多级结构金属—有机骨架材料的制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属-有机骨架材料(Metal-Organic Frameworks MOFs)是指过渡金属离子与有机配体通过自组装形成的具有周期性网络结构的晶体多孔材料。它具有高孔隙率、低密度、大比表面积、孔道规则、孔径可调以及拓扑结构多样性和可裁剪性等优点。在气体存储及分离、催化、离子交换、吸附、传感器以及光、电、磁等领域具有广阔的潜在应用前景。近年来,MOFs材料的设计合成、结构及性能研究已经成为活跃的研究领域之一,并受到各界科研工作者们的广泛关注。
     文献已报道的MOFs多为微孔材料体系,微孔MOFs材料的孔道比较窄,阻碍了大分子扩散和传质过程,这使得微孔MOFs材料的广泛应用受到限制。随着MOFs材料应用领域的不断拓展,对其性能要求也在不断提高,设计制备介孔或大孔MOFs材料己成为MOFs研究领域的挑战之一。科研工作者们依据分子工程学和晶体学原理提出了多种解决方案,其中,解决方案之一是合成结构复杂的、尺寸更大的有机配体与金属离子自组装成具有介孔或大孔结构MOFs材料,但这类MOFs材料自身不够稳定,当移除客体分子(如:溶剂分子)容易造成孔道坍塌,如何选择刚性的、合适的有机配体成为主要的困难和挑战。于此同时,围绕对已有文献报道的微孔MOFs材料进行修饰和功能化研究工作也受到了人们越来越多的关注。其中,结构调控剂辅助制备多级结构MOFs材料的合成方法已经得到了科研工作者认可。该方法是将表面活性剂分子形成的胶束作为模板即结构调控剂引入到微孔MOFs合成过程中,当移除软模板时,MOFs材料中既保留原有的微孔结构又会形成介孔或大孔的结构。采用该方法制备的MOFs材料具有微孔、介孔甚至大孔共存的多级结构,此外,MOFs多级结构中的微/介/大孔比例分布大小可以通过引入不同结构调控剂的种类进行调整而达到人们预期设想。依据这一策略已经成功地合成了多级结构的Cu(BTC)、MIL-101等MOFs材料。分子在多级结构MOFs材料中的扩散传质过程与在微米尺度MOFs晶体中传质是完全不同的,它具有接触面积大、扩散速度快和传质路程短等特点。这些特性促使多级结构MOFs材料在分子吸收和分离、催化方面具有巨大的潜在应用价值。在本论文中,我们利用表面活性剂作为结构调控剂制备了纳米多级结构MOFs材料,同时研究纳米多级结构MOFs材料在染料吸附和光催化降解方面的应用。其主要内容如下:
     1、选择阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)作为超分子模板和1,3,5-三甲苯(TMB)作为助模板剂水热合成了多级孔道MIL-101(Cr3F(H2O)2O[(O2C)-C6H4-(CO2)]3.nH2O),考察了不同CTAB和TMB用量与多级孔道MIL-101形貌和尺寸的关系,并用粉末X-衍射(PXRD)、扫描电镜(SEM)、透射电镜(TEM)和氮气吸脱附测试对多级孔道MIL-101结构、形貌、比表面积和孔性质进行了表征。同时,考察了多级孔道MIL-101与MIL-101微晶对染料分子次甲基蓝(MB)的吸附效果对比试验,结果表明多级孔道MIL-101对MB具有快速吸附性能。
     2、利用阴离子表面活性剂十二烷基苯磺酸钠(LAS)作为结构调控剂水热辅助制备了纳米多级结构MIL-100(Fe)([{Fe3O(H2O)2F0.81(OH)0.19}{C6H3(CO2)3}2]-nH2O(n=14.5)),考察了LAS的不同用量与纳米多级结构MIL-100(Fe)尺寸之间的关系。并运用PXRD、红外光谱(IR)和SEM对纳米多级结构MIL-100(Fe)结构、形貌和尺寸进行了表征。同时,考察了纳米多级结构MIL-100(Fe)与MIL-100(Fe)微晶对MB的光催化降解对比试验,试验结果表明纳米多级结构MIL-100(Fe)对MB的光催化降解效率较高,它可以用作新型光催化剂降解有机染料处理废水。
     3、以高分子聚乙烯醇(PVA)作为软模板,采用水热法制备了以铬为金属中心,以对苯二甲酸为有机配体的具有新颖形貌如:纳米颗粒、棒状等形貌和不同尺寸的MOFs材料。考察了不同PVA用量与MOFs形貌、尺寸之间的关系,并用PXRD和SEM等对其结构、形貌和尺寸进行表征。
Recent ten years, MOFs as new class of porous crystalline materials built from metal ions building units connected by organic linkers have attracted much more attentions owing to their large pore sizes, high apparent surface areas, low density, tunable pore metrics, flexible tailoring, various topologies, and promising applications in hydrogen storage, adsorption, molecular recognization, sensing, catalysts, and drug delivery.
