长期施肥对红壤旱地玉米生产力和土壤肥力的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南方红壤地区水热资源丰富,是我国农业生产潜力较高的区域之一。该地区拥有大量的旱地资源,发展旱地农业对区域粮食安全和农民增收均具有重要意义。随着我国粮食安全中的饲料用粮问题日益突出,充分利用南方红壤旱地资源,发展饲料玉米种植,正日益受到学术界的广泛关注。这不仅可以有效缓解南方农区饲料粮缺乏的问题,而且大大减轻北方粮食生产给生态环境带来的巨大压力。但是,红壤旱地同时也面临着种种亟待解决的问题:水热资源不协调,季节性干旱频发,土壤侵蚀和退化严重,耕地贫瘠,生产力低下等。在开发利用这些宝贵资源的同时,如何进行资源培育,改善或消除这些制约因素,提升南方旱地综合生产力,是实现南方旱地资源持续开发利用的基础。农田土壤培肥是提高农田综合生产力的关键,合理的农田培肥措施可以改善土壤的物理属性,提高土壤对肥水的保蓄和供应能力,增强土壤的抗侵蚀性。同时,良好的施肥管理可以恢复土壤肥力,改善土壤质量,进而提高耕地的生产力。而土壤培肥是一个长期的过程,需要较长时期的田间试验才能反映培肥措施的真正效果。因此,本研究借助江南丘陵区江西红壤旱地玉米长期施肥定位试验,旨在探明长期不同施肥措施对红壤旱地玉米生产力及产量稳定性和可持续性的影响,解析作物生产力及肥料效应的演变特征,阐明不同施肥措施对红壤旱地玉米田土壤肥力的影响及其演变特征,以期提出红壤旱地适宜的改良措施,从而为发展我国南方红壤旱地玉米生产提供可靠的科学依据和技术途径。主要结果如下:
     1、长期不同培肥措施下,红壤旱地玉米生产力及其稳定性差异显著。对照处理的早玉米和晚玉米产量均显著下降,早玉米趋势更明显。长期N肥处理,早玉米和晚玉米产量均呈显著下降趋势。长期有机和无机肥配施,双季玉米产量均呈显著增加趋势。对早玉米或晚玉米来说,M、NPK、NPK配施有机肥(NPK+M)处理均获得了较高产量,1986-2008年早玉米平均产量分别为4,062kg·hm-2、3,733kg·hm-2和5,261kg·hm-2,晚玉米平均产量分别为3,600kg·hm-2、3,426kg·hm-2和4,630kg·hm-2。施用NPK和有机肥能显著降低玉米产量的变异系数,提高玉米生产稳定性。与对照相比,施肥能增加玉米的可持续产量指数,即提高玉米生产的可持续性,而晚玉米的单施N肥处理除外。此外,周年玉米产量的变异性低于单季玉米产量的变异性,而且在生产的可持续性上,周年玉米高于单季玉米。因此,多熟种植结合有机无机肥配施的施肥方式可以有效降低该地区玉米生产的风险,提高全年作物产量的稳定性。
     2、长期施肥下,早玉米单施N肥的肥料效应呈显著下降趋势,而晚玉米无明显变化趋势。早玉米NPK的肥料效应呈下降趋势,而晚玉米呈上升趋势,但统计分析均不显著。有机肥处理双季玉米的肥料效应均呈上升趋势。而早玉米和晚玉米NPK+M的肥料效应均呈显著增加趋势。
     3、平衡施肥能提高氮肥利用率和农学效率,而对氮素的生理效率有一定影响。NPK和NPK配施有机肥能显著降低作物对土壤氮素的依存率,早玉米NPK+M处理土壤氮素的依存率为18.9%,而纯N处理达53.9%,各处理的降水利用效率晚玉米均显著高于早玉米和全年。
     4、长期施用有机肥和化肥对红壤旱地土壤肥力影响差异显著。有机肥和NPK+M能显著提高了土壤有机碳的含量,较试验前分别提高了10.8%和28.1%,而施用化肥(N和NPK)效应不明显,对照处理则呈下降趋势。施用有机肥或有机肥和NPK配合施用能显著提高土壤总氮、总磷、有效磷和速效钾的含量,而对照和N处理无显著变化。长期单施N肥处理,土壤pH显著降低,其他处理则相对稳定。有机肥或NPK配施有机肥显著提高了>2,000μm土壤大团聚体的比重,而相应降低了53-250μm微团聚体的比例。化肥施用对各级别土壤团聚体的比重均无显著影响。与对照相比,有机肥施用显著增加了土壤团聚体的平均重量直径和几何平均直径,而化肥施用对土壤团聚体的平均重量直径和几何平均直径均无显著影响。因此,有机肥施用增加了红壤旱地土壤的养分含量,改善了土壤结构,提高土壤肥力,而长期施用化肥,特别是单施N肥,导致土壤酸化严重。
     5、长期不同的培肥措施下红穰旱地土壤碳组分差异显著,有机肥施用促进土壤固碳。与对照相比,长期施用化肥(N和NPK)对土壤有机碳及总氮无显著影响。长期有机肥单用和配施(M和NPK+M)显著提高了土壤有机碳和总氮的含量。有机肥施用显著增加了所有团聚体级别碳的含量,而施用化肥对任何团聚体级别碳的含量均无显著影响。有机肥施用显著提高了微团聚体内颗粒有机物(iPOM_m)组分碳占总土壤碳的比例。有机肥施用促进了土壤有机碳向iPOM_m内转移。iPOM_m组分碳占总土壤碳的比重来看,和对照处理的9.8%相比,M和NPK+M处理分别达到19.7%和18.6%。土壤有机碳储存向微团聚体的转移有利于土壤碳的长期保存。因此,微团聚体保护碳组分可以用于评价长期施肥管理对土壤有机质以及土壤肥力的影响。
     综上所述,单施化肥能提高红壤玉米的产量,但不能改善红壤旱地的长期土壤肥力,特别是单施N肥导致土壤酸化严重,产量趋势和肥料效应也呈下降趋势;有机肥单施或有机和无机肥配施,不仅能显著增加玉米的产量,提高作物生产的稳定性和可持续性,而且提高了土壤养分含量,改善了土壤结构,对协调红壤旱地土壤的水分供应,增强土壤的抗侵蚀能力作用明显。有机无机配施的产量效应和肥料效应主要是土壤中微团聚体组分碳提高,引起土壤质量的改善缘故。因此,有机和无机肥配施不仅可以提高红壤旱地玉米的生产力和土壤肥力,而且有利于作物-土壤系统的稳定性和良性循环,是红壤旱地玉米生产理想的配施措施。
Red soil regions with abundant rainfall and high temperature are one of the most productive areas in China. There is large-area upland in southern China, thus playing a crucial role in enhancing grain security and farm's income in the region. With increasingly outstanding of the feed grain problem in food security, to fully utilize upland red soil in southern China and develop feed grain production are gained more and more concern by academic circle.Therefore, increasing corn output can not only alleviate the shortage of feed grain in southern China, but also mitigate the environmental pressure exerted by grain production in northern China with vulnerable agricultural environment and serious water shortage. However, there are also several barriers that must be addressed prior to implementing corn production in upland red soils, including mismatched supply of temperature and rainfall, frequent seasonal drought, soil erosion and degradation, and low productivity. Previous studies have shown that appropriate fertilizer management could improve soil physical properties, increase the capacity of holding water and nutrients of soil, and protect the soil against erosion, then to improve soil productivity and fertility. The objectives of this study are to (1) investigate the effects of long-term fertilization on corn yields, and its stability and sustainability in upland red soil,(2) examine the changes in corn yields and fertilization effects under long-term different fertilizer application,(3) determine the changes in soil fertility as affected by fertilization, and (4) clarify the responses of soil organic matter fractions to long-term different fertilizer application. Finally, after integrating the responses of corn yields and soil fertility to long-term fertilization, we discussed the best fertilization management practices in the upland red soil in order to provide reliable scientific and technological supports for enhancing corn output in southern China.
