马铃薯雾培营养调控机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着农业产业结构的调整和国内外马铃薯加工业的不断发展扩大,市场对马铃薯的需求也逐渐增大。据联合国粮农组织报告,虽然我国是最大的马铃薯生产国,马铃薯总种植面积和总产量均已跃居世界第一,但平均单产水平低,在世界马铃薯生产国家中排名第40位,远低于欧美发达国家水平。影响马铃薯产量的因素较多,其中马铃薯种薯退化是制约马铃薯产量上升的主要因素。采用脱毒种薯进行田间种植,是当前马铃薯生产上最有效的增产技术,因此如何生产马铃薯脱毒种薯备受关注。气雾栽培法生产马铃薯脱毒种薯是近些年开发的一项新技术,该生产技术改善了植株的生长环境,解决了植株根系缺氧难题,且避免了土壤传播的病虫害及连作障碍,具有高产、高效等优势,应用前景极为广阔。但该生产方法目前还不够成熟,技术难度较大,尤其是在营养液调控方面还有待于进一步完善。本课题针对马铃薯气雾栽培法生产过程中尚存在的问题开展相关研究工作:(1)探索栽培液中氮、磷、钾三种营养元素适宜配比,以改善马铃薯植株结薯性能,提高生产效益;(2)分析外源钙离子处理对雾培马铃薯幼苗抗冷性的调节作用,以增强雾培马铃薯幼苗在低温生产季节的适应能力,减轻低温逆境给幼苗造成的伤害;(3)探索低钾胁迫条件下马铃薯植株光合生理的响应特性,为马铃薯作物钾素营养的亏缺诊断提供有利信息,为实现马铃薯作物钾肥的合理施用奠定了理论基础。本课题研究结果为科学指导马铃薯气雾栽培生产提供了重要的依据。
The influences of virus in seed potato is an important reason for production decline. At present, culture with virus-free seed potato is the most effective techniques of increasing crop yield. As a result, how to produce virus-free seed potato is concerned particularly. Seed potato production by aeroponic culture is a technology developed in recent years. This technology has improved the growth environment, solved the oxygen deficit difficulty of root system and avoided the obstacles of continuous cropping. Because of the advantages of high yield and efficiency, it has broad application prospects, however, this method is not mature enough, especially the part of nutrient solution regulation needs to be further improved.
     The research was conducted according to several problems existing in the process of seed potato production by aproponic culture, the main contents and conclusions in this research were as follows:
     (1) Suitable proportion of nitrogen、phosphorus and potassium in the nutrient solution for seed potato production by aproponic culture
     There are complex coupling effects between nitrogen, phosphorus and potassium in nutrient solution, which are closely related to the growth of potato crops. The test indexes were different between different treatments due to the different proportion of nitrogen, phosphorus and potassium in nutrient solution. Eexcept plant height and stem diameter, the differences of other test indexes between different treatments were not obvious at both early and late growth stage, however, the differences were greater during the middle growth stage. Among the five groups nutrient solution designed in this experiment, the chlorophyll a、chlorophyll b、PSⅡphotochemistry efficiency and root activity of the plants with T3 treatment were higher than others, because of these advantages the tuber number and tuber formation rate rised, especially for the tuber formation rate of second order stolon branch. The results show T3 nutrient solution was more suitable for the growth of potato, the tuberization performance of plants was improved, the contents of nitrogen、phosphorus and potassium in T3 nutrient solution were 273、77.5、351mg/L respectively, and the proportion was 1:0.28:1.3.
     (2) Effects analysis of calcium treatment on cold resistance of potato seedlings in aeroponic culture
     The experimental results of low-temperature stress showed that the electrolyte leakage and MDA content in leaves of potato seedlings with calcium treatment were decreased, compared with the control, the activities of anti-oxidant enzymes (POD、CAT and SOD) in leaves were improved and the contents of osmotic adjustment substances (soluble sugar and soluble protein) in seedlings leaves were increased, however, the effect of calcium application on praline content in leaves is not obvious. Furthermore, calcium treatment could efficiently restrain the root activity drop of potato seedlings. The results above indicate that the calcium signaling is closely related to the physiological regulation of aeroponic potato seedlings in the low temperature condition, calcium application with appropriate concentration could improve the cold resistance of seedlings. After low temperature stress relief, the enzymatic and nonenzymatic protection systems has continued to work in order to resist and repair the damage caused by stress. As the exogenous Ca2+ treatment concentrations were different, the results were different. The damage of the seedlings lacking calcium was the most serious, theoretically, this group seedlings need more anti-oxidant enzymes to remove reactive oxygen species and lipid peroxidation products in the process of adaptive regulation, while the experimental results showed that the activities of anti-oxidant enzyme did not increase substantially, even after the stress relief, the anti-oxidant system of seedlings has not been repaired rapidly. May be not only the enzymes synthesis function was damaged but also the other associated physiological metabolism, thus the adaptive regulation ability of seedlings was affected. Besides, the variational trends and variational extents of the membrane permeability, membrane lipid peroxidation product content, osmotic adjustment substances content, anti-oxidant enzymes activity and root activity showed that the exogenous Ca2+ treatment concentrations were different, the sensitivities and adaptive ability of seedlings to low temperature condition were different. During the low temperature stress, both the treatmentⅡ(exogenous Ca2+ concentration is 7.0 mmol/L) and treatmentⅢ(exogenous Ca2+ concentration is 10.5 mmol/L) could improve the cold resistance to some extent, and the difference between treatmentⅡand treatmentⅢwas not obvious, however, after low temperature stress relief, the treatment effect of the latter was worse than the former. By comparing the indexes differences of membrane permeability, membrane lipid peroxidation level and root absorption activity between the two treatments, it can be found that the treatment time was longer, the differences were greater. May be due to the Ca2+ concentration of treatment III was too high and the treatment time was too long, the seedlings were subjected to calcium ion toxicity or the root absorptions on other ions were affected. Thus, the physiological metabolism and the repair for damage caused by environmental stress would be affected.
