苄基膦酸功能配合物的设计及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用1,3-二苄基膦酸(H4L1)和1,4-羧酸苄基膦酸单乙酯(H2L2')两个配体分别和金属硝酸盐进行水热反应,通过严格地调控反应体系的pH值合成了三个系列单晶相的无机-有机配合物。
     配合物Ln(HL1)(H2O)2(Ln=La,1; Pr,2; Nd,3; Sm,4; Eu,5; Gd,6; Tb,7)通过{CPO3}四面体桥接{LnO7}多面体形成同种构型的二维网络,层间由配体的苄基间的C H π相互作用来堆积。荧光光谱表明配合物4、5和7分别在黄色、红色和绿色的可见光区显示强的金属中心特征发射。磁性研究表明配合物2和7呈现反铁磁性的相互作用。
     配合物Ln(HL2)(H2L2)(H2O)(H3L2=HOOCC6H4CH2PO(OH)2, Ln=La,8; Ce,9; Pr,10; Nd,11; Sm,12; Eu,13; Gd,14; Tb,15)同样是通过{CPO3}四面体桥接{LnO7}多面体形成的二维框架结构,层间通过配体的羧酸基团之间的氢键作用相连。荧光光谱表明配合物13和15呈现稀土金属离子为中心的红色和绿色的特征发射。给出了配体和金属离子之间可能的能量传递过程,并估算了相关的电子激发态能级。磁性研究表明配合物14和15的稀土离子之间在临界温度以上为反铁磁性的相互作用,在临界温度以下为铁磁性相互作用。
     此外,配合物M(H2L2)2(H2O)2(M=Co,16; Ni,17; Zn,18; Cd,19)为{MO6}多面体同{CPO3}四面体桥连而成的一维之字形链结构。配合物18和19的荧光发射光谱位于蓝色的可见光区,可以作为潜在的荧光材料。
Three series of novel organic–inorganic complexes based on phosphonic acidligands1,3-C6H4[CH2P(O)(OH)2]2(H4L1),1,4-HOOCC6H4CH2PO(OH)(OC2H5)(H2L2')and metal nitrates have been obtained as single phases by regulating the pH underhydrothermal conditions.
     Complexes Ln(HL1)(H2O)2(Ln=La,1; Pr,2; Nd,3; Sm,4; Eu,5; Gd,6; and Tb,7) are isomorphous two-dimensional network in which {LnO7} polyhedra areinterconnected by bridging {CPO3} tetrahedra. These layers are further stacked with thebenzyl groups of ligands via C–H···π interaction. Luminescences indicate thatcomplexes4,5, and7show strong metal-centered emissions in yellow, red and greenlight region, respectively. Magnetic properties of complexes2and7indicate thatthere are antiferromagnetic interactions.
     Complexes Ln(HL2)(H2L2)(H2O)(H3L2=HOOCC6H4CH2PO(OH)2, Ln=La,8;Ce,9; Pr,10; Nd,11; Sm,12; Eu,13; Gd,14; Tb,15) are also two-dimensionalframework in which the {LnO7} polyhedra are interconnected by bridging {CPO3}tetrahedra. These layers are further cross-linked by hydrogen-bonds of the COOHgroups of ligands. Luminescences show that complexes13and15display Ln-centeredstrong red and green luminescence, respectively. The possible energy transferprocesses between ligands and metal ions have been elucidated and the energy levelsof the relevant electronic states have been estimated. Magnetic properties ofcomplexes14and15indicate that there are antiferromagnetic interactions above TCand ferromagnetic interactions under TCbetween Ln3+ions.
     In addition, Complexes M(H2L2)2(H2O)2(M=Co,16; Ni,17; Zn,18; Cd,19)feature a one-dimensional (1D) zigzag chain in which the {MO6} polyhedra areinterconnected by bridging {CPO3} tetrahedra. Luminescent measurements illustratethat complexes18and19are blue light emission bands and could be served aspotential luminescence materials.
引文
[1] G. A. Lawrance. Introduction to Coordination Chemistry[M]. John Wiley&Sons, Chichester,2010.
    [2]洪茂椿,陈荣,梁文平.21世纪的无机化学[M].北京:科学出版社,2005.
    [3] P. J. Stang, B. Olenyuk. Self-Assembly, Symmetry, and Molecular Architecture: Coordinationas the Motif in the Rational Design of Supramolecular Metallacyclic Polygons and Polyhedra[J]. Acc. Chem. Res.,1997,30,502518.