     Our results indicated that corn productivity and stability in red soil region showed significantly difference under long-term fertilizer application. Application of N fertilizer in long term could significantly decrease early-season and late-season corn yield. Application of inorganic fertilizer combined with manure (NPK+M) in long term could significantly increase both of cropping season corn yield. There was no significant difference in corn yields between the NPK and M treatment. The average yield of early season corn were4,062kg hm-2、3,733kg hm-2and5,261kg hm"2during1986-2008, and that of late season corn were3,600hm-2、3,426kg hm-2and4,630kg hm-2during1986-2008. Application of NPK and M markedly reduced the coefficient of variation (CV) of corn yields, while N application alone did not have significant effects. Compared with the control, fertilization could increase the sustainable yield index (SYI) of corn except the N treatment for the late season corn. Thus, application of inorganic fertilizer combined with manure could not only gain the highest corn yield, but significantly increase the stability and sustainability of corn production. In addition, the variation of year-round corn yield was lower than that of single cropping ones. Moreover, the sustainability of year-round corn yield was higher than that of single cropping ones. It was concluded that multiple cropping might reduce the risk of crop production and enhance the stability of the whole-year corn yield.
     Long-term application of N fertilizer alone could decrease growth of the productivity of early season corn, but there was no evident effect on late season ones. Long-term application of NPT could decrease growth of the productivity of late season corn, but increase growth of that of late season ones, while NPK fertilization had no significant effects. The first corn yield trend was significantly negative in the CK treatment, the similar declining trend was also observed in the second corn yield, but was not statistically significant. Yield trends of both the first and second corn were significantly decreasing in the N treatment. Similar yield trends in the NPK as in the N treatment were found, but were not statistically significant. The yield trends of M tended to increase, but did not show any statistical significance, whereas significantly positive trends were observed in the NPK+M for both corn cropping seasons. Trends of the fertilization effect (relative yield compared to the CK) in the N treatment were significantly declining for the first corn, but not for the second. Positive trends of the fertilization effects in the NPK was observed in the first corn, while the opposing ones was found in the second season, but the trends for both cropping seasons were not statistically significant. Trends of the fertilization effects in the M and NPK+M treatment increased over the time, but were not significant in the M. Rainfall and sunshine hours during the corn cropping season did not show significant time trends. Although the average temperature during the corn cropping season showed increasing trends, no significant relationship either between the average temperature and corn yield or between the average rainfall and corn yield was observed for both the first and second corn.
     Balanced fertilization (NPK and NPK+M) significantly increased the recovery efficiency and agronomic efficiency of applied N, but had no marked effects on the physiological efficiency of N. Soil N dependent rate was significantly lower in the NPK and NPK+M treatments than in the control,18.9%under NPK+M treatments and53.9%under N treatments, respectively. Rainfall use efficiency for the late season corn was significantly higher than that of the early season and year-round corn.
     Manure application (M and NPK+M) significantly increased the content of soil organic carbon (SOC),10.8%under M treatment and28.1%under NPK+M treatment, respectively, but no significant effects were found in the inorganic fertilizer application treatment (N and NPK). The content of SOC showed a slight decline in the control. Application of M could significantly increase the concentrations of total N, total P, available P and available K, while no marked effects were found in the control and N treatments. Long-term application of N remarkably decreased soil pH, while no significant changes were observed in other treatments. Manure application significantly increased the proportion of large macroaggregates (>2,000μm) compared with the control, while leading to a corresponding decline in the percentage of microaggregates (53-250μm). Inorganic fertilizer application did not affect soil aggregate distribution. Manure application significantly increased the mean weight diameter (MWD) and geometric mean diameter (GMD) of soil aggregates, whereas no significant effects were found under the inorganic fertilization treatments. Therefore, application of manure increased soil nutrient contents, improved soil structure, and thus increased soil fertility, while long-term N application led to serious soil acidification.
     Long-term fertilization could change soil components. Long-term application of inorganic fertilizer (N and NPK) could maintain SOC contents, whereas amendment of manure (M and NPK+M) significantly increased SOC concentrations compared with the control. In comparison to the control, C concentrations of sandfree aggregates were significantly increased by amendment of manure alone or combined with NPK in all aggregate-size classes, whereas application of inorganic fertilizer exerted no significant effects on aggregate C concentrations, irrespective of aggregate-size classes. Carbon storage in the intra-aggregate particulate organic matter within microaggregates (iPOM_m) was enhanced from9.8%of the total SOC stock in the CK to19.7%and18.6%in the M and NPK+M treatments, respectively. The shift of stocked SOC towards microaggregates is beneficial for long-term soil C sequestration. Moreover, the differences in the microaggregate protected C (i.e., iPOM_m) accounted, on average, for39.8%of the differences in total SOC stocks between the CK and the manure-applied treatments. It was suggested that the microaggregate protected C could be used for assessment the impact of long-term fertilization management on SOC storage in the red soil.