     However, most of the reported microporous MOFs display some restrictions because narrow pores do not allow accessing of bulky molecules to their internal surface, thereby limiting their practical applications in heterogeneous catalysis, absorption and separation. In contrast, meso-and macropore MOFs may meet the demands for the growing applications emerging in processes involving large molecules due to large pore volumes and high surface areas. According to the principle of molecular engineering, and crystal engineering, rational design and synthesis of meso-and macropore MOFs crystalline materials by selecting special metal ions and functional organic ligands remains a great challenge. In many cases the framework itself often breakdown upon removal of the guest molecules. At the same time, much more attention has turned to preparation of nano-scale hierarchical structured MOFs with meso-and macropore using surfactants as structure directing agents (SDA) to reduce the diffusion path length to fit the potential applications in sensing, molecule separation, and heterogeneous catalysts. The main contents of this thesis are as follows:
     1. Hierarchically mesostructured MIL-101metal-organic frameworks (MOFs) were successfully synthesized under solvothermal synthesis conditions by using the cationic surfactant cetyltrimethylammonium bromide as a supramolecular template. The mesostructured MIL-101MOFs were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption-desorption isotherms at77K. The results suggest that the mesostructured MIL-101MOFs obtained are composed of numerous MOF nanocrystals. Pore size distribution analyses of the as-synthesized MOF samples reveal that such mesostructured MIL-101MOFs have well-defined trimodal pore size distributions showing simultaneous existence of meso-and macropore channel systems. Significantly, such hierarchically mesostructured MIL-101exhibits remarkably accelerated adsorption kinetics for dye removal in comparison with the bulk MIL-101crystals, which is due to unique hierarchically meso-and macropores created in the solid.
     2. Successfully synthesized hierarchically structured MIL-100(Fe)nanocrystalline MOFs using anionic surfactant sodium dodecyl benzene sulfonate (LAS) as structure-directing agent under solvothermal conditions. The structures were confirmed by PXRD, infrared spectrum (IR), SEM, TEM, and nitrogen adsorption-desorption isotherms at77K. The results show that the hierarchically structured MIL-100(Fe) MOFs size of nanocrystals can be tuned by varying dosage of LAS. Significantly, such hierarchically structured MIL-100(Fe) nanocrystalline exhibits remarkably photocatalytic decolorization of methylene blue (MB) dye in comparison with the bulk MIL-100(Fe) crystals, which is due to unique hierarchically meso-and macropores created in the solid. This may be helpful to design novel photocatalyst materials.
     3. Novel morphologies of MIL-101(Cr) were successfully synthesized via a novel polymer polyethylene alcohol (PVA) surfactant-assisted technique. The characterized by PXRD, SEM, and nitrogen adsorption-desorption isotherms at77K. The results indicated that size and shape of can be tuned by varying of dosage of PVA. The pore size distribution date show that as-synthesized MOF samples existence of meso-and macropore channel systems.
引文
[1]X. H. Bu, M. L. Tong, H. C. Chang, S. Kitagawa, and S. R. Batten. A Neutral 3D Copper Coordination Polymer Showing ID Open Channels and the First Interpenetrating NbO-Type Network [J]. Angew. Chem. Int. Ed.,2004,43,192-195.
    [2]S. Kitagawa, R. Kitaura, and S. Noro. Functional Porous Coordination Polymers [J]. Angew. Chem. Int. Ed.,2004,43,2334-2375.
    [3]M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O Keeffe, and O. M. Yaghi. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage [J]. Science,2002,295,469-472.
    [4]M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'Keefee, and O. M. Yaghi. Modular Chemistry:Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frame works [J]. Acc. Chem. Res.,2001,34,319-330.
    [5]G. Ferey, C. M.Draznieks, C. Serre, and F. Millange. Crystallized Frameworks with Giant Pores:Are There Limits to the Possible [J]. Acc. Chem. Res.,2005,38, 217-225.
    [6]O. M. Yaghi, G. Li, and H. Li. Selective binding and Removal of guests in a Microporous Metal-Organic Framework [J]. Nature,1995,378,703-706.
    [7]S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n [J]. Science,1999,283,1148-1150.
    [8]H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework [J]. Nature, 1999,402,276-279.
    [9]N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, and O. M. Yaghi. Hydrogen Storage in Microporous Metal-Organic Frameworks [J]. Science, 2003,300,1127-1129.
    [10]B. Chen, M. Eddaoudi, S. T. Hyde, M. O'Keeffe, and O. M. Yaghi. Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores [J]. Science,2001,291,1021-1023.
    [11]G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, and I. Margiolaki. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area [J]. Science,2005,309,2040-2042.
    [12]M. Latroche, S. Surble, C. Serre, C. Mellot-Draznieks, P. L. Llewellyn, J. H. Lee, J. S. Chang, S. H. Jhung, and G. Ferey. Hydrogen Storage in the Giant-Pore Metal-Organic Frameworks MIL-100 and MIL-101 [J]. Angew. Chem. Int. Ed., 2006,45,8227-8231.