    [4] S. Kitagawa, R. Kitaura, S. Noro, Functional Porous Coordination Polymers[J]. Angew. Chem.Int. Ed.,2004,43,23342375.
    [5]陈小明.配位聚合物组装化学(第11章).无机合成与制备化学[M].徐如人,庞文琴,霍启升主编.北京:高等教育出版社,2009,363-384页.
    [6] G. Alberti, U. Costantino, S. Allulli and N. Tomassini. Crystalline Zr(R-PO3)2and Zr(R-OPO3)2compounds (R=organic radical): A new class of materials having layered structure of thezirconium phosphate type[J]. J. Inorg. Nucl. Chem.,1978,40,11131117.
    [7] J. Le Bideau, C. Payen, P. Palvadeau and B. Bujoli, Preparation, Structure, and MagneticProperties of Copper(II) Phosphonates. β-CuII(CH3PO3), an Original Three-DimensionalStructure with a Channel-Type Arrangement[J]. Inorg. Chem.,1994,33,4885-4890.
    [8] A. Clearfield. in: K.D. Karlin (Ed.). In Progress in Inorganic Chemistry[M]. vol.47, JohnWiley&Sons, New York,1998, p.371510.
    [9] J. G. Mao. Structures and Luminescent Properties of Lanthanide Phosphonates[J]. Coord. Chem.Rev.,2007,251,14931520.
    [10] A. Clearfield, K. Demadis (Ed.). Metal Phosphonate Chemistry: From Synthesis toApplications[M]. Royal Society of Chemistry, Cambridge,2012.
    [11] K. J. Gagnon, H. P. Perry and A. Clearfield. Conventional and Unconventional Metal–OrganicFrameworks Based on Phosphonate Ligands: MOFs and UMOFs[J]. Chem. Rev.,2012,112,10341054.
    [12]张思远.稀土离子的光谱学:光谱性质和光谱理论[M].北京:科学出版社,2008.
    [13] A. K. Cheetham, G. Ferey, T. Loiseau. Open-framework inorganic materials[J]. Angew. Chem.Int. Ed. Eng.,1999,38:3269-3292.
    [14] S.-M. Ying, J.-G. Mao. Introducing a Second Ligand: New Route to Luminescent LanthanidePolyphosphonates[J]. Cryst. Growth&Des.,2006,6(4):964968.
    [15] S.-F. Tang, J.-L. Song, X.-L. Li, and J.-G. Mao. Luminescent Lanthanide (III)Carboxylate-Phosphonates with Helical Tunnels[J]. Cryst. Growth&Des.,2006,6(10):23222326.
    [16] S. F. Tang, J. L. Song, X. L. Li, and J.-G. Mao. Novel Luminescent Lanthanide (III)Diphosphonates with Rarely Observed Topology[J]. Cryst. Growth&Des.,2007,7(2):360366.
    [17] Y.-Q. Guo, S.-F. Tang, B.-P. Yang, J.-G. Mao. Synthesis, crystal structures, and luminescentproperties of two types of lanthanide phosphonates[J]. J. Solid State Chem.,2008,181:27132718.
    [18] Y.-Y. Zhu, Z.-G. Sun, H. Chen, J. Zhang, Y. Zhao, N. Zhang, L. Liu, X. Lu, W.-N. Wang, F.Tong, and L.-C. Zhang. Seven Novel Lanthanide Oxalatophosphonates with Two Types of3DFramework Structures Based on N-Morpholinomethylphosphonic Acid: Syntheses, CrystalStructures, Luminescence Properties[J]. Cryst. Growth&Des.,2009,9(7):32283234.
    [19] J.-L. Song, F.-Y. Yi, J.-G. Mao. New Types of Luminescent LanthanideSquarato-Aminophosphonates[J]. Cryst. Growth&Des.,2009,9(7):32733277.
    [20] F. Costantino, A. Ienco, P. L. Gentili, F. Presciutti. Synthesis, X-ray Powder Structure, andPhotophysical Properties of Three New Ce(III) Sulfate-Diaminotetraphosphonate-BasedCoordination Polymers[J]. Cryst. Growth&Des.,2010,10,48314838.