     In summary, inorganic fertilizer application could increase corn yields, while not improve soil fertility. Moreover, long-term application of N alone led to serious soil acidification, and showed significantly negative trends of corn yields and fertilization effects. In contrast, application of M, particularly NPK+M, could not only increase corn yield and its stability and sustainability, but enhance soil nutrient contents, improve soil structure, harmonize the supply of soil water and protect the soil against erosion. The positive time trends of corn yield and fertilization effects in the NPK+M treatment were mainly attributed to the improvement of soil fertility. It is concluded that application of NPK along with manure can enhance corn yield and soil fertility, maintain the stability and functioning of the crop-soil system, and thus is the best fertilization practice in the upland red soil.
引文
[1]Barthes B, Roose E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels [J]. Catena,2002,47:133-149
    [2]Bronick C J, Lal R. Soil structure and management:a review [J]. Geoderma,2005,124:3-22
    [3]Food and Agriculture Organization of the United Nations (FAO).2009. http://faostat.fao.org/
    [4]Hati K M, Swarup A, Mishra B, et al. Impact of long-term application of fertilizer, manure and lime under intensive cropping on physical properties and organic carbon content of an Alfisol [J]. Geoderma,2008,148:173-179
    [5]Jiang D, Hengsdijk H, Dai T, de Boer W, Jing Q, Cao W. Long-term effects of manure and inorganic fertilizers on yield and soil fertility for a winter wheat-maize system in Jiangsu, China [J]. Pedosphere,2006,16(1):25-32
    [6]Leigh RA, Johnston AE. Long-term Experiments in Agricultural and Ecological Sciences [M]. Oxford University Press,1994
    [7]Mitchell C C, Reeves W, Hubbs M D. The Old Rotation,1996-1999 [M]. Agronomy and Soils Dep. Ser. No.228. Alabama Agriculture Experiment Station, Auburn University, AL,2000
    [8]Pachepsky Y A, Rawls W J. Soil structure and pedotransfer functions [J]. European Journal of Soil Science,2003,54:443-452
    [9]Rasmussen P E, Goulding K W T, Brown J R, Grace P R, Janzen H H, Korschens M. Long-term agroecosystem experiments:Assessing agricultural sustainability and global change [J]. Science, 1998,82:893-896
    [10]Reeves D W. The role of soil organic matter in maintaining soil quality in continuous cropping system [J]. Soil and Tillage Research,1997,43:131-167
    [11]Russell A E, Laird D A, Parkin T B, et al. Impact of nitrogen fertilization and cropping system on carbon sequestration in midwestern Mollisols [J]. Soil Science Society of America Journal,2005, 69:413-422
    [12]Smith O H, Petersen G W, Needelman B A. Environmental indicators of agroecosystems [J]. Advances in Agronomy,2000,69:75-97
    [13]Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils [J]. Journal of Soil Science,1982,33:141-163
    [14]Xu R K, Zhao A Z, Li Q M, et al. Acidity regime of the Red Soils in a subtropical region of southern China under field conditions [J]. Geoderma,2003,115:75-84
    [15]Yang Z, Singh B R, Hansen S. Aggregate associated carbon, nitrogen and sulfur and their ratios in long-term fertilized soils [J]. Soil and Tillage Research,2007,95:161-171
    [16]Zhang B, Zhang T L, Zhao Q G. Soil erosion in various farming systems in subtropical China [J]. Pedosphere,1996,6:225-234
    [17]Zhang M K, Xu J M. Restoration of surface soil fertility of an eroded red soil in southern China [J]. Soil and Tillage Research,2005,80:13-21
    [18]Zhang W, Xu M, Wang B, et al. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of southern China [J]. Nutrient Cycling in Agroecosystems,2009,84:59-69
    [19]Zhu P, Ren J. Wang L, Zhang X, Yang X. MacTavish D. Long-term fertilization impacts on corn yields and soil organic matter on a clay-loam soil in Northeast China [J]. Journal of Plant Nutrient and Soil Science,2007,170.219-223
    [20]曾希柏,李菊梅,徐明岗,等.红壤旱地的肥力现状及施肥和利用方式的影响[J].2006,37(3):434-437
    [21]车卫东,王兴祥.我国东南丘陵区旱地红粘土红壤肥力的退化和恢复[J].安徽农业科学,2009,37(27):13185-13188
    [22]陈国启.我国的粮食安全和耕地保护[J].重庆工学院学报:社会科学版,2007,21(10):34-37