     (3) Response characteristic of photosynthetic apparatus of potato plants under low-potassium stress
     The response mechanism of photosynthetic apparatus of potato plant under low-potassium stress was analyzed and the internal relations among the photosynthetic parameters were investigated. The results showed that the contents of chlorophyll a. chlorophyll b and carotenoids in leaves were decreased under low-potassium stress, however, the effect on the content ratio of chlorophyll a/b was not obvious, there was no significant difference during treatment period (P>0.05); Variable fluorescence (Fv)、PSII photochemical efficiency and potential activity in leaves with the low-potassium treatment were lower than those in the control group, the drop of variable fluorescence was due to the increase of initial fluorescence (Fo) and the decrease of maximal fluorescence (Fm); In the early stages of low-potassium stress, the decrease of net photosynthetic rate (Pn) was mainly due to stomatal limitation, as further extension of stress time, non-stomatal limitation had gradually become an important factor which caused the photosynthetic rate to drop; The response characteristic of photosynthesis to light of leaves under low-potassium stress could well be described by non-orthogonal hyperbola Farquhar model, the coefficient of determination of Pn-PAR response curve in each stage was higher than 0.92 and the analysis results indicated that both the values of apparent quantum yield (AQY) and maximum apparent photosynthetic rate (Pmax) were decreased obviously, however, the effects of potassium concentration on light compensation point (LCP) and dark respiration rate (Rd) were not significant.
引文
[1]Hawkes J G. Origins of cultivated potatoes and species relationship. In:Bradshaw W G, Mackay M D (eds), Potato Genetics. CAB International, Wallingford, UK,1994: 3-42.
    [2]徐娟娟.马铃薯—粮食安全战略中的重要角色[J].农业工程技术(农产品加工业),2008,10:37-40.
    [3]孙慧生.马铃薯生产技术百问百答[M].北京:中国农业出版社,2005.
    [4]秦波涛,李和平,王晓曦.薯类的综合加工及利用[M].北京:中国轻工业出版社,1996.
    [5]彭亚锋.浅谈薯类食品的开发和前景[J].农牧产品开发,2000,(8):21-22.
    [6]屈冬玉,谢开云,金黎平,等.中国马铃薯产业现状与趋势[A].中国马铃薯研究与产业开发[C].哈尔滨:哈尔滨工程大学出版社,2003,230-239.
    [7]中国农业统计年鉴[M].1983-2001各册.
    [8]姬青云,郭建文,李四水.提高马铃薯脱毒种薯质量的对策[J].中国马铃薯,2004,18(2):103-105.
    [9]张涛.德国进境马铃薯有害生物风险分析以及RT-PCR病毒检测技术的研究[D].雅安:四川农业大学,2008.
    [10]魏延安.世界马铃薯产业发展现状及特点[J].世界农业,2005,3:29-32.
    [11]王珊珊,王德勇.国际马铃薯产业化发展的特点[J].黑龙江粮食,2007,6:18-20.
    [12]陈萌山.中国马铃薯产业发展现状及展望.第五届世界马铃薯大会文集[C].昆明:云南美术出版社,2004,81-82.
    [13]李会珍.利用试管薯诱导途径探讨马铃薯品质形成及其调控研究[D].杭州:浙江大学,2004.
    [14]隋启君,李先平,扬万林,等.云南省马铃薯育种体系建设.第五届世界马铃薯大会文集[C].昆明:云南美术出版社,2004,157-159.
    [15]李芝芳.中国马铃薯主要病毒图鉴[M].北京:中国农业出版社,2004:1-23.
    [16]Salazar L F.马铃薯病毒及其防治[M].谢开云,译.中国农业出版社,2000:139-156.
    [17]Salazar L F, Ed. Potato viruses and their control[M]. CIP, Peru,1996.
    [18]Beemster A B R, Rozendaal A. Potato viruses:properties and symptoms. In:de Bokx, J. A. (Ed.), Viruses of potatoes and seed potato production[M]. Pudoc, Waganingen, 1972,115-143.
    [19]庞万福,王清玉,张恭,等.河北省马铃薯病毒鉴定研究初报[J].河北农业科学,1997,1(4):19-23.
    [20]王秀芬,刘善斌,王有福,等.大连地区马铃薯病毒病种类及分布初报[J].辽宁农业科学,2002,5:41.
    [21]赵志坚,何云昆,隋启君.云南省马铃薯病毒主要病原研究进展[J].中国马铃薯,2001,15:93-95.
    [22]Singh R P, Kurz J, Boiteau, G, et al. Detection of potato leafroll virus in single aphids by the reverse transeription polymerase chain reaction and its potential epidemiological application[J]. Virol Method,1995,55:133-143.
    [23]Singh R P, Dilworth, A D, Singh, M, et al. Evaluation of a simple membrane-based nueleie acid preparation protocol for RT-PCR detection of potato viruses from aphid and plant tissues[J]. Virol Methods,2004,121:163-170.
    [24]Singh R P, Nie X, Singh M, et al. Sodium sulphite inhibitor of potato and cherry polyphenolics in nucleic acid extraction for virus detection by RT-PCR[J]. Virol Method,2002,99:123-131.
    [25]李标.源库调控对雾培马铃薯结薯性能的影响[D].重庆:西南大学,2008.
    [26]Kassanis B. The use of tissue culuters ot produce virus free clones form inefected patato varieties[J]. Applied Biology,1957,59 (3):422-427.
    [27]盖琼辉.马铃薯茎尖脱毒技术体系优化研究[D].重庆:西南农业大学,2005.
    [28]Chirkov S N, Olovnikov A M, Surguchyova N A, et al. Immunodiagnosis of plant viruses by a virobacterial agglutination[J]. Ann Appl Biol,1984,104:477-483.
    [29]Mellor F C, Stace-Smith. In applied and fundamental aspects of plant cell[A]. Tissue and organ culture[C]. Springer-Verlag Beidelbegr, NewJork:1977,616-635.
    [30]李浚明.植物组织培养教程[M].中国农业大学出版社,1992:303-305.
    [31]童伟.食品检验—动植物捡疫技术分析与管理实用大全[M].中国环境科学出版社,1999:299-300.
    [32]刘华,冯高.化学因素对马铃薯病毒钝化的研究[J].中国马铃薯,2000,14(4):202-204.
    [33]徐积思,朱明珍.抗生素[M].科学出版杜,1982:50.
    [34]Lorenzini M. Obtention de protoplasts de tubercule de pomme de terre [J]. Acad Sci, 1973,276:1839-1842.