    [21] L. Liu, Z.-G. Sun, N. Zhang, Y.-Y. Zhu, Y. Zhao, X. Lu, F. Tong, W.-N. Wang, and C.-Y.Huang. Syntheses, Crystal Structures, and Luminescence Properties of a Series of NovelLanthanide Oxalatophosphonates with Two Types of3D Framework Structures[J]. Cryst.Growth&Des.,2010,10:406413.
    [22] X. F. Li, T. F. Liu, Q. P. Lin, R. Cao. Rare Earth Metal Oxalatophosphonates: Syntheses,Structure Diversity, and Photoluminescence Properties[J]. Cryst. Growth&Des.,2010,10:608617.
    [23] T.-H. Zhou, F.-Y. Yi, P.-X. Li, J.-G. Mao. Synthesis, Crystal Structures, and LuminescentProperties of Two Series’ of New Lanthanide (III) Amino-Carboxylate-Phosphonates[J]. Inorg.Chem.,2010,49:905915.
    [24] E. Villemin, B. Elias, J. Marchand-Brynaert. Europium (III) Coordination Complex with aNovel Phosphonated Ligand[J]. J. Mol. Struct.,2013,1034,276–282.
    [25] R. M. P. Colodrero, G. K. Angeli, M. B. Garcia, P. O-Pastor, D. Villemin, E. R. Losilla, E. Q.Martos, G. B. Hix, M. A. G. Aranda, K. D. Demadis, A. Cabeza, Structural Variability inMultifunctional Metal Xylenediaminetetraphosphonate Hybrids[J]. Inorg. Chem.,2013,52,87708783.
    [26] W. Chu, Y. Y. Zhu, Z. G. Sun, C. Q. Jiao, J. Li, S. H. Sun, H. Tian, M. J. Zheng, Zinc(II) andCadmium(II) Carboxyphosphonates with a3D Pillared-Layered Structure: Synthesis, CrystalStructures, High Thermal Stabilities and Luminescent Properties[J]. RSC Adv.,2013,3,623-631.
    [27] W. Chu, Z. G. Sun, C. Q. Jiao, J. Li, S. H. Sun, H. Tian, M. J. Zheng, Two Novel Lead(II)Carboxyphosphonates with a Layeredand a3D Framework Structure: Syntheses, CrystalStructures, Reversible Dehydration/Hydration, and Luminescence Properties[J]. Dalton Trans.,2013,42,8009-8017.
    [28] F. Luo, D.-X. Hu, L. Xue, Y.-X. Che, J.-M. Zheng. Pillared3d-4f Frameworks with Rare3DArchitecture Showing the Coexistence of Ferromagnetic and Antiferromagnetic Interactionsbetween Gadolinium Ions[J]. Cryst. Growth&Des.,2007,7(5):851853.
    [29] Z.-Y. Du, H.-B. Xu, and J.-G. Mao. Rational Design of0D,1D, and3D Open FrameworksBased on Tetranuclear Lanthanide (III) Sulfonate Phosphonate Clusters[J]. Inorg. Chem.,2006,45:97809788.
    [30] B. Liu, B.-L. Li, Y.-Z. Li, Y. Chen, S.-S. Bao, L.-M. Zheng. Lanthanide Diruthenium (II, III)Compounds Showing Layered and PtS-Type Open Framework Structures[J]. Inorg. Chem.,2007,46:85248532.
    [31] X. F. Li, Q. Y. Liu, J. X. Lin, Y. F. Li, R. Cao. Phosphonate Supported Assembly of NanoscaleLotus-Leaf-Shaped Nonanuclear Lanthanide Clusters[J]. Inorg. Chem. Comm.,2009,12:502505.
    [32] Y.-S. Ma, Y. Song, L.-M. Zheng. Nature of the LnIII-CoIIMagnetic Interactions in Compounds
    [Ln2CO3(C5H4NPO3)6]·4H2O with Open-Framework Structures[J]. Inorg. Chim. Acta,2008,361:13631371
    [33] D.-K. Cao, S.-Z. Hou, Y.-Z. Li, and L.-M. Zheng. Lanthanide CarboxyphosphonatesLn(O3PCH2-NC5H9-COO)(H2O)2·H2O with Open Framework Structures ContainingParallelogram-Like Channels[J]. Cryst. Growth&Des.,2009,9:44454449.
    [34] T. H. Bray, A. G. D. Nelson, G. B. Jin, R. G. Haire, et al, In Situ Hydrothermal Reduction ofNeptunium(VI) as a Route to Neptunium(IV) Phosphonates[J]. Inorg. Chem.,2007,46,1095910961.