    [13]M. Dinca, A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann, and J. R. Long. Hydrogen Storage in a Microporous Metal-Organic Framework with Exposed Mn2+ Coordination Sites [J]. J. Am. Chem. Soc.,2006,128,16876-16883.
    [14]H. Furukawa, and O. M. Yaghi. Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications [J]. J. Am. Chem. Soc.,2009,131,8875-8883.
    [15]R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, and O. M. Yaghi. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture [J]. Science,2008,319,939-943.
    [16]K. S. Park, Z. Ni, A. P. C□te, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi. Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks [J]. PNAS,2006,103,10186-10191.
    [17]T. G. Glover, G. W. Peterson, B. J. Schindler, D. Britt, and O. Yaghi. MOF-74 Building Unit Has a Direct Impact on Toxic Gas Adsorption [J]. Chemical Engineering Science,2011,66,163-170.
    [18](a) L. G. Qiu, T. Xu, Z. Q. Li, W. Wang, Y. Wu, X. Jiang, X. Y. Tian, and L. D.Zhang. Hierarchically Micro-and Mesoporous Metal-Organic Frameworks with Tunable Porosity [J]. Angew. Chem. Int. Ed.,2008,47,9487-9491.
    (b)Z. Xin, J. F. Bai, Y. Shen, and Y. Pan. Hierarchically Micro-and Mesoporous Coordination Polymer Nanostructures with High Adsorption Performance [J]. Crystal Growth & Design,2010,10,2451-2454.
    [19](a)王海君,朱广山,张可勇等.金属有机骨架复合材料RhB/MOF-5的制备及其发光性质[J].高等学校化学学报,2009,30,11-13.
    (b)孙锦玉,周亚明,赵东元等.开放式有机-无机杂化骨架配合聚合物[Sn(SO4)(BDC)(H2O)]的合成和晶体结构[J].高等学校化学学报,2003,24,1555-1557.
    [20]H. Ren, T. Ben, E. Wang, X. Jing, M. Xue, B. Liu, Y. Cui, S. Qiua, and G. Zhu. Targeted Synthesis of a 3D Porous Aromatic Framework for Selective Sorption of Benzene [J]. Chem. Commun.,2010,46,291-293.
    [21]A. X. Zhu, J. B. Lin, J. P. Zhang, and X. M. Chen. Isomeric Zinc(II) Triazolate Frameworks with 3-Connected Networks:Syntheses, Structures, and Sorption Properties [J]. Inorg. Chem.,2009,48,3882-3889.
    [22]龙沛沛,程绍娟,赵强.金属-有机骨架材料的合成及其研究进展[J].山西化工,2008,28,21-25.
    [23]孙为银.配位化学.北京:化学工业出版社,2004.
    [24]P. M. Forster, P. M. Thomas, and A. K. Cheetham. Biphasic Solvothermal Synthesis:A New Approach for Hybrid Inorganic Organic Materials [J]. Chem. Mater.,2002,14,17-20.
    [25]P. M. Forster, and A. K. Cheetham. Open-Framework Nickel Succinate, [Ni7(C4H4O4)6(OH)2(H2O)2].2H2O:A New Hybrid Material with Three-Dimensional Ni-O-Ni Connectivity [J]. Angew. Chem. Int. Ed.,2002,41, 457-459.
    [26]D. J. Tranchemontagne, J. R. Hunt, and O. M. Yaghi. Room Temperature Synthesis of Metal-Organic Frameworks:MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0 [J]. Tetrahedron,2008,64,8553-8557.
    [27]W. Yuan, T. Friscic, D. Apperley, and S. L. James. High Reactivity of Metal-Organic Frameworks under Grinding Conditions:Parallels with Organic Molecular Materials [J]. Angew. Chem. Int. Ed.,2010,49:3916-3919.
    [28]K. Jin, X. Huang, L. Pang, J.Li, A. Appel, and S. Wherland. [Cu(I)(bpp)]BF4:the First Extended Coordination Network Prepared Solvothermally in an Ionic Liquid Solvent [J]. ChemH. Commun.,2002,2872-2873.
    [29]L. G. Qiu, Z. Q. Li, Y. Wu, W. Wang, T. Xu, and X. Jiang. Facile Synthesis of Nanocrystals of a Microporous Metal-Organic Framework by an Ultrasonic Method and Selective Sensing of Organoamines [J]. Chem. Commun.,2008, 3642-3644.
    [30]Z. Ni, and R. I. Masel. Rapid Production of Metal Organic Frameworks via Microwave-Assisted Solvothermal Synthesis [J]. J. Am. Chem. Soc.2006,128, 12394-12395.
    [31]J. L. C. Rowsell, and O. M. Yaghi. Strategies for Hydrogen Storage in Metal-Organic Frameworks [J]. Angew. Chem. Int. Ed.,2005,44,4670-4679.
