含N,O配体过渡金属MOFs的合成、结构及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文详细地阐述了含N、O配体和过渡金属组成的MOFs的合成条件和方法、结构特点、热稳定性及荧光性能。主要使用芳香多羧酸和氮杂环配体(即均苯三甲酸(H_3btc)、间苯二甲酸(H2ipa)、均苯四甲酸、N, N-二(2-吡啶)均苯四甲酸酰亚胺(ppt),2, 4, 6 -三(4-吡啶)-1, 3, 5-三嗪(tpt)等)作为O、N源,通过溶剂热法,与过渡金属(Ni, Mn, Cd, Cu等)自组装成结构独特的MOFs化合物。
     成功合成两种有机配体:ppt和tpt。采用溶剂热法成功合成六个化合物: [Ni(H_2btc)(Hbtc)(tpt)(H_3O)](1),[Mn(tpt)(ipa)](2),[Ni(C_(10)H_2O_8)0.5(H_2O)2]·2H_2O(3),[Cd(C_(10)H_2O_8)0.5(H_2O)3](4) , [Cu(C_9H_4O_6)(H_2O)3](5) , [Cd3(C9H3O6)2(H_2O)9]·2H_2O (6),其中化合物1和化合物2中的有机配体是混合配体,而化合物3~6的有机配体是单一配体。化合物1中存在η1和η2两种配位形式的均苯三甲酸,η2配位形式的均苯三甲酸将由Ni和tpt配位构筑的螺旋链连接成为二维层状结构,而η1配位的均苯三甲酸只起对螺旋链进行修饰作用;化合物2中,Mn原子将tpt配体连接成为zigzag链,同时,Mn原子与间苯二甲酸配位,形成了两条互相垂直的一维直链,因此,Mn原子将这三条沿着不同方向的一维链构成三维网络结构;化合物3是由Ni原子和均苯四甲酸配位形成的一个三维网络结构,其结构具有一维矩形孔道;化合物4中Cd原子与均苯四甲酸配位,最终形成一个具有两个不同尺寸孔穴的二维层状结构;化合物5中,Cu和均苯三甲酸配位形成一条zigzag链,又通过氢键的作用,最终形成一个三维的超分子网络结构;化合物6是一个由五配位和六配位的Cd原子交替与均苯三甲酸配位所构成的具有菱形孔穴的二维层状结构。此外,对六个化合物进行了热重分析及其荧光性能的研究,其中化合物2的热稳定性最好;化合物1,3,5在近紫外区有荧光,化合物2具有蓝色荧光,而化合物4和6具有紫色荧光。
In the dissertation, we have intruduced in detail the conditions and methods of synthesis, structural features, thermal stability, fluorescent properties of MOFs based on N, O ligands and transition metals. We have prepared the MOFs with novel structures adopting solvothermal synthesis method using multi-carboxylic acid and heterocyclic aromatic ligands including trimesic acid (H3btc), isophthalic acid(H2ipa), pyromellitic acid N,N-di(2-pyridyl)-pyrrolo[3,4]isoindole-1,3,5,7-tetraone (ppt) and 2,4,6-tris(4-pyridyl)-1,3,5-triazine (tpt), and transition metal composed of nickel, copper, manganese, cadmium and so on.