    [35]Butenko R G, Kucho A A, Vitenko V A, et al. Production and cultivation of isolated protoplasts form the mesophll of levaes of Solnaum tuberosmun L. and Solanum chacoense[J]. Bitt Soviet Plant Pathol,1977,24:660-665.
    [36]Shepard J F, Totten R E. Mesophyll cell protoplasts of potato[J]. Plant Physiol,1977, 60:313-316.
    [37]Boersig M R, Wanger S A. Hydroponics system for production of seed tubers[J]. American Potato Journal,1988,65:470-471.
    [38]王颖,杨立国,石太渊.马铃薯种薯脱毒技术研究进展[J].辽宁农业科学,2001,(1):36-38.
    [39]王炳君,刘宗樊.马铃薯茎尖脱毒与微型薯生产[M].北京:高等教育出版社,1990.
    [40]田波,张广学.马铃薯无病毒种薯生产的原理和技术[M].北京:科学出版社,1980.
    [41]天庆.马铃薯栽培技术(第二版)[M].北京:金盾出版社,1996.
    [42]姬青云.马铃薯科学种植技术[M].北京:中国社会出版社,2006:7-8.
    [43]连勇.马铃薯试管薯诱导与应用[J].马铃薯杂志,1995,9(4):237-240.
    [44]孙慧生,杨元军.中国马铃薯种薯生产[A].陈伊里,屈冬玉.中国马铃薯研究与产业开发[C].哈尔滨:哈尔滨工程大学出版社,2003:1-9.
    [45]马子君,张子义.加快马铃薯生产的几点意见[J].现代农业,2003(8):43-44.
    [46]KimY C. In vitro tuber formation from proliferated shoots of potato (Solanum tuberosum) as a method of asepfcal maintenance[D]. Thesis South Korea,1982.
    [47]Tovar P. Induction and use of in vitro potato tuber[J]. Cbcular,1985,13 (4):1-5.
    [48]Lizarrage R, Huaman Z, Dodds J H. In vitro Conservation of potato germplasm at the international potato center[J]. American Potato Journal,1989, (66):253-276.
    [49]杨文玉.不同组织培养条件对马铃薯试管微型薯的诱导[J].马铃薯杂志,1996,10(1):20-23.
    [50]谢庆华,吴毅歆,张勇飞.固定物对马铃薯脱毒试管苗生长的影响[J].中国马铃薯,2001,15(1):20-21.
    [51]柳俊,谢从华,黄大恩,等.马铃薯试管块茎形成机制的研究—BA对试管块茎形成与膨大的影响[J].马铃薯杂志,1995,9(1):7-11.
    [52]胡云海,蒋先明.不同糖类和BA对马铃薯试管薯的影响[J].马铃薯杂志,1989,3(4):203-206.
    [53]连勇,邹颖,杨宏福,等.马铃薯试管薯发育机理的研究—外源诱导剂对试管薯形成的影响[J].马铃薯杂志,1996,10(3):130-132.
    [54]连勇.马铃薯试管薯诱导与应用[J].马铃薯杂志,1995,9(4):237-240.
    [55]陈芝兰,染运芳,次柏,等.西藏地区马铃薯茎尖脱毒快繁及试管薯生产技术[J].马铃薯杂志,1999,1(13):34-37.
    [56]王春林,程天庆.利用试管薯快速繁殖马铃薯[J].马铃薯杂志,1992,6(2):82-85.
    [57]Amma S K, Subrata M. Role of nodal position and hormones on microtuber production in potato(Solanum tuberosum L.)[J]. Horticultural Journal,1998,11(1): 67-75.
    [58]Villafranea M J, Veramendi J, Sota V, et al. Effect of physiological age of mother tuber and number of subcultures on in vitro tuberization of potao (Solanum toberosum L.)[J]. Plant Cell Reports,1998,17(10):787-790.
    [59]白淑霞,安忠民,王静,等.不同培养方式对马铃薯试管苗生长与试管薯诱导的影响[J].中国生态农业学报,2002,10(2):40-41.
    [60]崔翠,王季春,何凤发,等.不同MS和B9浓度对马铃薯脱毒试管苗生长的研究[J].西南农业大学学报,2001,23(5):415-417.
    [61]朴世领,李莲花,金江山,等.不同培养基对马铃薯试管微型薯的诱导[J].延边大学农学学报,2000,22(4):264-269.
    [62]刘仁祥.活性炭和无机盐对马铃薯试管薯的诱导效应(简报)[J].植物生理学通讯,2001,37(4):295-298.
    [63]刘志云.马铃薯试管苗结薯与光、温度、激素关系的研究[J].高师理科学刊,2002,22(3):70-71.
    [64]张昌伟,侯喜林,袁建玉,等.不同外源激素对马铃薯试管薯形成的影响[J].江西农业大学学报,2005,27(1):73-76.
    [65]于品华,戴朝曦,曲秀兰.无土生产马铃薯微型种薯营养液的筛选研究[J].甘肃农业大学学报,1994,30(4):356-358.
    [66]汪天.低氧胁迫下黄瓜幼苗体内多胺的代谢及其生理调节功能的研究[D].南京:南京农业大学,2005.
    [67]王文泉,张福锁.高等植物厌氧适应的生理及分子机制[J].植物生理学通讯,2001,37(1):63-70.
    [68]Davies D D, Grego S, Kenworth P. The control of the production of lactate and ethanol by higher plants[J]. Plant Physiol,1974,118:297-310.
    [69]Gemrain V, Raymond P, Ricdar B. Different expression of two lactate dehydogenase genes in response to oxygen deficit[J]. Plant Mol Bio,1997,35:71-72.
    [70]Roberts J K M, Callis J, Jardetzky O, et al. Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia[J]. Proceedings of the national academy of scienee,1984b,81:3379-3383.
    [71]Roberts J K M, Wemmer D, Ray P M, et al. Regulation of cytoplasmic and vacuolar pH in maize root tips under diefferent experimental conditions[J]. Plant Physiol,1982, 69:1344-1347.
    [72]Hiron R W P, Wrights T C. The role of endogenous bascisic acid in the response of plants to stress[J]. Exp Bot,1973,24:769-781.
    [73]Hum W P, Lur H S, Liao K C, et al. Role of abscisic acid, ethylene and polyamines in flooding promoted senescence of tobacco leaves[J]. Plant Physiol,1994,143: 102-105.