    [32]L. J. Murray, M. Dinca, and J. R. Long. Hydrogen Storage in Metal-Organic Frameworks [J]. Chem. Soc. Rev.,2009,38,1294-1314.
    [33]T. Duren, Lev Sarkisov, O. M. Yaghi, and R. Q. Snurr. Design of New Materials for Methane Storage [J]. Langmuir,2004,20,2683-2689.
    [34]S, Ma, and H. C. Zhou. Gas Storage in Porous Metal-Organic Frameworks for Clean Energy Applications [J]. Chem. Commun.,2010,46,44-53.
    [35]G. Ferey. Hybrid Porous Solids:Past, Present, Future [J]. Chem. Soc. Rev.,2008, 37,191-214.
    [36]A. R. Millward, and O. M. Yaghi. Metal Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature [J]. J. Am. Chem. Soc.,2005,127,17998-17999.
    [37]P. L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G. D. Weireld, J. S. Chang, D. Y. Hong, Y. K. Hwang, S. H. Jhung, and G. Ferey. High Uptakes of CO2 and CH4 in Mesoporous Metals-Organic Frameworks MIL-100 and MIL-101 [J]. Langmuir,2008,24,7245-7250.
    [38]B. Chen, C. Liang, J. Yang, D.S. Contreras, and Y. L. Clancy. A Microporous Metal-Organic Framework for Gas-Chromatographic Separation of Alkanes [J]. Angew. Chem. Int. Ed.,2006,45,1390-1393.
    [39]S. Ma, D.Sun, X.S. Wang, and H. C. Zhou. A Mesh-Adjustable Molecular Sieve for General Use in Gas Separation [J]. Angew. Chem. Int. Ed.,2007,46, 2458-2462.
    [40]K. Schlichte, T. Kratzke, and S. Kaskel. Improved Synthesis, Thermal Stability and Catalytic Properties of the Metal-Organic Framework Compound Cu3(BTC)2 [J]. Microporous and Mesoporous Materials,2004,73,81-88.
    [41]A. Henschel, K. Gedrich, R. Kraehnert, and S. Kaskel. Catalytic Properties of MIL-101 [J]. Chem. Commun.,2008,4192-4194.
    [42]S. Hasegawa, S. Horike, R. Matsuda, S. Furukawa, K. Mochizuki, Y. Kinoshita, and S. Kitagawa. Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand:Selective Sorption and Catalysis [J]. J. Am. Chem. Soc.,2007,129,2607-2614.
    [43]Yo. K. Hwang, D.Y. Hong, J. S. Chang, S. H. Jhung, Y.K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, and G. Ferey. Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs:Consequences for Catalysis and Metal Encapsulation [J]. Angew. Chem. Int. Ed.,2008,47,4144-4148.
    [44]P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, and G. Ferey. Metal-Organic Frameworks as Efficient Materials for Drug Delivery [J]. Angew. Chem. Int. Ed.,2006,45,5974-5978.
    [45]P. Horcajada, C. Serre, G. Maurin, N. A. Ramsahye, F. Balas, M. Vallet-Regi, M. Sebban, F. Taulelle, and G. Ferey. Flexible Porous Metal-Organic Frameworks for a Controlled Drug Delivery [J]. J. Am. Chem. Soc.,2008,130,6774-6780.
    [46]P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J. S. Chang, Y. K. Hwang, V. Marsaud. Porous Metal-Organic Framework Nanoscale Carriers as a Potential Platform for Drug Delivery and Imaging [J]. Nat. Mater.,2010,9,172-178.
    [47]B. Chen, L. Wang, Y. Xiao, F. R. Fronczek, M. Xue, Y. Cui, and G. Qian. A Luminescent Metal-Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions [J]. Angew. Chem. Int. Ed.,2009,48,500-503.
    [48]X. M. Zhang, Z. M. Hao, W. X. Zhang, and X. M. Chen. Dehydration-Induced Conversion from a Single-Chain Magnet into a Metamagnet in a Homometallic Nanoporous Metal-Organic Framework [J]. Angew. Chem. Int. Ed.,2007,46, 3456-345.
    [1]O. M. Yaghi, M. O. Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim. Reticular Synthesis and the Design of New Materials [J]. Nature,2003,423, 705-714.
    [2]S. Kitagawa, R. Kitaura and S. Noro. Functional Porous Coordination Polymers [J]. Angew. Chem. Int. Ed.,2004,43,2334-2375.
    [3]G. Ferey, C. M. Draznieks, C. Serre and F. Millange. Crystallized Frameworks with Giant Pores:Are There Limits to the Possible [J]. Acc.Chem Res.,2005,38, 217-225.
    [4]D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior and M. J. Rosseinsky. Design, Chirality, and Flexibility in Nanoporous Molecule-Based Materials [J]. Acc. Chem. Res.,2005,38,273-282.
