轴向柱塞泵流量脉动及配流盘优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴向柱塞泵是液压系统中最重要的元件,它被广泛应用于各类机械装备特别是工程机械领域。噪声是柱塞泵的三大性能指标之一,随着柱塞泵工作性能指标和环保要求的提高,噪声问题日益突显。流体噪声作为柱塞泵噪声主要组成部分,其影响因素众多,形成机理复杂,成为噪声控制的研究难点,也是学科前沿研究的热点。本学位论文选择柱塞泵流体噪声主要形成因素流量脉动及其控制方法开展研究,目的在于提高柱塞泵的综合性能,改善其对应用环境的影响,既有工程应用背景,又有学术研究价值。
     本学位论文在分析轴向柱塞泵流体噪声形成机理的基础上,建立了柱塞泵流动特性的分布参数式数学模型,该模型考虑了压力波动态传播特性的影响,可以将动态振荡形成的附加流量脉动波转化为压力波,因此对泵出口附近压力脉动的预测效果比经典的集中参数法更加准确,试验证明该模型能够准确的预测柱塞泵的流量和压力脉动特性,可使分析误差控制在5%以内,以满足柱塞泵流动特性分析需要,为流体噪声的机理分析提供了理论支持。针对柱塞泵复杂内部流动特性三维动态流场仿真的精度问题,考虑了油液弹性模量的影响,在大量试验测试的基础上,揭示了油液弹性系数随压力和温度的变化规律,该结果为数学模型和流场仿真提供了量化数据支持。根据油液弹性系数测试结果对流场仿真进行了优化,结果显示相同工况下柱塞泵流量脉动率的计算结果由5.8%提高到了17.8%,与18.6%的试验结果更为接近,优化结果大幅提高了流场仿真的计算精度,为柱塞泵流动特性分析提供了方法支持。在此基础上,首次对流量脉动的主要影响因素进行了量化分析,研究结果表明弹性脉动是流量脉动的主要形式,占脉动总量的88%左右,几何脉动影响次之(8%左右),泄漏脉动影响最小(4%左右),该分析结果为流体噪声控制的后续研究明确了方向。针对柱塞泵流体噪声的控制,对其关键元件配流盘进行了优化设计研究,在大量的试验和理论分析基础上,提出了配流盘低噪声结构优化参数的选择参考范围,为配流盘结构优化设计提供了参考。
     论文主要结构如下:
     第一章,指出了论文研究的目的和意义,对国内外主要的柱塞泵科研机构相关研究情况进行了调研,综述了该领域研究现状,在此基础上确定了博士学位论文研究课题研究的内容。
     第二章,分析了柱塞泵流体噪声的相关理论。建立了柱塞泵流动特性数学模型,优化了模型中的主要影响参数,为流体噪声产生机理分析提供了理论基础。针对流量脉动测试的基本原理,对比了串、并联两种泵源阻抗模型的性能特点,利用一阶平方根近似模型优化了泵源阻抗模型。
     第三章,针对柱塞泵复杂的内部流动特性进行了三维动态流场仿真,分析了油液弹性模型和粘性模型的影响,结果显示引入弹性模型后流量脉动特性的分析精度大幅度提高,弹性脉动是流量脉动的主要形式,占脉动总量的88%左右。对气穴现象研究发现,柱塞泵气穴发生位置通常在配流盘从低压向高压过渡阻尼槽的顶端周围。
     第四章,搭建了流量脉动测试平台,为数学模型和流场仿真结果提供了验证依据。
     第五章,试验研究了油液弹性模量,柱塞泵压力、流量脉动规律等流体噪声相关参数,试验证明了数学模型和流场仿真都具有很高的精度。分析了工作参数对流量脉动的影响。利用互相关函数法对油液的弹性系数进行了试验研究,揭示了油液弹性系数随压力和温度的变化规律。
     第六章,分析了配流盘结构包括配流盘进出口三角阻尼槽宽度角和深度角、阻尼槽顶端的小孔结构以及错配角和预压缩角对流体噪声的影响,提出了配流盘降噪结构的优化设计建议。
     第七章,总结了论文的主要研究工作,给出了主要的研究结论,指出博士学位论文研究课题的创新点,并对未来的研究工作进行展望。
Axial piston pump, the most important component in hydraulic systems, is widely used in industrial and construction machinery. Noise level, one of the three important performances of piston pump, becomes increasingly influential with the ever-increasing working performance and environmental concerns. The vast majority of piston pump noise is known as fluid-born noise, which is influenced by many factors with complex principles. The fluid-born noise of piston pump, which has been regarded as a challenge up to now, is responsible to decreasing reliability and lifecycle of pump. Therefore, it is necessary to study the mechanism of fluid-born noise generation and the corresponding noise control methods.