    [74]李宗庭,周燮著.植物激素及其免疫检测技术[M].南京:江苏科学技术出版社,1996:114-203.
    [75]Jackson M B, Hall K C. Early stomatal closure in waterlogged pea plants as mediated by abscisic acid in the absence of foliar water deficits[J]. Plant cell environment,1987, 10:121-130.
    [76]Reid D M, Crozier A. Effect of waterlogging on gibberellin content and growth of tomato plants[J]. Exp Bot,1971,22:39-48.
    [77]Sophis B, Ulrich K, Gerd A. Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings[J]. Plant Physiol,1998,116:651-658.
    [78]John G, Senadalios. Oxygen stress and superoxide dismutases[J]. Plant Physiol,1993, 101:7-12.
    [79]姜丽霞.施肥对旱作马铃薯不同品种氮磷钾吸收分配及产质量的影响[D].呼和浩特:内蒙古农业大学,2010.
    [80]伍壮生.氮磷钾施肥水平对马铃薯产量及品质的影响[D].长沙:湖南农业大学,2008.
    [81]孔令郁,彭启双,熊艳,等.平衡施肥对马铃薯产量及品质的影响[J].土壤肥料,2004(3):17-19.
    [82]冯瑞琴,田丰.氮钾肥配施对马铃薯产量的影响[J].青海大学学报(自然科学版),2005,23(4):44-46.
    [83]郑若良.氮钾肥比例对马铃薯生长发育、产量及品质的影响[J].江西农业学报,2004,16(4):39-42.
    [84]麻汉林,郭志平.马铃薯高产施肥措施研究[J].中国马铃薯,2007,21(1):26-28.
    [85]张朝春,江荣丰,张福锁,等.氮磷钾肥对马铃薯营养状况及块茎产量的影响[J].土壤肥料科学,2005,21(9):279-283.
    [86]Ciecko Z, Dotover Z, Strake O, et al. The effect of NPK fertilization on tuber yield and starch content in potato tubers[J]. Annales Universitatis Mariae Curie Sklodowska. Sectio E Agricultura,2004,59(1):399-406.
    [87]李成军.不同肥料的组配施用对马铃薯产量的影响试验[J].中国马铃薯,2002,16(5):294-295.
    [88]孙周平,李天来.根际环境因子对马铃薯块茎生长发育影响的研究进展[J].沈阳农业大学学报,2001,32(5):386-389.
    [89]朱义,何池全,杜玮,等.盐胁迫下外源钙对高羊茅种子萌发和幼苗离子分布的影响[J].农业工程学报,2007,23(11):133-137.
    [90]卢少云,黎用朝,郭振飞,等.钙提高水稻幼苗抗旱性的研究[J].中国水稻科学,1999,13(3):161-164.
    [91]闫童,王秀峰,杨凤娟,等.钙对根区低温胁迫下黄瓜幼苗抗冷相关生理指标的影响[J].西北农业学报,2006,15(5):172-176.
    [92]Pandey S, Tiwari S B, Upadhyaya K C, et al. Calcium signaling:linking environmental signals to cellular function[J]. Critical Reviews in Plant Sciences,2000,19(4):291-318.
    [93]Zengin M, Gokmen F, Gezgin S, et al. Effects of different fertilizers with potassium and magnesium on the yield and quality of potato[J]. Asian Journal of Chemistry,2008,20 (1):663-676.
    [94]Hamouz K, Lachman J, Dvorak P, et al. Effect of conditions of locality, variety and fertilization on the content of ascorbic acid in potato tubers[J]. Plant Soil and Environment,2007,53 (6):252-257.
    [95]Allison M F, Fowler J H, Allen E J. Responses of potato (Solanum tuberosum) to potassium fertilizers[J]. Journal of Agricultural Science,2001,136 (4):407-426.
    [96]Moinuddin K S, Bansal S K, Pasricha, N S. Influence of graded levels of potassium fertilizer on growth, yield, and economic parameters of potato[J]. Journal of Plant Nutrition,2004,27 (2):239-259.
    [97]Kumar P, Pandey S K, Singh S V, et al. Effect of potassium fertilization on processing grade tuber yield and quality parameters in potato (Solanum tuberosum) [J]. Indian Journal of Agricultural Science,2004,74 (4):177-179.
    [98]李玉影.马铃薯需钾特性及钾肥效应[J].马铃薯杂志,1999,13(1):9-12.
    [99]Abdel A H, Errebhi M A, Sarhan H M, et al. The effect of different levels of additional potassium on yield and industrial qualities of potato (Solanum tuberosum L.) in an irrigated arid region[J]. American Journal of Potato Research,2003,80 (3):219-222.
    [100]Trehan S P, Sharma R C. Potassium uptake efficiency of young plants of three potato cultivars as related to root and shoot parameters[J]. Communications in Soil Science and Plant Analysis,2002,33(11-12):1813-1823.
    [101]殷文,孙春明,马晓燕,等.钾肥不同用量对马铃薯产量及品质的效应[J].土壤肥料,2005(4):44-47.
    [102]刘克礼,张宝林,高聚林,等.马铃薯钾素的吸收、积累和分配规律[J].中国马铃薯,2003,17(4):204-208.
    [103]李莎.氮磷钾配比对烤烟生长发育及产质量的影响[D].重庆:西南大学,2008.
    [104]张玉玲,劳秀荣,李絮花,等.钾对不同品种冬小麦生长及产量的影响[J].耕作与栽培,2005(3):23-44.
    [105]鲁剑巍.湖北省柑桔园土壤—植物养分状况与柑橘平衡施肥技术研究[D].武汉:华中农业大学,2003.
    [106]徐晓艳.钾氮肥配施对青椒效应的研究[J].土壤通报,1998,29(3):123-125.
    [107]曾长立.辣椒高产优质栽培技术研究进展[J].江汉大学学报(自然科学版),2003,31(1):83-86.
    [108]曲文章,蔡伯岩,高妙真,等.氮素水平对甜菜主要营养的影响[J].中国甜菜糖业,1999,21(2):1-6.
    [109]都韶婷,金崇伟,章永松.蔬菜硝酸盐积累现状及其调控措施研究进展[J].中国农业科学,2010,43(17):3580-3589.