    [35] T.-H. Zhou, F.-Y. Yi, P.-X. Li, and J.-G. Mao. Synthesis, Crystal Structures, and LuminescentProperties of Two Series’ of New Lanthanide (III) Amino-Carboxylate-Phosphonates[J]. Inorg.Chem.,2010,49:905915.
    [36] S.-S. Bao, L.-F. Ma, Y. Wang, L. Fang, C.-J. Zhu, Y.-Z. Li, L.-M. Zheng. Anion-DirectedSelf-Assembly of Lanthanide-Notp Compounds and Their Fluorescence, Magnetic, andCatalytic Properties[J]. Chem. Eur. J.,2007,13:23332343.
    [37] A. V. Palii, O. S. Reu, S. M. Ostrovsky, S. I. Ostrovsky, S. I. Klokishner, B. S. Tsukerblat, Z. M.Sun, J. G. Mao, A. V. Prosvirin, H. H. Zhao, K. R. Dunbar. A Highly AnisotropicCobalt(II)-Based Single-Chain Magnet: Exploration of Spin Canting in an AntiferromagneticArray[J]. J. Am. Chem. Soc.,2008,130,1472914738.
    [38] B. P. Yang, A. V. Prosvirin, Y. Q. Guo, J. G. Mao. Co[HO2C(CH2)3NH(CH2PO3H)2]2: A NewCanted Antiferromagnet[J]. Inorg. Chem.,2008,47,14531459.
    [39] D. K. Cao, M. J. Liu, J. Huang, S. S. Bao, L. M. Zheng. Cobalt and Manganese Diphosphonateswith One-, Two-, and Three-Dimensional Structures and Field-Induced Magnetic Transitions[J].Inorg. Chem.,2011,50,22782287.
    [40] Z. Y. Du, H. R. Wen, C. M. Liu, Y. B. Lu, Y. R. Xie, Layered Iron(III)andCobalt(II)Phosphonates Decorated by Hydrophilic Sulfone Groups: Syntheses, Structures andMagnetic Properties[J]. Cryst. Growth&Des.,2010,10,37213726.
    [41] B. K. Tripuramallu, S. K. Das, Influence of Biphenyl Spacer Appended to the FlexiblePhosphonate Arms in Modulating the Dimensionality of the Coordination Polymers: Synthesis,Structural Chemistry and Magnetic Properties[J]. J. Solid State Chem.,2013,197,499507.
    [42] S. P. Tang, X. B. Pan, X. X. Lv, X. B. Zhao, Investigation on Three New MetalCarboxydiphosphonates: Syntheses, Structures, Magnetic and Luminescent Properties[J]. J.Solid State Chem.,2013,197,139146.
    [43] J. A. Sheikh, S. Goswami, A. Adhikary, S. Konar, Serendipitous Assemblies of Two LargePhosphonate Cages: A Co15Distorted Molecular Cube and a Co12Butterfly Type CoreStructure[J]. Inorg. Chem.,2013,52,4127–4129.
    [44] J. J. Hou, X. M. Zhang, Structures and Magnetic Properties of a Series of MetalPhosphonoacetates Synthesized from in Situ Hydrolysis of Triethyl Phosphonoacetate[J]. Cryst.Growth&Des.,2006,6,14451452.
    [45] R. B. Fu, S. C. Xiang, H. S. Zhang, J. J. Zhang, X. T. Wu. Syntheses, Characterization, andMagnetic Properties of Four New Layered Transition Metal Hydroxyl CarboxylatePhosphonates:[M(CH(OH)(CO2)(PO3H))(H2O)2](M=Mn (1), Fe (2), Co (3), Zn (4))[J]. Cryst.Growth&Des.,2005,5,17951799.
    [46] S. Konar, J. Zon, A. V. Prosvirin, K. R. Dunbar, A. Clearfield. Synthesis and Characterizationof Four Metal-Organophosphonates with One-, Two-, and Three-Dimensional Structures[J].Inorg. Chem.,2007,46,52295236.
    [47] F. Costantino, T. Bataille, N. Audebrand, et al, Direct Synthesis from Various TetraphosphonicBuilding Blocks of Homologous Hybrid-Layered Copper(II) Derivatives Incorporating CopperHydrate Cations[J]. Cryst. Growth&Des.,2007,7,18811888.
