, Mol Pharmacol 74,697-704.
    [18]Kasherman, Y., Sturup, S., and Gibson, D. (2009) Is Glutathione the Major Cellular Target of Cisplatin? A Study of the Interactions of Cisplatin with Cancer Cell Extracts, J Med Chem 52,4319-4328.
    [1]Bates, M. N., Smith, A. H., and Hopenhayn-Rich, C. (1992) Arsenic ingestion and internal cancers:a review, Am J Epidemiol 135,462-476.
    [2]Smith, A. H., Lopipero, P. A., Bates, M. N., and Steinmaus, C. M. (2002) Public health. Arsenic epidemiology and drinking water standards, Science 296,2145-2146.
    [3]Bailey, K., Xia, Y. J., Ward, W. O., Knapp, G., Mo, J. Y., Mumford, J. L., Owen, R. D., and Thai, S. F. (2009) Global Gene Expression Profiling of Hyperkeratotic Skin Lesions from Inner Mongolians Chronically Exposed to Arsenic, Toxicol Pathol 37,849-859.
    [4]Antman, K. H. (2001) Introduction:the history of arsenic trioxide in cancer therapy, Oncologist 6 Suppl 2,1-2.
    [5]Rollig, C., and Illmer, T. (2009) The efficacy of arsenic trioxide for the treatment of relapsed and refractory multiple myeloma:A systematic review, Cancer Treat Rev 35, 425-430.
    [6]Gore, S. D., and Emadi, A. (2010) Arsenic trioxide-An old drug rediscovered, Blood Reviews 24,191-199.
    [7]Zhao, D., Jiang, Y., Dong, X., Liu, Z., Qu, B., Zhang, Y., Ma, N., and Han, Q. (2011) Arsenic trioxide reduces drug resistance to adriamycin in leukemic K562/A02 cells via multiple mechanisms, Biomed Pharmacother 65,354-358.
    [8]Muenyi, C. S., States, V. A., Masters, J. H., Fan, T. W., Helm, C. W., and States, J. C. (2011) Sodium arsenite and hyperthermia modulate cisplatin-DNA damage responses and enhance platinum accumulation in murine metastatic ovarian cancer xenograft after hyperthermic intraperitoneal chemotherapy (HIPEC), J Ovarian Res 4,9.
    [9]Zhang, X. W., Yan, X. J., Zhou, Z. R., Yang, F. F., Wu, Z. Y., Sun, H. B., Liang, W. X., Song, A. X., Lallemand-Breitenbach, V., Jeanne, M., Zhang, Q. Y., Yang, H. Y., Huang, Q. H., Zhou, G. B., Tong, J. H., Zhang, Y., Wu, J. H., Hu, H. Y., de The, H., Chen, S. J., and Chen, Z. (2010) Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML, Science 328,240-243.
    [10]Stoica, A., Pentecost, E., and Martin, M. B. (2000) Effects of arsenite on estrogen receptor-alpha expression and activity in MCF-7 breast cancer cells, Endocrinology 141, 3595-3602.
    [11]Schwerdtle, T., Walter, I., and Hartwig, A. (2003) Arsenite and its biomethylated metabolites interfere with the formation and repair of stable BPDE-induced DNA adducts in human cells and impair XPAzf and Fpg, DNA Repair (Amst) 2,1449-1463.
    [12]Ding, W., Liu, W., Cooper, K. L., Qin, X. J., de Souza Bergo, P. L., Hudson, L. G., and Liu, K. J. (2009) Inhibition of poly(ADP-ribose) polymerase-1 by arsenite interferes with repair of oxidative DNA damage, J Biol Chem 284,6809-6817.
    [13]Klug, A. (2010) The Discovery of Zinc Fingers and Their Applications in Gene Regulation and Genome Manipulation, Annu Rev Biochem 79,213-231.
    [14]Tupler, R., Perini, G., and Green, M. R. (2001) Expressing the human genome, Nature 409,832-833.
    [15]Pabo, C. O., Peisach, E., and Grant, R. A. (2001) Design and selection of novel Cys2His2 zinc finger proteins, Annu Rev Biochem 70,313-340.
    [16]Zhou, X., Sun, X., Cooper, K. L., Wang, F., Liu, K. J., and Hudson, L. G. (2011) Arsenite interacts selectively with zinc finger proteins containing C3H1 or C4 motifs, J Biol Chem 286,22855-22863.
    [17]Sankpal, U. T., Goodison, S., Abdelrahim, M., and Basha, R. (2011) Targeting SP1 Transcription Factor in Prostate Cancer Therapy, Med Chem 7,518-525.
    [18]de Rocquigny, H., Shvadchak, V., Avilov, S., Dong, C. Z., Dietrich, U., Darlix, J. L., and Mely, Y. (2008) Targeting the viral nucleocapsid protein in anti-HIV-1 therapy, Mini-Rev Med Chem 8,24-35.
    [19]Demicheli, C., Frezard, F., Mangrum, J. B., and Farrell, N. P. (2008) Interaction of trivalent antimony with a CCHC zinc finger domain:potential relevance to the mechanism of action of antimonial drugs, Chem Commun (Camb),4828-4830.