    [5]Z. Wang and S. M. Cohen. Postsynthetic Modification of Metal-Organic Frameworks [J]. Chem. Soc. Rev.,2009,38,1315-1329.
    [6]R. E. Morris and P. S. Wheatley. Gas Storage in Nanoporous Materials [J]. Angew. Chem. Int. Ed.,2008,47,4966-4981.
    [7](a) M. Dinca, and J. R. Long. Hydrogen Storage in Microporous Metal-Organic Frameworks with Exposed Metal Sites [J]. Angew. Chem. Int. Ed.,2008,47, 6766-6779; (b) B. Chen, X. Zhao, A. Putkham, E. B. Lobkovsky, E. J. Hurtado, A. J. Fletcher, and K. M. Thomas. Surface Interactions and Quantum Kinetic Molecular Sieving for H2 and D2 Adsorption on a Mixed Metal-Organic Framework Material [J]. J. Am. Chem Soc.,2008,130,6411-6423.
    [8]L. Ma, C. Abney, and W. Lin. Enantioselective Catalysis with Homochiral Metal-Organic Frameworks [J]. Chem. Soc. Rev.,2009,38,1248-1256.
    [9]J. R. Li, R. J. Kuppler, and H. C. Zhou. Selective Gas Adsorption and Separation in Metal-Organic Frameworks [J]. Chem. Soc. Rev.,2009,38,1477-1504.
    [10](a) M. D. Allendorf, C. A. Bauer, R. K. Bhakta, and R. J. T. Houk. Luminescent Metal-Organic Frameworks [J]. Chem. Soc. Rev.,2009,38,1330-1352; (b) B. Chen, L. Wang, Y. Xiao, F. R. Fronczek, M. Xue, Y. Cui, and G. Qian. A Luminescent Metal-Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions [J]. Angew. Chem. Int. Ed.,2009,48,500-503.
    [11](a) P. Horcajada, C Serre, G. Maurin, N. A. Ramsahye, F. Balas, M. V. Regi, M. Sebban, F. Taulelle, and G. Ferey. Flexible Porous Metal-Organic Frameworks for a Controlled Drug Delivery [J]. J. Am. Chem Soc.,2008,130,6774-6780; (b) K. M. L. Taylor-Pashow, J. D. Rocca, Z. Xie, S. Tran, and W. Lin. Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metal-Organic Frameworks for Imaging and Drug Delivery [J]. J. Am. Chem Soc.,2009,131,14261-14263.
    [12]A. M. Spokoyny, D. Kim, A. Sumrein, and C. A. Mirkin. Infinite Coordination Polymer Nano-and Microparticle Structures [J]. Chem. Soc. Rev.,2009,38, 1218-1227.
    [13]W. Lin, W. J. Rieter, and K. M. L. Taylor. Modular Synthesis of Functional Nanoscale Coordination Polymers [J]. Angew. Chem. Int. Ed.,2009,48,650-658.
    [14]W. J. Rieter, K. M. L. Taylor, H. An, W. Lin, and W. Lin. Nanoscale Metal-Organic Frameworks as Potential Multimodal Contrast Enhancing Agents [J]. J. Am. Chem. Soc.,2006,128,9024-9025.
    [15]Z. Ni, and R. I. Masel. Rapid Production of Metal-Organic Frameworks via Micro wave-Assisted Solvothermal Synthesis [J]. J. Am. Chem. Soc.,2006,128, 12394-12395.
    [16]L. G. Qiu, Z. Q. Li,, Y. Wu, W. Wang, T. Xu, and X. Jiang. Facile Synthesis of Nanocrystals of a Microporous Metal-Organic Framework by an Ultrasonic Method and Selective Sensing of Organoamines [J]. Chem. Commun.,2008, 36423644.
    [17]S. Diring, S. Furukawa, Y. Takashima, T. Tsuruoka, and S. Kitagawa. Controlled Multiscale Synthesis of Porous Coordination Polymer in Nano/Micro Regimes [J]. Chem. Mater.,2010,22,4531-4538.
    [18]D. Tanaka, A. Henke, K. Albrecht, M. Moeller, K. Nakagawa,S. Kitagawa, and J. Groll. Rapid Preparation of Flexible Porous Coordination Polymer Nanocrystals with Accelerated Guest Adsorption Kinetics [J].Nature. Chem.,2010,2,410-416.
    [19]X. Roy, and M. J. MacLachlan. Coordination Chemistry:New Routes to Mesostructured Materials [J]. Chem. Eur. J.,2009,15,6552-6559.
    [20]L. G. Qiu, T. Xu, Z. Q. Li, W. Wang, Y. Wu, X. Jiang, X. Y. Tian, and L. D. Zhang. Hierarchically Micro-and Mesoporous Metal-Organic Frameworks with Tunable Porosity [J]. Angew. Chem. Int. Ed.,2008,47,9487-9491.