     In this thesis, the mechanism of fluid-born noise generation in axial piston pump was studied. The mathematical model of flow characteristics from piston pump was developed with distributed-parameter method. Wave propagation theory has been employed in this model, hence pressure pulsation characteristics can be evaluated in detail. The calculated results at pump discharge port using this model are more accurate than those using lamped-parameter model in pressure pulsation analysis. The errors of flow ripple and pressure pulsation can be controlled within 5% compared with experimental results, which is acceptable for theoretical analysis of flow characteristics. The influences of working pressure and temperature on fluid bulk modulus were examined by experimental results to improve the accuracy of simulation. Three-dimension (3D) dynamic simulation was adapted using compressible fluid model to obtain the flow field within the piston pump body. It was shown in simulation that the flow ripple rate of piston pump increased from 5.8% to 17.8% at the same boundary conditions, as a comparison with the experimental result of 18.6%. Thus the simulation accuracy has been significantly improved using the developed compressible fluid model. The influencing factors of flow ripple, including compression ripple together with leakage ripple and geometrical ripple, were analyzed in simulation using the compressible fluid model. It can be seen from simulation study that the compression ripple is the main part of flow ripple which accounts to 88% of the total. The remainder leakage flow ripple has the lowest proportion of 4%, and geometrical flow ripple takes the rest of 8%. In order to reduce the fluid-born noise level of piston pump, the optimization of valve plate structure was investigated. Based upon the theoretical and experimental analysis, the optimization ranges of the structure size were proposed, which could be used as a reference to design low noise level piston pump.
     In chapter 1, the aim and significance of the study in the thesis were discussed. The current research progresses on noise control of piston pump were reviewed. The main research subjects were presented.
     In chapter 2, the theoretical study of fluid-born noise was carried out. The mathematical model of flow characteristics of piston pump was developed, and important parameters in the model were modified based on the simulation and experimental analysis. Besides, theory on measurement of high frequency flow ripple was discussed. The impedance connection of piston pump being in series and in parallel was analyzed, and the accuracy of source impedance model was improved using first-order square approximation model.
     In chapter 3, 3D dynamic calculations have been preformed to obtain the flow field within the piston pump body. Both the compressible fluid model and viscidity fluid model were used in the simulation. It was shown in experimental results that the accuracy of flow ripple simulation increased greatly with the compressible fluid model. Among the three forms of flow ripple, including compression ripple together with leakage ripple and geometrical ripple, the compression ripple accounts to 88% of the total. Besides, cavitation of piston pump was investigated using full cavitation model, and it can be seen in simulation that the cavitational wear is most likely to be located on the valve plate surface around the top end of the damping groove connecting from low pressure kidney to high pressure kidney.
     In chapter 4, the flow ripple test rig of hydraulic pump was built, which was used for experimental study as compared with theoretical study using proposed mathematical model and flow field simulation.
     In chapter 5, fluid-born noise characteristics, including fluid bulk modulus, pressure pulsation and flow ripple, were measured. With the experimental results, it can be seen that the accuracy of mathematical model and flow field simulation was both acceptable. The influences of flow ripple amplitude and flow ripple rate were analyzed by employing mathematical evaluation, simulation study and experimental measurement separately. Besides, the method of cross-correlation function was used to measure the fluid bulk modulus, which was affected both by working pressure and temperature.