    [20]Hartwig, A. (2001) Zinc finger proteins as potential targets for toxic metal ions: Differential effects on structure and function, Antioxid Redox Sign 3,625-634.
    [21]Eftink, M. R. (1991) Fluorescence Techniques for Studying Protein-Structure, Method Biochem Anal 35,127-205.
    [22]Fuertes, M. A., Alonso, C., and Perez, J. M. (2003) Biochemical modulation of Cisplatin mechanisms of action:enhancement of antitumor activity and circumvention of drug resistance, Chem Rev 103,645-662.
    [23]Martin, P., DeMel, S., Shi, J., Gladysheva, T., Gatti, D. L., Rosen, B. P., and Edwards, B. F. (2001) Insights into the structure, solvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme, Structure 9,1071-1081.
    [1]Hartwig, A., Blessing, H., Schwerdtle, T., and Walter, I. (2003) Modulation of DNA repair processes by arsenic and selenium compounds, Toxicology 193,161-169.
    [2]Zhang, X. W. (2010) Arsenic trioxide controls the fate of the PML-RAR alpha oncoprotein by directly binding PML (vol 328, pg 240,2010), Science 328,974-974.
    [3]Hartwig, A., Asmuss, M., Ehleben, I., Herzer, U., Kostelac, D., Pelzer, A., Schwerdtle, T., and Burkle, A. (2002) Interference by toxic metal ions with DNA repair processes and cell cycle control:Molecular mechanisms, Environ Health Persp 110,797-799.
    [4]Demicheli, C., Frezard, F., Pereira, F. A., Santos, D. M., Mangrum, J. B., and Farrell, N. P. (2011) Interaction of arsenite with a zinc finger CCHC peptide:Evidence for formation of an As-Zn-peptide mixed complex, J Inorg Biochem 105,1753-1758.
    [5]Schwerdtle, T., Walter, I., and Hartwig, A. (2003) Arsenite and its biomethylated metabolites interfere with the formation and repair of stable BPDE-induced DNA adducts in human cells and impair XPAzf and Fpg, DNA Repair 2,1449-1463.
    [6]Hartwig, A. (2001) Zinc finger proteins as potential targets for toxic metal ions: Differential effects on structure and function, Antioxid Redox Sign 3,625-634.
    [7]Hanas, J., Larabee, J., and Hocker, J. (2005) Zinc Finger Interactions with Metals and Other Small Molecules, In Zinc Finger Proteins (Iuchi, S., and Kuldell, N., Eds.), pp 39-46, Springer US.
    [8]Hartwig, A., Pelzer, A., Asmuss, M., and Burkle, A. (2003) Very low concentrations of arsenite suppress poly(ADP-ribosyl)ation in mammalian cells, Int J Cancer 104,1-6.
    [9]Qin, X. J., Hudson, L. G., Liu, W., Timmins, G. S., and Liu, K. J. (2008) Low concentration of arsenite exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity, Toxicol Appl Pharmacol 232,41-50.
    [10]Ding, W., Liu, W., Cooper, K. L., Qin, X. J., de Souza Bergo, P. L., Hudson, L. G., and Liu, K. J. (2009) Inhibition of poly(ADP-ribose) polymerase-1 by arsenite interferes with repair of oxidative DNA damage, J Biol Chem 284,6809-6817.
    [11]Milton, A. G., Zalewski, P. D., and Ratnaike, R. N. (2004) Zinc protects against arsenic-induced apoptosis in a neuronal cell line, measured by DEVD-caspase activity, Biometals 17,707-713.
    [12]Li, Y. M., and Broome, J. D. (1999) Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells, Cancer Research 59,776-780.
    [13]Urvoas, A., Moutiez, M., Estienne, C., Couprie, J., Mintz, E., and Le Clainche, L. (2004) Metal-binding stoichiometry and selectivity of the copper chaperone CopZ from Enterococcus hirae, Eur J Biochem 271,993-1003.
    [14]Okhrimenko, O., and Jelesarov, M. (2008) A survey of the year 2006 literature on applications of isothermal titration calorimetry, J Mol Recognit 21,1-19.
    [15]Petrick, J. S., Ayala-Fierro, F., Cullen, W. R., Carter, D. E., and Aposhian, H. V. (2000) Monomethylarsonous acid (MMA(III)) is more toxic than arsenite in Chang human hepatocytes, Toxicol Appl Pharm 163,203-207.
    [16]Piatek, K., Schwerdtle, T., Hartwig, A., and Bal, W. (2008) Monomethylarsonous acid destroys a tetrathiolate zinc finger much more efficiently than inorganic arsenite: Mechanistic considerations and consequences for DNA repair inhibition, Chem Res Toxicol 21,600-606.
    [17]Elliott, M. A., Ford, S. J., Prasad, E., Dick, L. J., Farmer, H., Hogg, P. J., and Halbert, G. W. (2012) Pharmaceutical development of the novel arsenical based cancer therapeutic GSAO for Phase I clinical trial, Int J Pharmaceut 426,67-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700