    [21](a) H. Du, J. Bai, C. Zuo, Z. Xin, and J. Hu. A Hierarchical Supra-nanostructure of HKUST-1 Featuring Enhanced H2 Adsorption Enthalpy and Higher Mesoporosity [J]. CrystEngComm,2010,13,3314-3316; (b) Z. Xin, J. Bai, Y. Shen, and Y. Pan. Hierarchically Micro- and Mesoporous Coordination Polymer Nanostructures with High Adsorption Performance [J]. Cryst. Growth Des.,2010, 10,2451-2454; (c) Z. Xin, J. Bai, Y. Pan, and M. J. Zaworotko. Synthesis and Enhanced H2 Adsorption Properties of a Mesoporous Nanocrystal of MOF-5: Controlling Nano-/Mesostructures of MOFs To Improve Their H2 Heat of Adsorption [J]. Chem. Eur. J.,2010,16,13049-13052.
    [22](a) X. D. Do, V. T. Hoang, and S. Kaliaguine. MIL-53(A1) Mesostructured Metal-Organic Frameworks [J]. Microporous and Mesoporous Materials,2011, 141,135-139; (b) K. M. Choi, H. J. Jeon, J. K. Kang, and O. M. Yaghi. Heterogeneity within Order in Crystals of a Porous Metal-Organic Framework [J]. J. Am. Chem. Soc.,2011,133,11920-11923.
    [23](a) G. Ferey, C. M. Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, and I. Margiolaki. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area [J]. Science,2005,309,2040-2042; (b) O. I. Lebedev, F. Millange, C. Serre, G. V. Tendeloo, and G. Ferey. First Direct Imaging of Giant Pores of the Metal Organic Framework MIL-101 [J]. Chem. Mater.,2005,17, 6525-6527.
    [1]熊志刚.废水污染处理方法及其进展简介[J].环境与开发,2001,16,48-50。
    [2]丁绍兰,李郑坤,王睿.染料废水处理技术综述[J].水资源保护,2005,26,73-78.
    [3]M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann. Environmental Applications of Semiconductor Photocatalysis. [J]. Chem. Rev.,1995,95,69-96.
    [4]W. Zhang, H. L. Tay, S. S. Lim, Y. Wang, Z. Zhong, and R. Xu. Supported Cobalt Oxide on MgO:Highly Efficient Catalysts for Degradation of Organic Dyes in Dilute Solutions [J]. Applied Catalysis B:Environmental,2010,95,93-99.
    [5]P. Zhang, Y. Zhan, B. Cai, C. Hao, J. Wang, C. Liu, Z. Meng, Z. Yin, and Q. Chen. Shape-Controlled Synthesis of Mn3O4 Nanocrystals and Their Catalysis of the Degradation of Methylene Blue [J]. Nano Res,2010,3,235-243.
    [6]郭琳.W03对次甲基蓝的光催化降解的研究[J].广东教育学院学报,2005,25,76-77.
    [7]J. Lobedank, E. Bellmann, and J. Bendig. Sensitized Photocatalytic Oxidation of Herbicides Using Natural Sunlight [J]. Journal of Photochemistry and Photobiology A:Chemistry,1997,108,89-93.
    [8]T. L.Thompson, and J.T. Yates, Surface Science Studies of the Photoactivation of TiO2-New Photochemical Processes [J]. Chem. Rev.,2006,106,4428-4453.
    [9]U.G. Akpan, and B.H. Hameed. Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2-based Photocatalysts:A Review [J]. Journal of Hazardous Materials,2009,170,520-529.
    [10]S. Kitagawa, R. Kitaura, and S. Noro. Functional Porous Coordination Polymers [J]. Angew. Chem. Int. Ed.,2004,43,2334-2375.
    [11]G. Ferey, C. Mellot-Draznieks, C. Serre, and F. Millange. Crystallized Frameworks with Giant Pores:Are There Limits to the Possible [J]. Acc. Chem. Res.,2005,38,217225.
    [12]R. E. Morris and P. S. Wheatley. Gas Storage in Nanoporous Materials [J]. Angew. Chem. Int. Ed.,2008,47,4966-4981.
    [13]J. R. Li, R. J. Kuppler, and H. C. Zhou. Selective Gas Adsorption and Separation in Metal-Organic Frameworks [J]. Chem.Soc.Rev.,2009,38,1477-1504.
    [14]L.g Ma, C.r Abney, and W. Lin. Enantioselective Catalysis with Homochiral Metal-Organic Frameworks [J]. Chem. Soc. Rev.,2009,38,1248-1256.
    [15]M. D. Allendorf, C. A. Bauer, R. K. Bhakta, and R. J. T. Houk. Luminescent Metal-Organic Frameworks [J]. Chem. Soc. Rev.,2009,38,1330-1352.
    [16]C. G. Silva, A. Corma, and H.Garcia. Metal-Organic Frameworks as Semiconductors [J]. J. Mater. Chem.,2010,20,3141-3156.