     In chapter 6, the relationship between the structure of valve plate and the fluid-born noise parameters was analyzed. The optimization ranges of the structure size were proposed, which could be used as a reference to design the low noise level piston pump.
     In chapter 7, conclusions in this thesis were summarized and future research proposals were suggested.
引文
[1]路甬祥.液压气动技术的进展[J].国际学术动态,1994(3):64-68.
    [2]王益群,张伟.流体传动及控制技术的评述[J].机械工程学报,2003.39(10):95-99.
    [3]成俊兰,吴晓明.21世纪的液压技术发展展望[J].通用机械,2003(3):13-14.
    [4]史维祥.流体传动及控制的现状及新发展(续2)[J].流体传动与控制,2004(2):6-12.
    [5]T.Hirohisa.Fluid power control technology-present and near future[J].JSME International Journal (Series C),1994.37(4):629-637.
    [6]曾祥荣.液压噪声控制[M].哈尔滨工业大学出版社,1988.5.
    [7]马大猷.声学与人的生活质量[J].噪声与振动控制,2001(6):2-6.
    [8]张林.噪声及其控制[M].哈尔滨:哈尔滨工程大学出版社,2002.
    [9]吕玉恒.国内噪声控制近况评述[J].噪声与振动控制,2001(6):14-17.
    [10]孙新学,苏曙,周玉平.工程机械液压技术发展综述[J].液压与气动,2001(3):3-7.
    [11]司癸卯,魏立基.液压系统振动与噪声的分析与对策[J].液压与气动.1999(2):8-9.
    [12]郜立焕,王佃武,生凯章.液压系统振动与噪声的原因分析[J].液压与气动,2005(12):73-74.
    [13]章宏甲,黄谊.液压传动[M].北京:机械工业出版社,2000.9.
    [14]http://www.ifas.rwth-aachen.de/index_e.html.
    [15]A.Palmen.Noise reduction of an axial piston pump by mean of structural modification[J].O+P.48,2004.Nr.4.
    [16]M.Deeken.Simulation of the reversing effects of axial piston pumps using conventional CAE tools[J].(O|¨)lhydraulik und Pneumatik.O+P.46,2002.Nr.6.
    [17]M.Deeken.Simulation of the tribological contacts in an axial piston machine[J].(O|¨)lhydraulik und Pneumatik.O+P.47,2003.Nr.11-12.
    [18]M.Deeken.Displacement unit simulation in DSHplus[J].lhydraulik und Pneumatik.(O|¨)lhydraulik und Pneumatik.O+P.39,2001.Nr.2.
    [19]W.Wustmann,S.Helduser,W.Wimmer.CFD-simulation of the reversing process in external gear pumps[C]//6~(th) international fluid power conference,TU Dresden,Apr.1-2,2008(2):455-468.
    [20]S.Gold,S.Helduser,W.Wustmann.Experimental and numerical investigations of suction performance of pumps[C]//6~(th) international fluid power conference,TU Dresden,Apr.1-2,2008.
    [21]D.Becher,S.Helduser.Innovation pump design to reduce pressure pulsations of axial piston pumps[J].Workshop on power transmission and motion control,Transactions of the ASME,2000:127-138.
    [22]D.Becher.Untersuchungen an einer axialkolbenpumpe mit ringsystem zur mingerung von pulsationen[D].TU Dresden,2004.
    [23]K.A.Edge,J.Darling.The cylinder pressure transients in oil hydraulic pumps with sliding plate valve[C]//Proceeding of the Institution of Mechanical Engineers,Pate B-Journal of Management and Engineering Manufacture,1986.200(B1):45-54.
    [24]K.A.Edge,J.Darling.The pumping dynamics of swash plate piston pumps[J].Journal of Dynamic System Measurement and Control-Transactions of the ASME,1986.111(2):307-312.
    [25]K.A.Edge.Designing Quieter Hydraulic Systems-Some Recent Developments and Contributions[C]// Proceedings of the 4th JHPS International Symposium,1999.