    [48] A. Sonnauer, M. Feyand, N. Stock. Synthesis of4-Phosphonobutanesulfonic Acid andSystematic Investigation of Copper Phosphonatobutanesulfonates by High-ThroughputMethods[J]. Cryst. Growth&Des.,2009,5,586592.
    [49] J. M. Rueff, O. Perez, C. Simon, C. Lorilleux, H. Couthon-Gourvès, P. A. Jaffrès. Synthesis of4-Phosphonobutanesulfonic Acid and Systematic Investigation of CopperPhosphonatobutanesulfonates by High-Throughput Methods[J]. Cryst. Growth&Des.,2009,9,42624268.
    [50] P. DeBurgomaster, A. Aldous, H. X. Liu, C. J. O’Connor, J. Zubieta. Hydrothermal Chemistryof Oxomolybdenum-1,4-Carboxyphenylphosphonates in the Presence of M(II)-OrganonitrogenBuilding Blocks (M(II)=Co, Ni, and Cu)[J]. Cryst. Growth&Des.,2010,10,22092218.
    [51] J. M. Rueff, O. Perez, C. Simon, C. Lorilleux, H. Couthon-Gourvès, P. A. Jaffrès.3,5-Diphosphonobenzoic Acid, a New Rigid Heterotrifunctional Building Block to Design MetalOrganic Frameworks. Illustration with the Characterization of Cu5[(O3P)2-C6H3-CO2]2(H2O)6[J].Cryst. Growth&Des.,2009,9,42624268.
    [52] E. M. Bauer, C. Bellitto, P. Imperatori, G. Righini, M. Colapietro, G. Portalone, C. J.Gómez-García. A Novel1D-AF Hybrid Organic-Inorganic Chromium(II) Methyl PhosphonateDihydrate: Synthesis, X-Ray Crystal and Molecular Structure, and Magnetic Properties[J].Inorg. Chem.,2010,49,74727477.
    [53] J. T. Li, T. D. Keene, D. K. Cao, S. Decurtins, L. M. Zheng.[M(OOCC6H4PO3H)(H2O)](M(II)=Mn, Co, Ni): Layered Metal Phosphonates Showing Variable Magnetic Behavior[J].CrystEngComm,2009,11,12551260.
    [54] F. P. Zhai, M. L. Deng, Y. Ling, Z. X. Chen, L. H. Weng, Y. M. Zhou, Syntheses, Structures andMagnetic Properties of Two Isostructural Metal-Phosphonate Frameworks[J]. Inorg. Chim.Acta,2013,402,104108.
    [55] V. Chandrasekhar, D. Sahoo, R. S. Narayanan, R. J. Butcher, F. Lloret, E. Pardo, AHexaicosametallic Copper(II) Phosphonate[J]. Dalton Trans.,2013,42,81928196.
    [56] B. K. Tripuramlla, S. K. Das, Hydrothermal Synthesis and Structural Characterization of MetalOrganophosphonate Oxide Materials: Role of Metal-Oxo Clusters in the Self Assembly ofMetal Phosphonate Architectures[J]. Cryst. Growth&Des.,2013,13,24262434.
    [57] R. Janicki. Synthesis, Crystal Structure and Spectral Properties of Diammonium DihydrogenN-(Methylene-2-Pyridine)-N,N,-di-(Methylenephosphonate)[J]. J. Mol. Struct.,2013,1036,35–41.
    [58] E. M. Pineda, F. Tune, R. G. Pritchard, A. C. Regan, R. E. P. Winpenny, E. J. L. Mcinnes,Molecular Amino-Phosphonate Cobalt–Lanthanide Clusters[J]. Chem. Commun.,2013,49,35223524.
    [59] T. M. Smith, J. Vargas, D. Symester, M. Tichenor, C. J. O′Conner, Metal-organophosphonatechemistry: Hydrothermal Syntheses and Structures of Copper(II)-Xylyldiphosphonates withOrganonitrogen Coligands[J]. Inorg. Chim. Acta,2013,40,63-77.
    [60] A. Kufelnicki, M. Woz′niczka, U. Lis, J. Jezierska, J. Ochocki, Synthesis, Acid–Base andComplexing Properties with Cu(II), Co(II) and Zn(II) in Aqueous Solution of a Novel1H-Benzimidazol-2-Ylmethyl Diethyl Phosphate Ligand: Comparison with Other2-SubstitutedBenzimidazole Ligands[J]. Polyhedron2013,53,20–25.