     We have successfully prepared two organic ligands: ppt and tpt. Furthermore, we have also successfully synthesized six MOFs: [Ni(H_2btc)(Hbtc)(tpt)(H3O)] (1),[Mn(tpt)(ipa)] (2),[Ni(C_(10)H_2O_8)0.5(H2O)2]·2H2O (3),[Cd(C_(10)H_2O_8)0.5(H2O)3] (4),[Cu(C_9H_4O_6)(H_2O)3] (5),[Cd3(C_9H_3O_6)2(H2_O)9]·2H2O (6). Among them, compounds 1 and 2 are comprised of mixed-ligands and compounds 3~6 only include one type of ligand molecule. Especially, compound 1 displays a 2-D layered structure which is built byη2 coordination mode trimesc acid and helical chain formed by TPT ligands and Ni atoms, in 1, the trimesic acid adoptingη1 coordination mode also is found to modify the helical chain. Compound 2 displays a 3-D network structure with 1-D channel, which is comprised of three 1-D chains including one zigzag chain formed by Mn atoms and TPT ligands, and two mutually perpendicular 1-D straight chains built by Mn atoms and isophthalic acids along different directions. Compound 3 exhibits 3-D network structure possessing the 1-D rectangular channel, which is formed by Ni atoms and pyromellitic acids. Compound 4 with two different sizes caves possesses 2-D layered network structure is built from the transition metal Cd and pyromellitic acid. Compound 5 displays 3-D supramolecular network structure, which is formed by the 1-D zigzag chain built from Cu and trimesic acid via hydrogen bonds. Compound 6 exhibits 2-D layered network structure with diamond channel that is formed by the five-coordinated and six-coordinated Cd atoms and trimesic acid. We also carried out these six compounds thermogravimetric analyses and fluorescence properties, the stability of compound 2 with blue fluorescence is the best. Compounds 1, 3 and 5 exhibit the fluorescence in the near ultraviolet region, and compounds 4 and 6 exhibit purple fluorescence.
引文
1魏文英,方键,孔海宁,等.金属有机骨架材料的合成及应用.化学进展. 2005,17,1110~1114
    2龙沛沛,程绍娟,赵强,等.金属-有机骨架材料的合成及其研究进展.山西化工,2008,28,21~25
    3 G. Férey. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 2008, 37, 191~214
    4 N. R. Champess, M. Schroder. Extended networks formed by coordination polymers in the solid state. Current Opinion in Solid State and Materials Science. 1998, 3, 419~424
    5 S. L. James. Metal-organic frameworks. Chem. Soc. Rev. 2003, 32,276~288
    6 O. S. Jung, S. H. Park, K. M. Kim, et al. Solvent-Dependent Structures of Co(NO3)2 with 1, 2-Bis (4-pyridyl) ethylene. Interconversion of Mole cular Ladders versus Mononuclear Complexes. Inorg. Chem. 1998, 37, 5781~5785
    7 A. J. Blake, N. R. Brooks, N. R. Champness, et al. Controlling copper(I) halide framework formation using N-donor bridging ligand symmetry: use of 1,3,5 -triazine to construct architectures with threefold symmetry. J. Chem. Soc. Dalton Trans. 1999, 2103~2110
    8 J. R. Long, O. M. Yaghi. The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1213~1214
    9 J. R. Stork, V. S. Thoi, S. M. Cohen. Rare Examples of Transition-Metal-Main -Group Metal Heterometallic Metal-Organic Frameworks from Gallium and Indium Dipyrrinato Complexes and Silver Salts: Synthesis and Framework Variability. Inorg. Chem. 2007, 46, 11213~11223
    10 H. L. Li, M. Eddaoudl, M. O’Keeffe, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature. 1999, 402, 276~279
    11 M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science. 2002, 295, 469~472
    12 H. K. Chae, D. Y. Siberio-Perez, J. Kim, et al. A route to high surface areas, porosity and inclusion of large molecules in crystals. Nature. 2004, 427, 523~527