    [26]R.M.Harris,K.A.Edge,D.G Tilley.Suction dynamics of positive displacement axial piston pumps[J].Journal of Dynamic Systems,Measurement and Control.1994.116(2):281-287.
    [27]M.E.Pettersson,K.G Weddfelt,J.O.S Palmberg.Methods of Reducing Flow Ripple from Fluid Power Pumps-A Theoretical Approach[J].SAE Transactions,1991.100(2):158-167.
    [28]A.Johansson,J.O.Palmberg,K.E Rydberg.Cross angle-a design feature for reducing noise and vibrations in hydrostatic piston pumps[C]// The Fifth International Conference on Fluid Power Transmission and Control,2001.
    [29]A.M.Harrison.Reduction of axial piston pump pressure ripple[C]// Proceedings of the institution of mechanical engineers,Part I-Journal of system and control engineering,2000(214):53-63.
    [30]A.Johansson,L.D.Blackman.Prediction of Pump Dynamics Utilizing Computer Simulation Model-With Special Reference to Noise Reduction[C]// Proceeding at SAE International Off-Highway & Power plant,Milwaukee,Sep.1 1-13,2000.
    [31]K.Weddfelt,M.Pettersson.A General Simulation Program for Flow Ripple of Axial Piston Machines[R].An Application Program to HOPSAN.Model manual,Division of Fluid and Mechanical Engineering Systems.Linkopings University,Sweden,1997.
    [32]A.Johansson.Noise Reduction of Piston Pumps-a Simulation Approach[D].Mechanical Engineering Systems.Link5ping University,Sweden,2000.
    [33]C.Huang.CASPAR based slipper performance prediction in axial piston pumps[C]// Proceedings of 3rd FPNI-PhD symposium on Fluid Power.Terassa.Spain,2004:229-238.
    [34]I.Monika.A new approach to the design of sealing and bearing gaps of displacement machines[C]// 4th JHPS International Symposium on Fluid Power.Tokyo.Japan,1999.
    [35]I.Monika,C.Huang.Thermal analysis in axial piston machines using CASPAR[C]// Proceedings of the Sixth International Conference on Fluid Power Transmission and Control.Hangzhou.China.2005.
    [36]U.Wieczorek,I.Monika.CASPAR-a computer aided design tool for axial piston machines[C]//Proceedings of the Bath Workshop on Power Transmission and Motion Control PTMC,2000.
    [37]C.Huang,I.Monika.A new approach to predict the load carrying ability of the gap between valve plate and cylinder block[C]// Proceedings of Bath Workshop on Power Transmission and Motion Control(PTMC).Bath,2003:225-239.
    [38]I.Monika,R.Lasaar.An investigation into micro-and macrogeometric design of piston/cylinder assembly of swash plate machings[J].International Journal of Fluid Power,2004:23-36.
    [39]R.Lasaar,I.Monika.Advanced gap design-basis for innovative displacement machines[C]//Proceedings of 3rd Internationales Fluidtechnisches Kolloquium.Aachen.Germany,2002:215-230.
    [40]I.Monika,C.Huang.Investigation of the gap flow in displacement machines considering elastohydrodynamic effect[C]// Fifth JHPS International Symposium on Fluid Power.Tokyo.Japan,2002:219-229.
    [41]R.Lasaar.The influence of the microscopic and macroscopic gap geometry on the energy dissipation in the lubricating gaps of displacement machines[C]//Proceedings of 1st FPNI-PhD Symposium Hamburg,2000:101-116.
    [42]R.Lasaar,I.Monika.Gap geometry variations in displacement machines and their effect on the energy dissipation[C]//Proceedings of 5th International Conference on Fluid Power Transmission and Control (ICFP'2001).Hangzhou.China,2001:296-301.
    [43]N.D.Manring,Yihong Zhang.The Improved Volumetric-Efficiency of an Axial-Piston Pump Utilizing a Trapped-Volume[J].Journal of Dynamic Systems,Measurement and Control,Transaction of the ASME,Sep.2001(123):479-487.