    [110]李宝珍,王正银,李会合,等.叶类蔬菜硝酸盐与矿质元素含量及其相关性研究 [J].中国生态农业学报,2004,12(4):113-116.
    [111]Wang Z H, Li S X. Effects of nitrogen and phosphorus fertilization on plant growth and nitrate accumulation in vegetables[J]. Journal of Plant Nutrition,2004,27(3): 539-556.
    [112]Santamaria P, Elia A, Serio F, et al. A survey of nitrate and oxalate content in retail fresh vegetables[J]. Journal of the Science of Food and Agriculture,1999,79: 1882-1888.
    [113]Zhou Z Y, Wang M J, Wang J S. Nitrate and nitrite contamination in vegetables in China[J]. Food Reviews International,2000,16:61-76.
    [114]张永清.氮肥与磷钾肥配施对青花菜产量和品质的影响[J].山西师范大学学报,2004,18(2):77-80.
    [115]颜冬云,张民.控释复合肥对番茄生长效应的影响研究[J].植物营养与肥料学报,2005,11(1):110-115.
    [116]宋春凤,徐坤.芋对氮、磷、钾吸收分配规律的研究[J].植物营养与肥料学报,2004,10(4):403-406.
    [117]李卫华,丁洪,颜明娟,等.新型专用配方肥对马铃薯产量及品质的影响[J].中国农学通报,2007,23(3):289-292.
    [118]弓建国,穆俊祥,曹新民.氮磷钾有机肥配合施用对马铃薯产量和品质的影响[J].安徽农业科学,2009,37(17):7935-7937.
    [119]杨暹,关佩聪,李宝庆.氮钾互作对马铃薯产量、品质与氮磷钾吸收的影响[J].华南农业大学学报,1993,14(1):28-32.
    [120]苏小娟,王平,刘淑英,等.施肥对定西地区马铃薯养分吸收动态、产量和品质的影响[J].西北农业学报,2010,19(1):86-91.
    [121]和红云.低温胁迫对甜瓜幼苗生长及生理生化的影响[D].石河子:石河子大学农学院,2008.
    [122]李新国.钙信号系统调节柑橘抗旱生理生化机理的研究[D].武汉:华中农业大学,2006.
    [123]郭晓冬.低温弱光对日光温室辣椒生长及其生理功能的影响[D].杨凌:西北农林科技大学,2008.
    [124]王钦.低温对草坪植物生命活动过程的影响[J].草业科学,1993,10(4):62-65.
    [125]Ronghan P G, Holland R, Slack C R.The role of chloroplasts and microsomal fractions in polar lipid synthesis[1-14C]acetate by cell-free preparation from spinach(Spinacia oleracea) leaves[J]. Biochem Journal,1980,188:17-22.
    [126]王洪春.植物抗逆性与生物膜结构功能研究的进展[J].植物生理学通讯,1985,(1):60-66.
    [127]Lyons J M. Chilling injury in plants[J]. Ann Rev Plant Physiol,1973,24:445-466.
    [128]陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):84-89.
    [129]陈立松,刘星辉.渗透胁迫下Ca2+对龙眼叶片光合色素及膜脂过氧化的影响[J].园艺学报,1998,25(1):87-88.
    [130]Breusegem F V, Slooten L, Stassart J M, et al. Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress[J]. J Exp Bot,1999,50 (330):71-78.
    [131]Dat J, Vandenabeele S, Vranova E, et al. Dual action of the active oxygen species during plant stress responses[J]. Cell Mol Life Sci,2000,57:779-795.
    [132]Breusegem F V, Slooten L, Stassart J M, et al. Overproduction of arabidopsis thaliana Fe-SOD confers oxidative stress tolerance to transgenic maize[J]. Plant Cell Physiol, 1999,40(5):515-523.
    [133]武维华,张蜀秋.植物生理学[M].北京:科学出版社,2003.
    [134]杜秀敏,殷文漩,赵彦修,等.植物中活性氧的产生及清除机制[J].生物工程学报,2001,17(2):121-125.
    [135]Fridovich L. The biology of oxygen radical[J]. Science,1987,201:875-880.
    [136]Zhang J, Cui S, Li J, et al. Protoplasmic factors, antioxidants responses and chilling resistance in maize[J]. Plant Physiol Biochem,1995,33:567-575.
    [137]Lee D H, Lee C B. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber:in gelenzyme activity assays[J]. Plant Sci,2000,159:75-85.
    [138]Wingsle G, Hallgren J E. Ifluence of SO2 and NO2 exposure on glutathione, superoxide dismutase and glutathione reductase activities in scots pine needles[J]. Exp Bot,1993,44:463-470.
    [139]Kocsy G, Brunner M, Ruegsegger A, et al. Glutathione synthesis in maize genotypes with different sensitivities to chilling[J]. Planta,1996,198:365-370.
    [140]Noctor G, Foyer C H. Ascorbate and glutathione:keeping active oxygen under control[J]. Annu Rev Plant Physiol Plant Mol Biol,1998,49:249-279.
    [141]陈善娜,梁斌,张蜀君,等.云南高原水稻幼苗的抗冷性与其活性氧清除系统的关系[J].中国水稻科学,1995,17(4):452-458.
    [142]Mccord J M, Fridovich L. Superoxide dismutase:An enzymie function for erythrocuprein (HemoeuPrein)[J]. J Bilo Chem,1969,224:6049-6055.
    [143]李智辉,王新颖,周广柱,等.低温胁迫下新铁炮百合幼苗叶片活性氧的产生及保护酶活性的变化[J].北方园艺,2007,12:106-108.
    [144]翁伯琦,江福英,方金梅,等.低温胁迫下决明属牧草苗期活性氧代谢及其自适性响应的研究[J].中国生态农业学报,2006,2:43-45.
    [145]Neill S J, Desikan R, Clarke A, et al. Hydrogen peroxide and nitric oxide as signaling molecules in plants[J]. Exp Bot,2002,53:1237-1247.
    [146]Chris B, Marc V H, Dirk I. Superoxide dismutase and stress tolerance[J]. Annu Rev Plant Pysiol Plant Mol Biol,1992,43:83.
    [147]马德华,庞金安,霍振荣,等.黄瓜对温度胁迫的抗性研究[J].中国农业科学,1999,32(5):28-35.