    13 M. Latroche, S. Surblé, C. Serre, et al. Hydrogen Storage in the Giant-Pore Metal-Organic Frameworks MIL-100 and MIL-101. Angew. Chem. Int. Ed. 2006, 45, 8227~8231
    14王海君,朱广山,张可勇,等.金属有机骨架复合材料RhB/MOF-5的制备及其发光性质.高等学校化学学报. 2009,30,11~13
    15 H. Ren, T. Ben, E. S. Wang, et al.Targeted synthesis of a 3D porous aromatic framework for selective sorption of benzene. Chem. Commun. 2010, 46, 291~293
    16龙腊生,余小岚,陈小明,等. 4-甲基咪唑基-5-亚甲基-β-丙氨酸铜配合物的合成及晶体结构.中山大学学报. 1998,37,131~132
    17 S. L. Zheng, J. H. Yang, X. M. Chen,.Structural, Photoluminescent and Theo -retical Evidence for Ligand-unsupported Argentophilic Interactions in a Supramolecular Aggregate of [Ag-2(Hida)(NH3)(2)]. Chinese Journal of Structure Chemistry. 2010, 28, 1503~1508
    18 A. X. Zhu, J. B. Lin, J. P. Zhang, et al. Isomeric Zinc(Ⅱ) Triazolate Frame wo -rks with 3-Connected Networks: Syntheses, Structures, and Sorption Properties. Inorg. Chem. 2009, 48, 3882~3889
    19孙锦玉,周亚明,赵东元,等.开放式有机-无机杂化骨架配合聚合物[Sn(SO4)(BDC)(H2O)]的合成和晶体结构.高等学校化学学报. 2003,24,1555~1557
    20徐如人,庞文琴.无机合成与制备化学.高等教育出版社. 2001,6
    21 E. R. Cooper, C. D. Andrews, P. S. Wheatley, et al. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analigues. Nature. 2004, 430, 1012~1016
    22 S. Horike, M. Dinc?, K. Tamaki, et al. Size-Selective Lewis Acid Catalysis in a Microporous Metal-Organic Framework with Exposed Mn2+ Coordination Sites. J. Am. Chem. Soc. 2008, 130, 5854~5855
    23 S. Hasegawa, S. Horike, R. Matsuda, et al. Three-Dimensional Porous Coordin -ation Polymer Functionalized with Amide Groups Based on Tridentate Ligand: Selective Sorption and Catalysis. J. Am. Chem. Soc. 2007, 129, 2607~2614
    24 J. S. Seo, D. Whang, H. Lee, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature. 2000, 404, 982~985
    25 F. X. Llabrés I Xamena, O. Casanova, R. G. Tailleur, et al, A. Corma. Metal organic frameworks (MOFs) as catalysts: A combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation. J.Catal. 2008, 255, 220~227
    26 U. Müller, M. Hesse, O. M. Yaghi., et al. Process for the Epoxidation of anOrganic Compound with Oxygen or an Oxygen-delivering Compounds Using Catalysts Containing Metal-Organic Framework Materials.US, 6624318B1, 2003
    27 K. Schlichte, T. Kratzke, S. Kaskel. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials. 2004, 73, 81~88
    28 R. G. Xiong, X. Z. You, B. F. Abrahams, et al. Enantiosparation of Racemic Organic Molecules by a Zeolite Analogue. Angew. Chem. Int. Ed. 2001, 40, 4422~4425
    29 N. L. Rosi, J. Eckert, M. Eddaoudi, et al. Hydrogen Storage in Microporous Metal-Organic Frameworks. Science. 2003, 300, 1127~1129
    30 J. L. C. Rowsell, A. R. Millward, K. S. Park,et al. Hydrogen Sorption in Functi- onalized Metal-Organic Frameworks. J. Am. Chem. Soc. 2004, 126, 5666~5667
    31 J. L. C. Rowsell, O. M. Yaghi. Strategies for Hydrogen Storage in Metal-Organ- ic Frameworks. Angew. Chem. Int. Ed. 2005, 44, 4670~4679
    32 A.O. Yazaydin, A. I. Benin, S. A. Faheem, et al. Enhanced CO2 Adsorption in Metal-Organic Frameworks via Occupation of Open-Metal Sites by Coordinated Water Molecules. Chem. Mater. 2009, 21 1425~1430
    33 K. S. Walton, A. R. Millward, D. Dubbeldam, et al. Understanding Inflections and Steps in Carbon Dioxide Adsorption Isotherms in Metal-Organic Frameworks. J. Am. Chem. Soc. 2008, 130, 406~407