    [44]N.D.Manring.Tipping the Cylinder Block of an Axial-Piston Swash-Plate Type Hydrostatic Machine[J].Journal of Dynamic Systems,Measurement and Control,Transaction of the ASME,Mar.2000(122):216-221.
    [45]N.D.Manring.Zhilin Dong.The Impact of Using a Secondary Swash-Plate Angle Within an Axial Piston Pump[J].Journal of Dynamic Systems,Measurement and Control,Transaction of the ASME,Mar.2004(126):65-74.
    [46]N.D.Manring,S.B.Kasaragadda.The Theoretical Flow Ripple of an External Gear Pump[J].Journal of Dynamic Systems.Measurement and Control,Transaction of the ASME,Sep.2003,125:396-404.
    [47]E.Kojima,N.Hyodo.Characteristics of fluidborne noise generated by a fluid power pump(1st report,Mechanisms of generation of pressure pulsations in axial piston pump)[J].Bulletin of the JSME,Jan.1982,25(199):46-53.
    [48]E.Kojima.Experimental determining and theoretical predicting of source flow ripple generated by fluid power piston pumps[J].SAE International Off-Highway and Power plant Congress and Exposition,Milwaukee,USA.SAE Special Publ.Topics in Hydraulics SP-1554,2000:73-82.
    [49]E.Kojima,M.Shinada.Characteristics of fluid borne noise generated by a fluid power pump(4th report,pressure ripple in hydrostatic power transmission)[J].Bulletin of the JSME,1986,29(258):4147-4155.
    [50]那成烈.旋转配流盘调节排量的轴向柱塞泵配流冲击特性[J].甘肃工业大学学报,1989.15(3):1-11.
    [51]那成烈,范春行.轴向柱塞泵气穴振动问题研究[J].液压与气动,1992(4):20-23.
    [52]那成烈.三角槽节流口面积的计算[J].甘肃工业大学学报,1993.19(2):45-48.
    [53]邢科礼,那成烈.轴向柱塞泵配流盘减振结构对压力特性的影响[J].甘肃工业大学学报,1995.21(3):35-39.
    [54]邢科礼,那成烈.轴向柱塞泵配流盘减振结构对压力流量的影响[J].机械研究与应用,1997.10(1):10-13.
    [55]那成烈.轴向柱塞泵可压缩流体配流原理[M],北京:兵器工业出版社,2003.1.
    [56]赵弘,那成烈.遗传算法在轴向柱塞泵配流盘结构优化设计中的应用[J].机床与液压,2001(5):112-113,104.
    [57]那焱青,那成烈 等.轴向柱塞泵配流盘液压支承力的计算[J].甘肃工业大学学报,2003.29(2):53-55.
    [58]那成烈,尹文波.可压缩流体工作介质情况下轴向柱塞泵配流盘设计[J].甘肃工业大学学报,2002.28(4):65-67.
    [59]那成烈.低噪声轴向柱塞泵的配流方法及配流盘结构[P],专利号:CN91111998.1,1993.7.7.
    [60]余经洪,陈兆能.液压柱塞泵的噪声控制[J].液压与气动,1991(4):18-22.
    [61]邱泽麟,陈兆能.柱塞泵配流冲击分析与实验研究[J].上海交通大学学报,1992.26(4):20-27.
    [62]陈兆能,陆元章.液压柱塞泵流量脉动测试的试验研究[J].机床与液压,1992(4):187-193.
    [63]余经洪,陈兆能.液压泵流量脉动特性的精确评定[J].机床与液压,1993(4):217-223.
    [64]邱泽麟,陈兆能.柱塞泵柱塞腔内压力瞬变过程的实验研究[J].液压与气动,1990(1):29-31.
    [65]余经洪,陈兆能.液压柱塞泵配流过程的理论模型及参数辨识[J].上海交通大学学报,1992.26(4):28-33.
    [66]邱泽麟,陈兆能.轴向柱塞泵配流盘阻尼结构降噪特性的理论分析与实验研究[J].机床与液压,1989(5):22-27.