    [23]陈印军,尹昌斌.对解决南方双季稻主产区早稻积压和饲料粮短缺问题的思考[J].中国软科学,1999a,5:72-76
    [24]陈印军,尹昌斌.对南方双季稻主产区“玉米替代”的反思[J].中国农村经济,1999b,2:20-25
    [25]陈志恺.中国水资源的可持续利用问题[J].水文,2003,23(1):1-5
    [26]程叶青,张平宇.中国粮食生产的区域格局变化及东北商品粮基地响应[J].地理科学,2005,25(5):513-520
    [27]丁金时,胡正兵,黄新萍.推广水田玉米应慎重[J].湖北农业科学,1999,5:5
    [28]黄国勤.论开发南方旱地农业[J].科技导报,1995,11:37-41
    [29]黄欠如,胡锋,李辉信,等.红壤性水稻土施肥的产量效应及与气候、地力的关系[J].土壤学报,2006,43(6):926-933
    [30]李瑾,秦富.畜牧产业结构调整影响因素分析[J].中国畜牧杂志,2007,43(18):27-32
    [31]李学军,王伯仁.红壤旱地施肥技术研究[J].湖南农业科学,1999,5:31-332
    [32]李勇,靳伟,安琼,徐瑞薇.我国东南丘陵区化肥和农药污染状况分析[J].农村生态环境,1998,14(1):24-30
    [33]李忠佩,焦坤,林心雄,等.施肥条件下瘠薄红壤的生物化学性状变化[J].土壤,2003,35(4):304-310
    [34]廖永松,黄季煜.21世纪全国及九大流域片粮食需求预测分析[J].南水北调与水利科技,2004,2(1):29-32
    [35]林军.现阶段我国的粮食安全问题[J].求是,2007,8:34-36
    [36]刘彦随,翟荣新.中国粮食生产时空格局动态及其优化策略探析[J].地域研究与开发,2009,28(1):1-5
    [37]刘玉杰,杨艳昭,封志明.中国粮食生产的区域格局变化及其可能影响[J].资源科学,2007,29(2):8-14
    [38]龙方.论新世纪中国粮食安全的战略目标[J].求索,2007,10:16-19
    [39]龙建高,赵修忠.南方稻田玉米高产栽培措施浅探[J].作为研究,2002,2:59-60
    [40]罗爱兰,李科云.中国南方草业发展模式研究[J].地理学与国土研究,1995,11(2):39-42
    [4]] 罗尊长,叶桃林,徐明岗,等.中国南方农区畜牧业面临的问题与发展对策[J].农业现代化研究,2005,26(6):401-406
    [42]骆永明,滕应.我国土壤污染退化状况及防治对策[J].土壤,2006,38(5):505-508
    [43]马永欢,牛文元,汪云林,等.我国粮食生产的空间差异与安全战略[J].中国软科学,2008,9:1-9
    [44]潘耀国.饲料粮比重加大中国的粮食安全性会更高[J].中国饲料,2006a,22:15-21
    [45]潘耀国.饲料粮与粮食的产需平衡问题[J].中国牧业通讯,2004,22:34-37
    [46]潘耀国.我国的饲料大原料战略[J].中国牧业通讯,2006b,24:40-45
    [47]苏艳红,黄国勤,刘秀英.红壤早地玉米大豆间作系统的增产增收效益及其机理研究[J].江西农业大学学报,2005,27(2):210-213
    [48]孙波,张桃林,赵其国.南方红壤丘陵区土壤养分贫瘠化的综合评价[J].土壤,1995,27:119-128
    [49]孙波,朱兆良,牛栋.农田长期生态过程的长期试验研究进展与展望[J].土壤,2007,39(6):849-854
    [50]孙涛,李胜利.我国畜牧业发展与粮食安全[J].饲料工业,2007,28(9):60-64
    [51]唐永金.四川双季玉米栽培技术及效益分析[J].作物杂志,2004,3:28-30
    [52]佟屏亚.南方地区玉米综合开发的策略和措施[J].耕作与栽培,1999,3:49-52
    [53]佟屏亚.我国玉米生产现状和发展策略[J].科技导报,1997,11:22-25
    [54]王慧霞,赵然芬.提高我国粮食安全保障能力的对策研究[J].河北师范大学学报:哲学社会科学版,2007,30(5):35-41
    [55]王莉,胡胜德.美国玉米深加工经验对我国的启示[J].经济纵横, 2009,3:77-79
    [56]王明珠,程训强,张斌,等.江南丘陵红壤区的农业水资源特征与调控利用-以江西省余江县为例[J].生态环境,2007,16(2):549-553
    [57]王明珠,姚贤良,张佳宝,等.低丘红壤区伏秋旱的成因、特征及抗旱体系的研究[J].自然资源学报,1997,12(3):250-256
    [58]王万山,战勇.入世后江西粮食结构调整不宜实施“玉米替代”战略[J].价格月刊,2002,217-18
    [59]王兴祥,张桃林,张斌.红壤旱坡地农田生态系统养分循环和平衡[J].生态学报,1999,19(3):335-3411
    [60]谢正苗,吕军,俞劲炎,等.红壤退化过程与生态位的研究[J].应用生态学报,1998,9(6)669-672
    [61]辛良杰,李秀彬,谈明洪.中国区域粮食生产优势度的演变及分析[J].农业工程学报,2009, 25(2):222-227
    [62]辛贤,蒋乃华,周章跃.畜产品消费增长对我国饲料粮市场的影响[J].农业经济问题,2003,(1):60-64
    [63]徐芳,蒋少龙.宏观调控背景下的我国粮食安全[J].农村经济,2007,(11):16-19
    [64]徐江兵,李成亮,何园球,等.不同施肥处理对旱地红壤团聚体中有机碳含量及其组分的影响[J].土壤学报,2007,44(4):675-682
    [65]徐明岗,梁国庆,张夫道.中国土壤肥力演变[M].北京:中国农业出版社,2006
    [66]许世卫.中国食物消费与浪费分析[J].中国食物与营养,2005,(11):4-8
    [67]姚贤良.红壤水问题及其管理[J].土壤学报,1996,33(1):14-20
    [68]叶花兰,刘国道.浅论我国南方农区畜牧业的可持续发展[J].热带农业科学,2007,27(2)51-54
    [69]赵其国,吴志东,张桃林.我国东南红壤丘陵地区农业持续发展和生态环境建设Ⅰ.优势、潜力和问题[J].土壤,1998a,3:113-120
    [70]赵其国,吴志东,张桃林.我国东南红壤丘陵地区农业持续发展和生态环境建设Ⅱ.措施、对策和建议[J].土壤,1998b,4:169-177
    [71]赵其国,徐梦洁,吴志东.东南红壤丘陵地区农业可持续发展研究[J].土壤学报,2000,37(4):432-442
    [72]赵其国.土壤资源大地母亲—必须高度重视我国土壤资源的保护、建设与可持续利用问题[J].土壤,2004,36(4):337-339
    [73]赵其国.中国东部红壤地区土壤退化的时空变化、机理及调控[M].北京:科学出版社,2002
    [74]郑有贵,邝婵娟,焦红坡.南粮北调向北粮南运演变成因的探讨-兼南北方两个区域粮食生产发展优势和消费比较[J].中国经济史研究,1999,1:97-104
    [75]中国统计年鉴.2008http://www.stats.gov.cn/
    [76]周卫军,王凯荣,张光远,等.有机与无机肥配合对红壤稻田系统生产力及其土壤肥力的影响[J].中国农业科学,2002,35(9):1109-1113
    [77]周旭英.我国饲料用粮需求与生产布局调整[J].中国畜牧杂志,2001,37(2):45-46
    [1]Alyokhin A, Porter G, Groden E, et al. Colorado potato beetle response to soil amendments:a case in support of the mineral balance hypothesis [J]. Agriculture Ecosystems and Environment,2005, 109:234-244
    [2]Berzsenyi Z, Gyorffy B, Lap D. Effect of crop rotation and fertilisation on maize and wheat yields and yield stability in a long-term experiment [J]. European Journal of Agronomy,2000,13: 225-244
    [3]Calderini D F, Slafer G A. Changes in yield and yield stability in wheat during the 20th century [J]. Field Crops Research,1998,57:335-347
    [4]Cassman K G, Dobermann A, Walters D T, Yang H S. Meeting cereal demand while protecting natural resources and improving environmental quality [J]. Annual Review Environment and Resources,2003,28:315-358.