    [148]罗新义,冯昌军,李红,等.低温胁迫下肇东苜蓿SOD、脯氨酸活性变化初报[J].中国草地,2004,26(4):79-81.
    [149]王爱国,余叔文,汤章诚.植物生理与分子生物学(第2版)[M].北京:科学出版社,2001.
    [150]Omran R G. Peroxide level and the activity of catalase peroxidase and indoleacetic acid oxidase during and after chilling cueumber seedling[J]. Plant Physiol,1980,65: 407-408.
    [151]戴金平,沈征言,简令成.低温锻炼对黄瓜幼苗几种酶活性的影响[J].植物学报,1991,33(8):627-632.
    [152]严岳华,何少波,李觅路.低温胁迫对观赏柑桔CAT活性与水势的影响[J].湖南农业科学,2005,4:104-106.
    [153]Scandalios J G. Oxygen stress and superoxide dismutases[J]. Plant Physiol,1993,101: 7-12.
    [154]梁慧敏,夏阳.苜蓿耐寒性及根孽性状的表现与过氧化物酶同工酶关系的研究[J].草业学报,1998,7(4):55-60.
    [155]彭红丽,苏智先.低温胁迫对珙桐幼苗的抗寒性生理生化指标的影响[J].汉中师范学院学报,2004,22(2):50-54.
    [156]冯昌军,罗新义,沙伟,等.低温胁迫对苜蓿品种幼苗SOD、POD活性和脯氨酸含量的影响[J].草业科学,2005,22(6):29-32.
    [157]康俊梅.低温胁迫下野牛草生理生化响应及蛋白质组学研究[D].北京:中国农业科学院北京畜牧兽医研究所,2008.
    [158]王孝宣,李树德,东惠茹等.低温胁迫对番茄苗期和开花期脂肪酸的影响[J].园艺学报.1997,24(2):161-164.
    [159]孙爱民,孙其信.有关小麦抗寒生理的研究概况[J].国外农学(麦类作物),1985,6:32-35.
    [160]戴玉池,邓霞玲,姜孝成,等.不同水稻品种幼苗期的耐寒生理鉴定及其利用[J].湖南师范大学自然科学学报,2004,27(3):86-89.
    [161]王淑杰,王家民,李亚东,等.可溶性全蛋白、可溶性糖含量与葡萄抗寒性关系的研究[J].北方园艺,1996,2:13-14.
    [162]Delauney A J,Verma D P S, Delauney A J. Proline biosynthesis and osmoregulation in plants[J]. Plant J,1993,4:215-223.
    [163]Doriffling K, Dorffling H, Less L D. In vitro-selection and regeneration of hydroxyp rine resistant lines of winter wheat with increased proline content and increased frost tolerance[J]. Journal of Plant Physiology,1993,142(2):222-225.
    [164]Solomon A, Beer S, Waisel Y, et al. Effects of NaCl on the carboxylating activity of rubisco from tamarix jordan is in the presence and absence of proline related compatible solutes[J]. Physiol Plant,1994,90:198-204.
    [165]Metha S K, Gaur J P. Heavy metal induced proline accumulation and its role in a meliorating metal toxicity in chlorella vulgaris[J]. New Phytol,1999,143:253-259.
    [166]李建设,耿广东,程智慧.低温胁迫对茄子幼苗抗寒性生理生化指标的影响[J].西北农林科技大学学报(自然科学版),2003,31(1):90-92.
    [167]王吉庆.嫁接对黄瓜幼苗的耐冷性及生长发育影响的研究[D].杨陵:西北农业学,1995.
    [168]陈翠莲,马平福.抗冷性不同的小麦、水稻品种脯氨酸含量的比较试验[J].华中农业大学学报.1989,8(2):176-179.
    [169]严寒静,谈锋.桅子叶片生理特性与抗寒性的关系[J].植物资源与环境学报.2005,14(4):21-24.
    [170]彭艳华,刘成运,卢大炎,等.低温胁迫下凤眼莲叶片的适应[J].武汉植物学研究.1992,10(2):123-127.
    [171]陈杰忠,徐春香,梁立峰.低温对香蕉叶片中蛋白质及脯氨酸的影响[J].华南农业大学学报,1999,2(3):54-58.
    [172]潘杰,简令成.植物寒害和抗寒机制中膜与蛋白质研究的进展[J].植物学通报,1990,7(1):1-5.
    [173]孙孟健,李本湘.植物耐寒性及防寒技术[M].北京:学术书刊出版社,1989,93-159.
    [174]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994.
    [175]Chen H H, Li P H. Biochemical changes in tuber-bearing solanum species in relation to frost hardiness during cold acclimation[J]. Plant Physiol,1980,66:416-421.
    [176]朱其杰,高守云,蔡沫湖,等.黄瓜耐冷性鉴定指标及遗传规律的研究[M].北京:科学出版社,1995:457-462.
    [177]林善枝,李雪平,张志毅.低温锻炼对毛白杨幼苗抗冻性和总可溶性蛋白质的影响[J].林业科学,2002,38(6):137-141.
    [178]Thomashow M F. Plant cold acclimation:freezing tolerance genes and regulatory mechanisms[J]. Annu Rev Plant Physiol Plant Mol Biol,1999,50:571-599.
    [179]TrunovaT I. Mechanism of winter wheat hardening at low temperature. In plant cold hardiness and freezing stress, Li P H, Sakai A, eds. NewYork:Academic Press Inc, 1982.
    [180]陈杰忠,徐春香,梁立峰.低温对香蕉叶中蛋白质及脯氨酸的影响[J].华南农业大学学报,1999,20(3):54-58.
    [181]郭惠红.金边卫矛低温抗性研究[D].北京:北京林业大学,2004.
    [182]Mcainsh M R, Webb A A R, Taylor J E, et al. Stimulus-induced oscillations in guard cell cytosolic free calcium[J]. Plant Cell,1995,7:1207-1219.
    [183]龚明,李英.植物细胞内钙信号系统[J].植物学通报,1990,7(3):19-29.
    [184]Marsehner H. Functions of mineral nutrienis:Macronutrients. In:Marsehner H, eds, Mineral nutrition of higher plants. London:Academic Press,1986:195-268.