    34 D. Y. Siberio-Pérez, A. G. Wong-Foy, O. M. Yaghi, et al. Raman Spectroscopic Investigation of CH4 and N2 Adsorption in Metal-Organic Frameworks. Chem. Mater. 2007, 19, 3681~3685
    35王天维,游效曾.分子磁体.物理. 2008,37,761~767
    36 X.Y. Wang, L. Wang, Z. M. Wang, et al. Solvent-Tuned Azido-Bridged Co2+ Layers: Square, Honeycomb, and Kagomé. J. Am. Chem. Soc. 2006, 128, 674~675
    37张中太,张俊英.无机光致发光材料及应用.化学工业出版社. 2005:68~69
    38 M. D. Allendorf, C. A. Bauer, R. K. Bhaktaa, et al. Luminescent metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1330~1352
    39 X. L. Wang, Y. F. Bi, H. Y. Lin, et al. Three Novel Cd(II) Metal-Organic Frameworks Constructed from Mixed Ligands of Dipyrido[3,2-d:2′,3′-f] quinoxaline and Benzene-dicarboxylate: From a 1-D Ribbon, 2-D Layered Network, to a 3-D Architecture. Crystal Growth & Design. 2007, 7, 1086~1091
    40 R. Mruk, S. Prehl, R. Zentel. Thin Films by Multilayer Build-Up of ElectronTransport Materials. Macromol. Rapid Commun. 2003, 24, 1014~1018
    41 A. C. Sudik, A. P. C?té, A. G. Wong-Foy, et al. A Metal–Organic Framework with a Hierarchical System of Pores and Tetrahedral Building Blocks. Angew. Chem. Int. Ed. 2006, 45, 2528~2533
    42 Software packages SMART, and SAINT, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1996
    43 SHELXTL,Version 5.1;Siemens Industrial Automation, Inc., 1997
    44 Sheldrick,G.M. SHELXS-97,Program for Crystal Structure Solution, G?ttingen University, Germany, 1997
    45 Sheldrick,G.M.SHELXL-97, Program for Crystal Structure Refinement, G?ttingen University, Germany, 1997
    46陈小明,蔡继文编著.单晶结构分析.科学出版社. 2003, 100
    47 C. Janiak. Engineering coordination polymers towards applications. Dalton Trans. 2003, 2781~2804
    48 W. Chen, J. Y. Wang, C. Chen, et al. Photoluminescent Metal?Organic Polymer Constructed from Trimetallic Clusters and Mixed Carboxylates. Inorg. Chem. 2003, 42, 944~946
    49 Q. R. Fang, G. S. Zhu, M. Xue, et al. Structure, Luminescence, and Adsorption Properties of Two Chiral Microporous Metal?Organic Frameworks. Inorg. Chem. 2006, 45, 3582~3587
    50 E. C. Yang, J. Li, B. Ding, et al. An eight-connected 3D lead(II) metal–organic framework with octanuclear lead(II) as a secondary building unit: synthesis, characterization and luminescent property. CrystEngComm. 2008, 10, 158~161
    51 M. Dinc? , A. Dailly, Y. Liu, et al. Hydrogen Storage in a Microporous Metal- Organic Framework with Exposed Mn2+ Coordination Sites. J. Am. Chem. Soc. 2006, 128, 16876~16883
    52 S. S. Kaye, A. Dailly, O. M. Yaghi, et al. Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-benzenedicarb oxylate)3 (MOF-5). J. Am. Chem. Soc. 2007, 129, 14176~14177
    53 D. W. Smithenry, S. R. Wilson, and K. S. Suslick. A Robust Microporous Zinc Porphyrin Framework Solid. Inorg. Chem. 2003, 42, 7719~7721
    54 C. Serre, F. Millange, C. Thouvenot, et al. Synthesis, characterisation and lum- inescent properties of a new three-dimensional lanthanide trimesate: M((C6H3)–(CO2)3) (M = Y, Ln) or MIL-78. J. Mater. Chem. 2004, 14, 1540~1543
    55 M. G. B. Drew, S. G. McFall, et al., Seven-Co-ordination in Metal Complexes of Quinquedentate Macrocyclic Ligands Part5 Synthesis and Propertied ofPentagonal-bipyramidal and pentagonal-pyramidal Manganese (Ⅱ) Comlexes and Crystal and Molecular Structure of {2,15-dimethy-(3,7,10,14,20–penta -azabicyclo-[14.3.1]eicosa-1(20),2,14,16,18-pentaene)bis(isothiocyanato) man- ganese}(Ⅱ). J. Chem. Soc. Dolton. Trans. 1977, 5, 438~44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700