    [5]Edgerton M D. Increasing crop productivity to meet global needs for feed, food, and fuel [J]. Plant Physiology,2009,149,7-13
    [6]Ellmer F, Peschke H, KOhn W, et al. Tillage and fertilizing effects on sandy soils:review and selected results of long-term experiments at Humboldt-University Berlin [J]. Journal of Plant Nutrient and Soil Science,2000,163:267-272
    [7]Eltun R, Kors(?)th A, Nordheim O. A comparison of environmental, soil fertility, yield, and economical effects in six cropping systems based on an 8-year experiment in Norway [J]. Agriculture Ecosystems and Environment,2002,90:155-168
    [8]Gallandt E R, Liebman M, Corson S, et al. Effects of pest and soil management systems on weed dynamics in potato [J]. Weed Science,1998a,46:238-248
    [9]Haussmann B I G, Obilana A B, Ayiecho P O, et al. Yield and yield stability of four population types of grain sorghum in a semi-arid area of Kenya [J]. Crop Science,2000,40:319-329
    [10]Jiang D, Hengsdijk H, Dai T, de Boer W, Jing Q, Cao W. Long-term effects of manure and inorganic fertilizers on yield and soil fertility for a winter wheat-maize system in Jiangsu, China [J]. Pedosphere,2006,16 (1):25-32
    [11]Landis D A, Gardiner M M, Van der Werf W, Swinton S M. Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes [J]. PNAS,2008,105:20552-20557
    [12]Lotter, D W, Seidel R, Liebhardt W. The performance of organic and conventional cropping systems in an extreme climate year. American Journal of Alternative Agriculture,2003,18 146-154
    [13]Mallory E B, Porter G A. Potato yield stability under contrasting soil management strategies [J]. Agronomy Journal,2007,99:501-510
    [14]Piepho H P. Methods for comparing the yield stability of cropping systems-a review [J]. Journal of Agronomy and Crop Science,1998,180:193-213
    [15]Shen M X, Yang L Z, Yao Y M, Wu D D, Wang J, Guo R, Yin S. Long-term effects of fertilizer managements on crop yields and organic carbon storage of a typical rice-wheat agroecosystem of China. Biology and Fertility of Soils.2007,44:187-200
    [16]Sinebo W. Trade off between yield increase and yield stability in three decades of barley breeding in a tropical highland environment [J]. Field Crops Research,2005,92:35-52
    [17]Singh R P, Das S K, Bhaskara Rao U M, Narayana Reddy M (1990) Towards sustainable dryland agricultural practices. CRIDA, Hyderabad, India
    [18]Stevenson F J. Cycles of soil carbon, nitrogen, phosphorus, sulfur, and micronutrients [M]. New York:John Willey & Sons,1985:231-284
    [19]Wang H, Qin L, Huang L, et al. Ecological agriculture in china principles and applications [J]. Advances in Agronomy,2007,94:181-208
    [20]Ye X J, Wang Z Q, Li Q S. The ecological agriculture movement in modern China [J]. Agriculture Ecosystems and Environment,2002,92:261-281
    [21]Zhang W, Xu M, Wang B, Wang X. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of southern China [J]. Nutrient Cycling in Agroecosystems,2009,84:59-69
    [22]Zhu P, Ren J, Wang L, Zhang X, Yang X, MacTavish D. Long-term fertilization impacts on corn yields and soil organic matter on a clay-loam soil in Northeast China [J]. Journal Plant Nutrient and Soil Science,2007,170:219-223
    [23]陈永安,陈典毫,游有文,等.红壤旱地肥力变化及有效施肥技术[J].植物营养与肥料学报, 1999,5(2):115-121
    [24]陈永安,陈典毫,游有文,等.红壤旱地肥力变化及有效施肥技术[J].植物营养与肥料学报1999,5(2):115-121
    [25]戴茨华,王劲松.从长期定位试验论红壤施磷的效应[J].土壤肥料,2002,(2):29-32
    [26]顾益初,钦绳武.长期施用磷肥条件下潮土中磷素的积累、形态转化和有效性[J].土壤,1997,(1):13-17
    [27]李成亮,孔宏敏,何园球.施肥结构对旱地红壤有机质和物理性质的影响[J].水土保持学报,2004,18(6):117-119
    [28]李寿田,周健民,王火焰,等.不同土壤磷的固定特征及磷释放量和释放率的研究[J].2003,40(6):908-914
    [29]荣湘民,蒋健容,朱红梅,等.红壤旱地有机与无机肥料配合施用效果[J].湖南农业大学学报(自然科学版),2001,27(6):454-456
    [30]王伯仁,徐明岗,文石林,等.长期施肥对红壤旱地磷组分及磷有效性的影响[J].湖南农业大学学报(自然科学版),2002,28(4):293-297
    [31]王伯仁,徐明岗,文石林.长期不同施肥对旱地红壤性质和作物生长的影响[J].水土保持学报,2005,19(1):97-100
    [32]王明珠,姚贤良,张佳宝,等.低丘红壤区伏秋旱的成因、特征及抗旱体系的研究[J].自然资源学报,1997,12(3):250-256
    [33]赵其国,吴志东,张桃林.我国东南红壤丘陵地区农业持续发展和生态环境建设Ⅱ.措施、对策和建议[J].土壤,1998,(4):169-177
    [1]Bi L, Zhang B, Liu G, et al. Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China [J]. Agriculture Ecosystems and Environment, 2009,129:534-541
    [2]Kucharik C J, Serbin S P. Impacts of recent climate change on Wisconsin corn and soybean yield trends [J]. Environmental Research Letters,2008,3, doi:10.1088/1748-9326/3/3/034003
    [3]Pachepsky Y A, Rawls W J.Soil structure and pedotransfer functions [J]. European Journal of Soil Science,2003,54:443-452
    [4]Regmi A P, Ladha J K, Pathak H, Pasuquin E, et al. Yield and soil fertility trends in a 20-year rice-rice-wheat experiment in Nepal [J]. Soil Science Society of America Journal,2002,66: 857-867
    [5]Saleque M A, Abedin M J, Bhuiyan N I, et al. Long-term effects of inorganic and organic fertilizer sources on yield and nutrient accumulation of lowland rice [J]. Field Crops Research,2004,86: 53-65