    [185]Palta, J P. Role of calcium in plant responses to stresses:linking basic research to the solution of practical problems[J]. Hortscience,1996,31:51-57.
    [186]朱晓军,杨劲松,梁永超,等.盐胁迫下钙对水稻幼苗光合作用及相关生理特性的影响[J].中国农业科学,2004,37:1497-1503.
    [187]Vander Luit A H, Olivari C, Haley A, et al. Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco[J]. Plant Physiol,1999,121: 705-714.
    [188]Kiegle E, Moore CA, Haseloff J, et al. Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root[J]. The Plant Journal,2000,23(2): 265-278.
    [189]Poovaiah B W, Reddy A S N. Calcium and signal transduction in plants[J]. CRC Crit Rev Plant Sci,1993,36:587-591.
    [190]Medvedev S S. Calcium signaling system in plants[J]. Russian Journal Plant Physiol, 2005,52(2):249-270.
    [191]Roberts D M, Harmon A C. Calcium modulated proteins:target of intracellular calcium signals in higher plants[J]. Annu Rev Plant Physiol Plant Mol Biol,1992,43: 375-414.
    [192]Hetherington A M, Brownlee C. The generation of calcium signals in plants[J]. Annu Rev Plant Biol,2004,55:401-427.
    [193]Bush D S. Calcium regulation in plant cells and its role in signaling[J]. Annu Rev Plant Physiol Plant Mol Boil,1995,46:95-122.
    [194]Knight H, Knight M R. Abiotic stress signaling pathways:specificity and cross-talk[J]. Trend in Plant Science,2001,6(6):262-267.
    [195]Hepler P K, Wayne R O. Calcium and plant development[J]. Annu Rev Plant Physiol, 1985,36(2):397-439.
    [196]Xin Z, Browse J. Cold comfort farm:the acclimation of plants to freezing temperatures[J]. Plant Cell and Environment,2000,23:893-902.
    [197]孙大业,郭艳林,马力耕.细胞信号传导(第三版)[M].北京:科学技术出版社,2001.
    [198]Rasmussed H, Barrett P Q. Calcium messengen system:an intergrated view[J]. Physiological Reviews,1984,64:938-984.
    [199]Kauss H. Some aspects of calcium-dependent regulation in plant metabolism[J]. Annu Rev Plant Physiol,1987,38:47-72.
    [200]简令成,孙龙华,李积宏.低温逆境中不同抗寒性植物细胞内Ca2+稳定平衡的区别[J].植物学报,2000,42(4):1152-1185.
    [201]曾韶西,李美茹.冷和盐预处理提高水稻幼苗抗寒性期间细胞Ca2+-ATP酶活性 的变化[J].植物学报,1999,(41):156-160.
    [202]张俊环,张国强,刘悦萍,等.温度逆境交叉适应过程中葡萄幼苗质膜Ca2+-ATPase的细胞化学定位与活性变化[J].中国农业科学,2006,39(8):1617-1625.
    [203]Jian H L, Li J H, Chen W P, et al. Cytochemical localization of calcium and Ca2+-ATpase activity in plant cell under chilling stress; a comparative study between the chilling sensitive maize and the chilling in sensitive winter wheat[J]. Plant Cell Physiol,1999,40(4):1182-1188.
    [204]利容千,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出版社,2002.
    [205]陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):84-90.
    [206]Charest C, Phan C T. Cold acclimation of wheat properties of enzymes involved in proline metabolism[J]. Physiologia Plantarum,1990,80 (2):159-168.
    [207]Yoshida M, Abe J, Moriyama M, et al. Seasonal changes in the physical state of crown water associated with freezing tolerance in winter wheat[J]. Physiologia Plantarum,1997,99 (3):363-370.
    [208]吴峻岩.甘蓝叶片对低温的生理生化响应及分子生理学初探[D].西南农业大学,2004.
    [209]Murata N, Ishizaki N O, Higashi S, et al. Genetically engineered alteration in the chilling sensitivity of plants[J]. Nature,1992,356(23):710-713.
    [210]Monroy A F, Dhindsda R S. Low-temperature signal transduction:Induction of cold acclimation-specific genes of alfalfa by calcium at 25℃[J]. Plant Cell,1995,7: 321-331.
    [211]樊志和,周人纲,李晓芝,等.钙-钙调素与小麦苗中热激蛋白的诱导[J].植物生理学报,2000,26(4):331-336.
    [212]刘宏涛,赵和,李冰,等.钙-钙调素对小麦hsp26基因表达的影响[J].植物学报,2001,43(7):766-768.
    [213]王红,简令成,张举仁.低温胁迫下水稻幼苗细胞内Ca2+的变化[J].植物学报,1994,36(8):587-591.
    [214]Lee J S, Cetiner M S, Blackmen W J, et al. The redaction of the freezing point of tobacco plants transformed with the gene encoding for the antifreeze protein from winter flounder[J]. J Cell Biochem,1990,14(Supple):303.
    [215]Plieth C, Hansen U P, Knight M R.Temperature sensing by plants:the primary charaeteristics of signal perception and calcium response[J]. Plant J,1999,18: 491-497.
    [216]Suzuki I, Murata. Transduction of low-temperature signals in plants[J]. Tanpakushitus Kakusan Koso,1999,44(15 Supple):2151-2157.
    [217]何水林,赖钟雄,官德义,等.辣椒钙调蛋白cDNA克隆[J].农业生物技术学报,2000,8(2):151-154.
    [218]Orver B L, Sangwan V, Omann F, et al. Early steps in cold sensing by plant cells:the role of actin cytoskeleton and membrane fluidity[J]. Plant J,2000,23:785-794.
    [219]Knight H, Knight M R. Imaging spatial and cellular characteristies of low temperature calcium signature after cold acclimation in Arabidopsis[J]. J Exp Bot, 2000,51(351):1679-1686.
    [220]Xiong L M, Shumaker K S, Zhu J K. Cell signaling during cold, drought and salt stresses[J]. Plant Cell,2002,14:5165-5183.
    [221]胡笃敬,董任瑞,葛旦之.植物钾营养理论与实践[M].长沙:湖南科学技术出版社,1993.
    [222]Munson, R D. Potassuim in agriculture[M]. Wisconsin:American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 1985.
    [223]涂书新,郭智芬,张平.植物吸收利用钾素研究的某些进展[J].土壤,2000,(5):248-253.