    [17]F. X. L. Xamena, A. Corma, and H. Garcia. Applications for Metal Organic Frameworks (MOFs) as Quantum Dot Semiconductors [J]. J. Phys. Chem., C 2007,111,80-85.
    [18]W. A. Herrebout, S. N. Delanoye, B. U. W. Maes, and B. J. Veken. Infrared Spectra of the Complexes of Trifluoroethene with Dimethyl Ether, Acetone, and Oxirane:A Cryosolution Study [J]. J. Phys. Chem. A.,2006,110,13759-13768.
    [19]J. Gascon, M. D. H. Alonso, A. R. Almeida, G P. M. Klink, F. Kapteijn, and G. Mu. Isoreticular MOFs as Efficient Photocatalysts with Tunable Band Gap:An Operando FTIR Study of the Photoinduced Oxidation of Propylene [J]. ChemSusChem,2008,1,981-983.
    [20]S. Bordiga, C. Lamberti, G. Ricchiardi, L. Regli, F. Bonino, A. Damin, K.. P. Lillerud, M. Bjorgenb, and A. Zecchina. Electronic and Vibrational Properties of a MOF-5 Metal-Organic Framework:ZnO Quantum Dot Behaviour [J]. Chem. Commun.,2004,2300-2301.
    [21]T. Tachikawa, J. R. Choi, M. Fujitsuka, and T. Majima. Photoinduced Charge-Transfer Processes on MOF-5 Nanoparticles:Elucidating Differences between Metal-Organic Frameworks and Semiconductor Metal Oxides [J]. J. Phys. Chem. C,2008,112,14090-14101.
    [22]P. Mahata, G. Madras, and S. Natarajan. New Photocatalysts Based on Mixed-Metal Pyridine Dicarboxylates [J]. Catalysis Letters,2007,115,27-32.
    [23]M. Alvaro, E. Carbonell, B. Ferrer, F. X. L. Xamena, and H. Garcia. Semiconductor Behavior of a Metal-Organic Framework (MOF) [J]. Chem. Eur. J. 2007,13,5106-5112.
    [24]A. M. Spokoyny, D. Kim, A. Sumrein, and C. A. Mirkin. Infinite Coordination Polymer Nano- and Microparticle Structures [J]. Chem. Soc. Rev.,2009,38, 1218-1227.
    [25]W. J. Rieter, K. M. L. Taylor, and W. Lin. Surface Modification and Functionalization of Nanoscale Metal-Organic Frameworks for Controlled Release and Luminescence Sensing [J]. J. Am. Chem. Soc.,2007,129,9852-9853.
    [26]K. M. L. Taylor, W. J. Rieter, and W. Lin. Manganese-Based Nanoscale Metal Organic Frameworks for Magnetic Resonance Imaging [J]. J. Am. Chem. Soc., 2008,130,14358-14359.
    [27]W. J. Rieter, K. M. L. Taylor, H. An, W. Lin, and W. Lin. Nanoscale Metal Organic Frameworks as Potential Multimodal Contrast Enhancing Agents [J]. J. Am. Chem. Soc.,2006,128,9024 9025.
    [28]P. Horcajada, S. Surble, C. Serre, D. Hong, Y. Seo, J. Chang, J. Greneche, I. Margiolaki, and G. Ferey. Synthesis and Catalytic Properties of MIL-100(Fe), an Iron(III) Carboxylate with Large Pores [J]. Chem. Commun.,2007,27, 2820-2822.
    [29]R. Canioni, C. Roch-Marchal, F. Secheresse, et al. Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe) [J]. J. Mater. Chem.,2011,21,1226-1233.
    [1]S. Kitagawa, R. Kitaura, and S. Noro. Functional Porous Coordination Polymers [J]. Angew. Chem. Int. Ed.,2004,43,2334-2375.
    [2]G. Ferey, C. Mellot-Draznieks, C. Serre, and F. Millange. Crystallized Frameworks with Giant Pores:Are There Limits to the Possible [J]. Ace. Chem. Res.,2005,38, 217-225.
    [3]D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, and M. J. Rosseinsky. Design, Chirality, and Flexibility in Nanoporous Molecule-Based Materials [J]. Ace. Chem. Res.,2005,38,273-282.
    [4]R. E. Morris, and P. S. Wheatley. Gas Storage in Nanoporous Materials [J]. Angew. Chem. Int. Ed.,2008,47,4966-4981.
    [5]M. Dinca, and J. R. Long. Hydrogen Storage in Microporous Metal-Organic Frameworks with Exposed Metal Sites [J]. Angew. Chem. Int. Ed.,2008,47, 6766-6779.
    [6]B. Chen, X. Zhao, A. Putkham, K. Hong, E. B. Lobkovsky, E. J. Hurtado, A. J. Fletcher, and K. M. Thomas. Surface Interactions and Quantum Kinetic Molecular Sieving for H2 and D2 Adsorption on a Mixed Metal Organic Framework Material [J]. J. Am. Chem. Soc.,2008,130,6411-6423.