    [6]Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z. Climate changes and trends in phonology and yields of field crops in China,1981-2000 [J]. Agricultural and Forest Meteorology,2006,138: 82-92
    [7]Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S. Agricultural sustainability and intensive production practices [J]. Nature,2002,418:671-677
    [8]Yadvinder S, Bijay S, Ladha J K, et al. Long-term effects of organic inputs on yield and soil fertility in the rice-wheat rotation [J]. Soil Science Society of America Journal,2004,68:845-853
    [9]姚贤良,许绣云,于德芬.不同利益方式下红壤结构的形成[J].土壤学报,1990,27(1):25-33
    [10]彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响[J].2003,23(10):2176-2183
    [11]徐明岗,黄鸿翔.红壤丘陵区农业综合发展研究[M].北京:中国农业科学出版社,2000.53-58
    [12]戴茨华,王劲松.从长期定位试验论红壤施磷的效应[J].土壤肥料,2002,2:29-32
    [13]易杰祥,吕亮雪,刘国道.土壤酸化和酸性土壤改良研究[J].华南热带农业大学学报,2006,12(1):23-28
    [14]景元书,张斌.亚热带花生旱坡地的水分动态特征分析[J].中国农学通报,2006,11467-471
    [15]李学军,王伯仁.红壤旱地施肥技术研究[J].湖南农业科学,1999,5:31-332
    [16]李成亮,孔宏敏,何园球.施肥结构对旱地红壤有机质和物理性质的影响[J].水土保持学报,2004,18(6):117-119
    [17]柳云龙,施振香,尹骏,等.旱地红壤与红壤性水稻土水分特性分析[J].水土保持学报,2009,23(2):232-235
    [18]王伯仁,徐明岗,文石林.长期不同施肥对旱地红壤性质和作物生长的影响[J].水土保持学报,2005,19(1):97-100
    [19]程伟,张兴义,叶喜文,等.不同有机质含量农田黑土的水热效应[J].农业现代化研究,2007,28(4):501-503
    [20]郭杏妹,吴宏海,罗媚,等.红壤酸化过程中铁铝氧化物矿物形态变化及其环境意义[J].岩石矿物学杂志,2007,26(6):515-521
    [21]陈家宙,王石,张丽丽,等.玉米对持续干旱的反应及红壤干旱阈值[J].中国农业科学,2007,40(3):532-539
    [22]陈永安,陈典毫,游有文,等.红壤旱地肥力变化及有效施肥技术[J].植物营养与肥料学报,1999,5(2):115-121
    [23]韩鲁艳,贾燕锋,王宁,等.黄土丘陵沟壑区植被恢复过程中的土壤抗蚀与细沟侵蚀演变[J].土壤,2009,41(3):483-489
    [24]马强,宇万太,张璐,周桦.下辽河平原不同水肥条件对玉米养分吸收与分配的影响[J].农业工程学报,2006,22(增刊):283-288
    [1]Blake L, Mercik S, Koerschens M, et al. Phosphorus content in soil, uptake by plants and balance in three European long-term field experiments [J]. Nutrient Cycling in Agroecosystems,2000,56: 263-275
    [2]Bunemann E, Bassio D A, Smithson P C, et al. Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization [J]. Soil Biology and Biochemistry,2004,36:889-901
    [3]Calvino P A, Andrade F H, Sadras V O. Maize yield as affected by water availability, soil depth, and crop management [J]. Agronomy Journal,2003,95:275-281
    [4]Cerrato M E, Blackmer A M. Comparison of models for describing corn yield response to nitrogen fertilizer [J]. Agronomy Journal,1990,82:138-143
    [5]Clark M S, Horwath W R, Shennan C, et al. Changes in soil chemical properties resulting from organic and low-input farming practices [J]. Agronomy Journal,1998,90:662-671
    [6]Dobermann A, Walters D T, Yang H. Meeting cereal demand while protecting natural resources and improving environmental quality [J]. Annual Review of Environmental Resources,2003,28: 315-358
    [7]Drinkwater L E, Snapp S S. Nutrients in agroecosystems rethinking the management paradigm [J]. Advances in Agronomy,2007,92:163-186
    [8]Erisman J W, Bleeker A, Galloway J, Sutton M S. Reduced nitrogen in ecology and the environment [J]. Environmental Pollution,2007,150:140-149
    [9]Fageria N K. Baligar V C. Enhancing nitrogen use efficiency in crop plants [J]. Advances in Agronomy,2005,88:97-185
    [10]Ladha J K, Pathak H, Krupnik T, et al. Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects [J]. Advances in Agronomy,2005,87:85-156
    [11]Liu B, Gumpertz M L, Hu S, et al. Long-term effects of organic and synthetic soil fertility amendments on soil microbial communities and the development of southern blight [J]. Soil Biology and Biochemistry,2007,39:2302-2316
    [12]Mitsch W J, Day J W, Jr. Gilliam J W, et al. Reducing nitrogen loading to the Gulf of Mexico from the Mississippi River Basin:Strategies to counter a persistent ecological problem [J]. Bioscience,2001,51:373-388
    [13]Peng S B, Buresh B J, Huang J L, et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China [J]. Field Crops Research,2006,96:37-47
    [14]Yang S M, Li F M, Malhi S S, et al. Long-term fertilization effects on crop yield and nitrate nitrogen accumulation in soil in northwestern China [J]. Agronomy Journal,2004,96:1039-1049
    [15]Zhang H, Wang B, Xu M, et al. Crop Yield and Soil Responses to Long-Term Fertilization on a Red Soil in Southern China [J]. Pedosphere,2009,19(2):199-207
    [16]李辉信,袁颖红,黄欠如,等.不同施肥处理对红壤水稻土团聚体有机碳分布的影响[J].土壤学报,2006,43(3):422-429
    [17]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000
    [18]王激清,刘全清,马文奇,等.中国养分资源利用状况及调控途径[J].资源科学,2005,27(3):47-53
    [19]王明珠,程训强,张斌,等.江南丘陵红壤区的农业水资源特征与调控利用-以江西省余江县为例[J].生态环境,2007,16(2):549-553
    [20]王兴祥,张桃林,张斌.红壤旱坡地农田生态系统养分循环和平衡[J].生态学报,1999,19(3):335-3411
    [21]张福锁,崔振岭,王激清,等.中国土壤和植物养分管理现状与改进策略[J].植物学通报,2007,24(6):687-694
    [1]Bi L, Zhang B, Liu G, et al. Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China [J]. Agriculture Ecosystems and Environment, 2009,129:534-541
    [2]Jastrow J D, Boutton T W, Miller R M. Carbon dynamics of aggregate associated organic matter estimated by carbon-13 natural abundance [J]. Soil Science Society of America Journal,1996,60: 801-807