    [224]谢少平,倪晋山,李共福.耐低钾釉稻幼苗根部的K+[86Rb+]运输和通最分析[J].植物生理学报,1989,15(4):377-381.
    [225]盛晋华,刘克礼,高聚林.旱作马铃薯钾素的吸收、积累和分配规律[J].中国马铃薯,2003,6:331-335.
    [226]Amstrong M J, Kirkby E A. Estimation of potassium recirculation in tomato plants by comparison of the potassium and calcium accumulation in the tops with their fluxes stream[J]. Plant Physoil,1979,63:1143-1148.
    [227]Wyn Jones R.G. Recent Advances in the Biochemistry of Cereals[M]. London: Academic Press,1979.
    [228]Leigh R A, Wyn Jones RG. Cellular compartmentation in plant nutrition:the selective cytoplasm and the promiseuous vacuole[J]. Advanced in Plant Nutrition,1986,2: 249-280.
    [229]Outlaw W H. Current concepts on the role potassium in stomatal movements[J]. Physiologia Plantarum,1983,59:302-311.
    [230]Jones J B. Molybdenum content of corn plants exhibiting varying degrees of potassium deficiency[J]. Science,1965,149:94.
    [231]程素贞.钾肥对小麦Zn、Mn、Fe、Cu的吸收分配的影响[J].安徽农业大学学报,1995,22(3):196-202.
    [232]Hill W E, Morrill L G. Boron, calcium and potassium interactions in Spanish peanut[J]. Soil Sci Soc Amer Proc,1975,39:80-83.
    [233]Smith D. Effects of potassium top-dressing a low fertility silt loam soil on alfalfa herbage yields and composition and on soil K values[J]. Agron Journal,1975,67: 60-64.
    [234]Laughlin W M. Nitrogen, phosphorus and potassium influences on yield and chemical composition of blue joint forage[J]. Agronomy Journal,1969,61:961-964.
    [235]何子平,皮美美.硼钾营养相互配合对油菜叶片CAT和POD活性及其根系膜透性的影响[J].华中农业大学学报,1993,12(5):468-471.
    [236]Sodek L, Lea P J, Miflin B J. Distribution and properties of potassium dependent asparaginase isolated from developing seeds of pisum sativum and other plants[J]. Plant Physiol,1980,65,22-26.
    [237]张福锁.植物营养生态生理学和遗传学[M].北京:中国科学技术出版社,1993.
    [238]Wyn Jones R.G, Pollard A. Protein, enzymes and inorganic ions. In:Lauchli A, Pirson A(eds). Inorganic Plant Nutrition. Springer-Verlag, Berlin,1983.
    [239]Blevins D G, Hiatt A J, Lowe, R H. The influence of nitrate and chloride uptake on expressed asp pH, organic acid synthesis and potassium accumulation in higher plants[J]. Plant Physiol,1974,54,82-87.
    [240]Unyi J K. Salt-dependent properties of proteins from extremely halophilic bacteria [J]. Bacteriol Rev,1974,38,271-290.
    [241]Tester M, Blatt M R. Direct measurement of K+ channels in thylakoid membranes by incorporation of vesicles into planar lipid bilayers[J]. Plant Physiol,1989,91: 249-252.
    [242]Kaiser W M, Ubrach W, Gimmler H.The role of monovalent cations for photosynthesis of isolated intact chloroplasts[J]. Planta,1980,149,170-175.
    [243]Wu W H, Petesr J, Berkowitz G A. Surface charge-mediated effects of Mg2+ and K+ flux across the chloroplast envelope are associated with regulation of stroma pH and photosynthesis[J]. Plant Physiol,1991,97:580-587.
    [244]沈伟其.钾素对杂交水稻个体及群体的生理效应[J].浙江农业大学学报,1988,14(1):101-106.
    [245]Huber S C, Moreland D E. Co-transport of potassium and sugars across the plasmelemma of mesophyll protoplasts[J]. Plant Physiol,1981,67:163-169.
    [246]Doman D C, Geiger D R. Effect of exogenously supplied foliar potassium on phloem loasing in Beta vulgaris L[J]. Plant Physiol.1979,64:528-533.
    [247]Grimm E, Bernhardt G, Rothe K. Mechanism of sucrose retrieval along the phloem path a kinetic approach[J]. Planta,1990,182:480-492.
    [248]Hartt C E. Effect of potassium deficiency upon translocation of 14C in detached blades of sugarcane[J]. Plant Physiol,1970,45,183-187.
    [249]Peoples T R, Koch D W. Role of potassium in carbon dioxide assimilation in Medicago sativa L[J]. Plant Physiol,1979,63:878-881.
    [250]Osaki M, Shinano T, Tadano T. Effect of nitrogen, phosphorus or potassium deficiency on the accumulation of ribulose-1,5-bisphosphate carboxylase/ oxygenase and chlorophyll in several field crops[J]. Soil Sci Plant Nutr,1993,139 (3):417-425.
    [251]Farquhar G D, Von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves C3 species[J]. Planta,1980,149:78-90.
    [252]刘宇锋,萧浪涛,童建华,等.非直线双曲线模型在光合光响应曲线数据分析中 的应用[J].中国农学通报,2005,21(8):76-79.
    [253]饶立华,薛建明,蒋德安,等.钾营养对杂交稻光合作用动态及产量形成的效应[J].中国水稻科学,1990,4(2):106-112.
    [254]刘建祥,杨肖娥,吴良欢,等.低钾胁迫对水稻叶片光合功能的影响及其基因型差异[J].作物学报,2001,27(6):1000-1006.
    [255]孙骏威,黄莹莹,徐坤,等.低钾对钾迟钝型水稻不同叶位叶片光合活性的影响[J].浙江农业学报,2006,18(5):354-358.
    [256]蒋德安,饶立华,彭佐权.低钾条件下水稻的光合特性[J].植物生理学报,1988,14(1):50-55.
    [257]王晓光,曹敏建,蒋文春,等.钾肥对不同基因型大豆叶片生理功能的影响[J].大豆科学,2006,25(2):133-136.
    [258]于海业,乔建磊,肖英奎,等.气雾栽培马铃薯块茎的基本物理特性[J].吉林大学学报(工学版),2011,41(1):282-287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700