    [61] P. Garczarek, J. Janczak, J. Zon. New Multifunctional Phosphonic Acid for Metal PhosphonateSynthesis[J]. J. Mol. Struct.,2013,1036,505–509.
    [62] R. Janicki. Synthesis, Crystal Structure and Spectral Properties of Diammonium DihydrogenN-(Methylene-2-Pyridine)-N,N,-di-(Methylenephosphonate)[J]. J. Mol. Struct.,2013,1036,35–41.
    [63] M. Taddel, F. Costantino, A. lenco, A. Comotti, P. V. Dau, S. M. Cohen, Synthesis, Breathing,and Gas Sorption Study of the First Isoreticular Mixed-Linker Phosphonate BasedMetal–Organic Frameworks[J]. Chem. Commun.,2013,49,13151317.
    [64] L. Yang, P. T. Ma, Z. Zhou, J. P. Wang, J. Y. Niu, A Crown-Shaped24-Molybdate ClusterConstructed by Organotriphosphonate Ligand[J]. Inorg. Chem.,2013,52,82858287.
    [65] L. Ran, X. C. Chai, H. X. Mei, H. H. Zhang, Y. P. Chen, Y. Q. Sun, Four divalent transitionmetal carboxyarylphosphonate compounds: Hydrothermal Synthesis, Structural Chemistry andGeneralized2D FTIR Correlation Spectroscopy Studies[J]. J. Solid State Chem.,2010,183,1510–1520.
    [66] N. Stock, T. Bein, High-Throughput Investigation of Metal Carboxyarylphosphonate HybridCompounds[J]. J. Mater. Chem.,2005,15,1384–1391.
    [67] L. Ran, H. H. Zhang, H. Jin, X. C. Chai, S. Zhang, C. X. Li, Y. P. Chen, Y. Q. Sun, Synthesisand Single-Crystal Structure of a Silver(I) Carboxyarylphosphonate:[Ag(H2BCP)(4,4-bipy)]·2H2O[J]. Chin. J. Struct. Chem.,2010,29,655–659.
    [68] V. Chandrasekhar, P. Sasikumar, T. Senapati, A. Dey, Dinuclear Metal Phosphonates andPhosphates[J]. Inorg. Chim. Acta,2010,363,2920–2928.
    [69] F. N. Shi, T. Trindade, J. Rocha, A. Filipe, Hydro-Ionothermal Synthesis of Lanthanide-Organic Frameworks with1,4-Phenylenebis(methylene)diphosphonate[J]. Cryst. Growth&Des.2008,8,3917–3920.
    [70] R. Murugavel, M. P. Singh, One, two, and Three Methylene Phosphonic Acid Groups(-CH2PO3H2) on a Mesitylene Ring: Synthesis, Characterization and Aspects of SupramolecularAggregation[J]. New J. Chem.2010,24,1846–1854.
    [71] M. Plabst, T. Bein,1,4-Phenylenebis(methylidyne)tetrakis(phosphonic acid): A New BuildingBlock in Metal Organic Framework Synthesis[J]. Inorg. Chem.,2009,48,4331–4341.
    [72] J. G. Bünzli and C. Piguet. Taking Advantage of Luminescent Lanthanide Ions[J]. Chem. Soc.Rev.,2005,34,10481077.
    [73] J. C. G. Bünzli, in Spectroscopic Properties of Rare Earths in Optical Materials, eds. G. K. Liuand B. Jacquier, Springer Verlag, Berlin,2005, Vol.83, Ch.11.
    [74] C. N. R. Rao, S. Natarajan and R. Vaidhyanathan. Metal Carboxylates with Open Architectures[J]. Angew. Chem. Int. Ed.,2004,43,14661496.
    [75] G. K. H. Shimizu, R. Vaidhyanathan and J. M. Taylor. Phosphonate and Sulfonate MetalOrganic Frameworks[J]. Chem. Soc. Rev.,2009,38,14301449.
    [76] T. Araki, A. Kondo and K. Maeda, The First Lanthanide Organophosphonate Nanosheet byExfoliation of Layered Compounds[J]. Chem. Commun.,2013,49,552554.
    [77] S. M. F. Vilela, D. Ananias, A. C. Gomes, A. A. Valente, L. D. Carlos, J. A. S. Cavaleiro, J.Rocha, J. P. C. Tomé and F. A. A. Paz. Multi-Functional Metal–Organic FrameworksAssembled from a Tripodal Organic Linker[J]. J. Mater. Chem.,2012,22,1835418371.