    [3]Oades J M, Waters A G. Aggregate hierarchy in soils [J]. Australian Journal of Soil Research, 1991,29:815-828
    [4]Schj(?)nning P, Elmholt S, Munkholm L J, et al. Soil quality aspects of humid sandy loams as influenced by organic and conventional long-term management [J]. Agriculture Ecosystems and Environment,2002,88:195-214
    [5]Six J, Paustian K, Elliott E T, et al. Soil structure and soil organic matter:I. Distribution of aggregate-size classes and aggregate-associated carbon [J]. Soil Science Society of America Journal,2000,64:681-689
    [6]Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils [J]. Journal of Soil Science,1982,33:141-163
    [7]陈梅,陈亚华,沈振国.猪粪对红壤铝毒的缓解效应[J].植物营养与肥料学报,2002,8(2)173-176
    [8]郭朝晖,黄昌勇,廖柏寒.模拟酸雨对污染土壤中Cd、Cu和Zn释放及其形态转化的影响[J].应用生态学报,2003,14(9):1547-1550
    [9]黄欠如,胡锋,袁颖红,等.长期施肥对红壤性水稻土团聚体特征的影响[J].土壤,2007,39(4):608-613
    [10]赖庆旺,李茶苟,黄庆海.红壤性水稻土无机肥连施与土壤结构特性的研究[J].土壤学报,1992,29(2):168-174
    [11]李成亮,孔宏敏,何园球.施肥结构对旱地红壤有机质和物理性质的影响[J].水土保持学报,2004,18(6):117-119
    [12]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000
    [13]吕焕哲,王凯荣,谢小立,等.有机物料对酸性红壤铝毒的缓解效应[J].植物营养与肥料学报,2007,13(4):637-641
    [14]秦瑞君,陈福兴.长期种植牧草和绿肥对降低土壤铝毒的作用[J].土壤肥料,1997,5:37-39
    [15]戎秋涛,杨茂,徐文彬.土壤酸化研究进展[J].地球科学进展,1996,11(4):396-401
    [16]王伯仁,徐明岗,文石林.长期不同施肥对旱地红壤性质和作物生长的影响[J].水土保持学报,2005,19(1):97-100
    [17]吴承祯,洪伟.不同经营模式土壤团粒结构的分形特征研究[J].土壤学报,1999,36(2)162-166
    [18]徐江兵,李成亮,何园球,等.不同施肥处理对旱地红壤团聚体中有机碳含量及其组分的影响[J].土壤学报,2007,44(4):675-682
    [19]徐仁扣,Coventry D R某些农业措施对土壤酸化的影响[J].农业环境保护,2002,21(5)385-388
    [20]闫峰陵,史志华,蔡崇法,等.红壤表土团聚体稳定性对坡面侵蚀的影响[J].土壤学报,2007,44(4):577-583
    [21]易杰祥,吕亮雪,刘国道.土壤酸化和酸性土壤改良研究[J].华南热带农业大学学报,2006,12(1):23-28
    [22]张世熔,邓良基,周倩,等.耕层土壤颗粒表面的分形维数及其与主要土壤特性的关系[J].土壤学报,2002,39(2):221-226
    [23]赵其国,吴志东,张桃林.我国东南红壤丘陵地区农业持续发展和生态环境建设Ⅱ.措施、对策和建议[J].土壤,1998,4:169-177
    [1]Abiven S, Menasseri S, Chenu C. The effects of organic inputs over time on soil aggregate stability-a literature analysis [J]. Soil Biology Biochemistry,2009,41:1-12
    [2]Angers D A, Recous S, Aita C. Fate of carbon and nitrogen in water-stable aggregates during decomposition of 13C15N-labelled wheat straw in situ [J]. European Journal Soil Science,1997, 48:295-300
    [3]Baldock J A, Oades J M, Nelson P N, Skene T M, Golchin A, Clarke P. Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy [J]. Aust J Soil Res 1997,35:1061-1083
    [4]Balesdent J, Chenu C, Balabane M. Relationship of soil organic matter dynamics to physical protection and tillage [J]. Soil and Tillage Research,2000,53:215-230
    [5]Blanco-Canqui H, Lal R. Mechanisms of Carbon Sequestration in Soil Aggregates [J]. Critical Reviews in Plant Sciences,2004,23(6):481-504
    [6]Del Galdo I, Six J, Peressotti A, et al. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes [J]. Global Change Biology,2003,9:1204-1213
    [7]Denef K, Six J, Merckx R., et al. Carbon sequestration in microaggregates of no-tillage soils with different clay mineralogy [J]. Soil Science Society of America Journal,2004,68:1935-1944
    [8]Denef K, Six J, Paustian K, et al. Importance of macroaggregate dynamics in controlling soil carbon stabilization:short-term effects of physical disturbance induced by dry-wet cycles [J]. Soil Biology Biochemistry.2001,33:2145-2153
    [9]Denef K, Zotarelli L, Boddey R M, et al. Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols [J]. Soil Biology and Biochemistry,2007,39:1165-1172
    [10]Follett R F, Shafer S R, Jawson M D, Franzluebbers A J. Research and implementation needs to mitigate greenhouse gas emissions from agriculture in the USA [J]. Soil and Tillage Research, 2005,83:159-166
    [11]Jastrow J D, Boutton T W, Miller R M. Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance [J]. Soil Science Society of America Journal,1996,60: 801-807
    [12]John B, Yamashita T, Ludwig B, et al. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use [J]. Geoderma,2005,128:63-79
    [13]Lal R. Soil carbon sequestration impacts on global climate change and food security [J]. Science 2004,304:1623-1627
    [14]Oades J M. Soil organic matter and structural stability:mechanisms and implications for management [J]. Plant and Soil,1984,76:319-337
    [15]Puget P, Chenu C, Balesdent J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates [J]. European Journal of Soil Science,2000,51:595-605
    [16]Six J, Callewaert P, Lenders S, et al. Measuring and understanding carbon storage in afforested soils by physical fractionation [J]. Soil Science Society of America Journal,2002,66:1981-1987
    [17]Six J, Elliott E T, Paustian K. et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils [J]. Soil Science Society of America Journal,1998,62:1367-1377
    [18]Six J, Elliott E T, Paustian K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems [J]. Soil Science Society of America Journal,1999,63:1350-1358