    [7]J. R. Li, R. J. Kuppler, and H. C. Zhou. Selective Gas Adsorption and Separation in Metal-Organic Frameworks [J]. Chem.Soc.Rev.,2009,38,1477-1504.
    [8]L. Ma, C. Abney, and W. Lin. Enantioselective Catalysis with Homochiral Metal-Organic Frameworks [J]. Chem. Soc. Rev.,2009,38,1248-1256.
    [9]M. D. Allendorf, C. A. Bauer, R. K. Bhakta, and R. J. T. Houk. Luminescent Metal-Organic Frameworks [J]. Chem. Soc. Rev.,2009,38,1330-1352.
    [10]B. Chen, L. Wang, Y. Xiao, F. R. Fronczek, M. Xue, Y. Cui, and G. Qian. A Luminescent Metal-Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions [J]. Angew. Chem. Int. Ed.,2009,48,500-503.
    [11]D. Zacher, O. Shekhah, C. Woll, and R. A. Fischer. Thin Films of Metal-Organic Frameworks [J]. Chem. Soc. Rev.,2009,38,1418-1429.
    [12]W. Lin, W. J. Rieter, and K. M. L. Taylor. Modular Synthesis of Functional Nanoscale Coordination Polymers [J]. Angew. Chem. Int. Ed.,2009,48,650-658.
    [13]T. Tsuruoka, S. Furukawa, Y. Takashima, K. Yoshida, S. Isoda, and S. Kitagawa. Nanoporous Nanorods Fabricated by Coordination Modulation and Oriented Attachment Growth [J]. Angew. Chem. Int. Ed.,2009,48,4739-4743.
    [14]S. Diring, S. Furukawa, Y. Takashima, T. Tsuruoka, and S. Kitagawa. Controlled Multiscale Synthesis of Porous Coordination Polymer in Nano/Micro Regimes [J]. Chem. Mater.,2010,22,4531-4538.
    [15]Da. Tanaka, A. Henke, K. Albrecht, M. Moeller, K. Nakagawa, S. Kitagawa, and J. Groll. Rapid Preparation of Flexible Porous Coordination Polymer Nanocrystals with Accelerated Guest Adsorption Kinetics [J]. Nature Chemistry,2010,2, 410-416.
    [16]P. Horcajada, C. Serre, G. Maurin, N. A. Ramsahye, F. Balas, M. Vallet-Regi, M. Sebban, F. Taulelle, and G. Ferey. Flexible Porous Metal-Organic Frameworks for a Controlled Drug Delivery [J]. J. Am. Chem. Soc.,2008,130,6774-6780.
    [17]K. M. L. Taylor-Pashow, J. D. Rocca, Z. Xie, S. Tran, and W. Lin. Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metal Organic Frameworks for Imaging and Drug Delivery [J]. J. Am. Chem. Soc.,2009,131,14261-14263.
    [18]W. J. Rieter, K. M. Pott, K. M. L. Taylor, and W. Lin. Nanoscale Coordination Polymers for Platinum-Based Anticancer Drug Delivery [J]. J. Am. Chem. Soc., 2008,130,11584-11585.
    [19]W. J. Rieter, K. M. L. Taylor, and W. Lin. Surface Modification and Functionalization of Nanoscale Metal-Organic Frameworks for Controlled Release and Luminescence Sensing [J]. J. Am. Chem. Soc.,2007,129,9852-9853. [18] B. H. J. Lee, W. Cho, S. Jung, and Mo. Oh. Morphology-Selective Formation andMorphology-Dependent Gas-Adsorption Properties of Coordination Polymer Particles [J]. Adv. Mater.,2009,21,674-677.
    [20]K. M. L. Taylor, W. J. Rieter, and W. Lin. Manganese-Based Nanoscale Metal-Organic Frameworks for Magnetic Resonance Imaging [J]. J. Am. Chem. Soc.,2008,130,14358-14359.
    [21]Y. Li, D. Zhang, Y. Guo, B. Guan, D. Tang, Y. Liu, and Q. Huo. Design and Synthesis of Novel Mesostructured Metal-Organic Frameworks Templated by Cationic Surfactants via Cooperative Self-Organization [J]. Chem. Commun., 2011,47,7809-7811.
    [22]W. Xuan, Ch. Zhu, Y. Liu, and Y. Cui. Mesoporous Metal-Organic Framework Materials [J]. Chem. Soc. Rev.,2012,41,1677-1695.
    [23]X. X. Huang, L. G. Qiu, W. Zhang, Y. P. Yuan, X. Jiang, A. J. Xie, Y. H. Shen, and J. F. Zhu. Hierarchically Mesostructured MIL-101 Metal-Organic Frameworks:Supramolecular Template-Directed Synthesis and Accelerated Adsorption Kinetics for Dye Removal [J]. CrystEngComm,2012,14,1613-1617.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700