    [78] J. M. Taylor, R. K. Mah, I. L. Moudrakovski, C. I. Ratcliffe, R. Vaidhyanathan and G. K. H.Shimizu. Facile Proton Conduction via Ordered Water Molecules in a Phosphonate MetalOrganic Framework[J]. J. Am. Chem. Soc.,2010,132,1405514057.
    [79] T. B. Liao, Y. Ling, Z. X. Chen, Y. M. Zhou and L. H. Weng. A Rutile-Type Porous Zinc(II)-Phosphonocarboxylate Framework: Local Proton Transfer and Size-Selected Catalysis[J].Chem. Commun.,2010,46,11001102.
    [80] M. J. Bia ek, J. Janczak and J. Zon. Naphthalene-Based Linkers for Metal Phosphonates:Synthesis, Structure, and Interesting Conformational Flexibility Influence on Final LanthanumHybrids[J]. CrystEngComm,2013,15,390399.
    [83] R. C. Wang, Y. Zhang, H. Hu, R. R. Frausto. Preparation of Lanthanide Arylphosphonates andCrystal Structures of Lanthanum Phenyl-and Benzylphosphonates[J]. Clearfield, A. Chem.Mater.,1992,4,864871.
    [84] X. M. Gan, B. M. Rapko, J. Fox, I. Binyamin, S. Pailloux, E. N. Duesler and R. T. Paine AThree-Dimensional Framework Structure Constructed from2-(2-Pyridyl-N-Oxide)Ethylphosphonic Acid and Nd(III)[J]. Inorg. Chem.,2006,45,37413745.
    [85] J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities; Oxford University:Oxford, U.K,1932; p243.
    [86] K. Chen, D. P. Dong, Z. G. Sun, C. Q. Jiao, C. Li, C. L. Wang, Y. Y. Zhu, Y. Zhao, J. Zhu, S. H.Sun, M. J. Zheng, T. Hui and W. Chu. A Series of Novel Lanthanide Carboxyphosphonates witha3D Framework Structure: Synthesis, Structure, and Luminescent and Magnetic Properties[J].Dalton Trans.,2012,41,1094810956.
    [87] X. L. Wang, Y. Q. Guo, Y. G. Li,etal. Novel Polyoxometalate-Templated,3-D SupramolecularNetworks Based on Lanthanide Dimers: Synthesis, Structure, and Fluorescent Properties of
    [Ln2(DNBA)4(DMF)8][Mo6O19](DNBA=3,5-Dinitrobenzoate)[J]. Inorg. Chem.,2003,42,41354140.
    [88] P. Vojtisek, P. Cigler, J. Kotek, J. Rudovsky, P. Hermann, I. Lukes. A Novel Compound in theLanthanide(III) DOTA Series. X-ray Crystal and Molecular Structure of the ComplexNa[La(DOTA)La(HDOTA)]·10H2O[J]. Inorg. Chem.2005,44,5591–5599.
    [89] R. Shannon. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances inHalides and Chalcogenides[J]. Acta Crystallogr. Sect. A1976,32,751–767.
    [90] Dieke, G. H. Spectra and Energy Levels of Rare Earth Ions in Crystals; Wiley-Interscience:New York,1968.
    [91] D. B. Ambili Raj, S. Biju, M. L. P. Reddy. One-, Two-, and Three-Dimensional Arrays ofEu3+-4,4,5,5,5-pentafluoro-1-(naphthalen-2-yl)pentane-1,3-dione complexes: Synthesis, CrystalStructure and Photophysical Properties[J]. Inorg. Chem.,2008,47,8091–8100.
    [92] H. J. Zhang, R. H. Gou, L. Yan, R. D. Yang. Synthesis, characterization and luminescenceproperty of N,N′-di(pyridine N-oxide-2-yl)pyridine-2,6-dicarboxamide and correspondinglanthanide (III) complexes[J].Spectrochim. Acta,2007,66A,289–294.
    [93] F. J. Steemers, W. Verboom, D. N. Reinhoudt, E. B. van der Tol, J. W. Verhoeven. NewSensitizer-Modified Calix[4]arenes Enabling Near-UV Excitation of Complexed LuminescentLanthanide Ions[J]. J. Am. Chem. Soc.,1995,117,9408–9414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700