    [19]Six J, Paustian K, Elliott E T, et al. Soil structure and soil organic matter:I. Distribution of aggregate-size classes and aggregate-associated carbon [J]. Soil Science Society of America Journal,2000,64:681-689
    [20]Sleutel S, De Neve S, Nemeth T, et al. Effect of manure and fertilizer application on the distribution of organic carbon in different soil fractions in long-term field experiments [J]. European Journal of Agronomy,2006,25:280-288
    [21]Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils [J]. Journal of Soil Science,1982,33:141-163
    [22]Zotarelli L, Alves B J R, Urquiaga S, et al. Impact of tillage and crop rotation on light fraction and intra-aggregate soil organic matter in two Oxisols [J]. Soil and Tillage Research,2007,95 196-206
    [23]赖庆旺,李茶苟,黄庆海.红壤性水稻土无机肥连施与土壤结构特性的研究[J].土壤学报,1992,29(2):168-174
    [1]Anderson T. Microbial eco-physiological indicators to asses soil quality [J]. Agriculture Ecosystems and Environment, 2003,98:285-293
    [2]Bending G. D, Turner M K, Rayns F, et al. Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes [J]. Soil Biology and Biochemistry,2004,36:1785-1792
    [3]Berzsenyi Z, GyOrffy B, Lap D. Effect of crop rotation and fertilisation on maize and wheat yields and yield stability in a long-term experiment [J]. European Journal of Agronomy,2000,13: 225-244
    [4]Bi L, Zhang B, Liu G, et al. Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China [J]. Agriculture Ecosystems and Environment, 2009,129:534-541
    [5]Bordovsky D G, Choudhary M, Gerard C J. Effect of tillage, cropping, and residue management on soil properties in the Texas Rolling Plains [J]. Soil Science,1999,164:331-340
    [6]Gil-Sotres F, Trasar-Cepeda C, Leiros M C, et al. Different approaches to evaluating soil quality using biochemical properties [J]. Soil Biology and Biochemistry,2005,37:877-887
    [7]Green T R, Ahuja L R, Benjamin J G. Advances and challenges in predicting agricultural management effects on soil hydraulic properties [J]. Geoderma,2003,116:3-27
    [8]Kucharik C J, Serbin S P. Impacts of recent climate change on Wisconsin corn and soybean yield trends [J]. Environmental Research Letters,2008,3, doi:10.1088/1748-9326/3/3/034003
    [9]Mallory E B, Porter G A. Potato yield stability under contrasting soil management strategies [J]. Agronomy Journal,2007,99:501-510
    [10]Morison J I L, Baker N R, Mullineaux P M, et al. Improving water use in crop production [J]. Philosophical Transactions of the Royal Society:Biological Sciences,2008,363:639-658
    [11]Regmi A P, Ladha J K, Pathak H, Pasuquin E, et al. Yield and soil fertility trends in a 20-year rice-rice-wheat experiment in Nepal [J]. Soil Science Society of America Journal,2002,66: 857-867
    [12]Saleque M A, Abedin M J, Bhuiyan N I, et al. Long-term effects of inorganic and organic fertilizer sources on yield and nutrient accumulation of lowland rice [J]. Field Crops Research,2004,86: 53-65
    [13]Sarno, M Iijima, J Lumbanraj, et al. Soil chemical properties of an Indonesian red acid soil as affected by land use and crop management [J]. Soil and Tillage Research,2004,76:115-124
    [14]Turner N C. Agronomic options for improving rainfall-use efficiency of crops in dryland farming systems [J]. Journal of Experimental Botany,2004,55:2413-2425
    [15]Wang H, Liu C, Zhang L. Water-saving agriculture in China:An overview [J]. Advances in Agronomy,2002,75:135-171
    [16]Yadvinder S, Bijay S, Ladha J K, et al. Long-term effects of organic inputs on yield and soil fertility in the rice-wheat rotation [J]. Soil Science Society of America Journal,2004,68:845-853
    [17]陈家宙,王石,张丽丽,等.玉米对持续干旱的反应及红壤干旱阈值[J].中国农业科学,2007,40(3):532-539
    [18]陈梅,陈亚华,沈振国.猪粪对红壤铝毒的缓解效应[J].植物营养与肥料学报,2002,8(2):173-176
    [19]程伟,张兴义,叶喜文,等.不同有机质含量农田黑土的水热效应[J].农业现代化研究,2007,28(4):501-503
    [20]郭朝晖,黄昌勇,廖柏寒.模拟酸雨对污染土壤中Cd、Cu和Zn释放及其形态转化的影响[J].应用生态学报,2003,14(9):1547-1550
    [21]景元书,张斌.亚热带花生旱坡地的水分动态特征分析[J].中国农学通报,2006,22(11)467-471
    [22]李成亮,孔宏敏,何园球.施肥结构对旱地红壤有机质和物理性质的影响[J].水土保持学报.2004,18(6):117-119
    [23]柳云龙,施振香,尹骏,等.旱地红壤与红壤性水稻土水分特性分析[J].水土保持学报,2009,23(2):232-235
    [24]吕焕哲,王凯荣,谢小立,等.有机物料对酸性红壤铝毒的缓解效应[J].植物营养与肥料学报,2007,13(4):637-641
    [25]秦瑞君,陈福兴.长期种植牧草和绿肥对降低土壤铝毒的作用[J].土壤肥料,1997,5:37- 391
    [26]戎秋涛,杨茂,徐文彬.土壤酸化研究进展[J].地球科学进展,1996,11(4):396-401
    [27]王伯仁,徐明岗,文石林.长期不同施肥对旱地红壤性质和作物生长的影响[J].水土保持学报,2005,19(1):97-100
    [28]吴承祯,洪伟.不同经营模式土壤团粒结构的分形特征研究[J].土壤学报,1999,36(2)162-166
    [29]徐明岗,文石林,高菊生.红壤丘陵区不同种草模式的水土保持效果与生态环境效应.水土保持学报,2001,15(1):77-80
    [30]徐仁扣,Coventry D R某些农业措施对土壤酸化的影响[J].农业环境保护,2002,21(5)385-388
    [31]闫峰陵,史志华,蔡崇法,等.红壤表土团聚体稳定性对坡面侵蚀的影响[J].土壤学报,2007,44 (4):577-583
    [32]易杰祥,吕亮雪,刘国道.土壤酸化和酸性土壤改良研究[J].华南热带农业大学学报,2006,12(1):23-28
    [33]张世熔,邓良基,周倩,等.耕层土壤颗粒表面的分形维数及其与主要土壤特性的关系[J].土壤学报,2002,39(2):221-226
    [34]赵其国,吴志东,张桃林.我国东南红壤丘陵地区农业持续发展和生态环境建设Ⅰ.优势、潜力和问题[J].土壤,1998,3:113-120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700