    [67]王宝华,闻德生.一种新型噪声控制方法[J].重型机械,1994(2):57-60.
    [68]闻德生,潘景异 等.开路式变量轴向柱塞泵噪声控制方法[J].机床与液压,2004(10):137-138,65.
    [69]闻德生,潘景异 等.轴向柱塞泵配油窗口面积对转速和噪声的影响[J].机床与液压,2003(5):115-116,268.
    [70]卢义敏,周华,杨华勇.纯水液压泵配流盘的仿真研究[J].液压与气动,2005(7):56-57.
    [71]艾青林,周华,杨华勇.轴向柱塞泵配流副润滑特性试验系统的建立及仿真研究[J].煤炭学报,2004,29(6):731-735.
    [72]艾青林,周华.轴向柱塞泵配流副与滑靴副润滑特性试验系统的研制[J].液压与气动,2004(11):22-25.
    [73]艾青林.轴向柱塞泵配流副润滑特性的试验研究[D].浙江大学,2005.
    [74]焦素娟.纯水液压柱塞泵及溢流阀关键技术的研究[D].浙江大学,2004.
    [75]李佳鑫.纯水轴向柱塞泵的研究[D].浙江大学,2001.
    [76]王彬,周华.轴向柱塞泵配流副油膜成型及其预测方法[J].润滑与密封,2007(11):170-176.
    [77]冀宏.液压阀芯节流槽气穴噪声特性的研究[D].浙江大学,2004.12.
    [78]冀宏,傅新,杨华勇等.柱塞泵阻尼槽噪声特性研究.浙江大学学报:工学版,2005.3(5):609-613.
    [79]I.Z.Zaichenko,A.D.Boltyanskii,Reducing noise levels of axial piston pumps[J].Russ.Engine J,1969,XLLX4.
    [80]K.Yamauchi,T.Ymamoto,Noise generated by hydraulic pump and their control method[R].Mitsubishi heavy industries technical report,Tokyo.1975,12.4.
    [81]D.E.Bowns,K.A.Edge,D.G.Tilley.The assessment of pump fluid borne noise[C]//I.Mech.E.Conf.-Quiet Oil Hydraulic Systems,London,Nov.1977.
    [82]D.E.Bowns,K.A.Edge,D.McCadlish.Factors affecting the choice of a standard method for the determination of pump pressure ripple[C]//I.Mech.E.seminar-Quieter Oil Hydraulics,London,Oct.1980.
    [83]K.A.Edge,T.J.Wing.Measurement of the fluid borne pressure ripple characteristics of hydraulic components[C]//Proceedings of the Institution of Mechanical Engineers,Part B:Management and Engineering Manufac,1983(197):247-254.
    [84]K.A.Edge,F.J.T.Freitas.Study of pressure fluctuations in the suction lines of positive displacement pumps[C]// Proceedings of the Institution of Mechanical Engineers,Part B:Management and Engineering Manufacture,1985,199(B4):211-217.
    [85]K.A.Edge,D.N.Johnston.The secondary source method for the measurement of pump pressure ripple characteristics 2.Experimental results[C]//Proceedings of the institution of mechanical engineers part A-journal of power and energy,1990,204(1):41-46.
    [86]D.N.Johnston,J.E.Drew.Measurement of positive displacement pump flow ripple and impedance[C]//Proceedings of the Institution of Mechanical Engineers.Part Ⅰ,Journal of Systems & Control Engineering,1996,210(1):65-74.
    [87]D.N.Johnston.Measurement and prediction of the fluid borne noise characteristics of hydraulic system[D].UK:University of Bath,1987.
    [88]International Standard.Hydraulic Fluid Power-Determination of Pressure Ripple Levels Generated in System and Components[S],1999.ISO 10767-1-1996.
    [89]K.A.Edge,J.Darling.A theoretical model of axial piston pump flow ripple[C]//Design modelling and control of pumps/First Bath International Fluid Power Workshop,Sep.8th 1988.:113-136.
    [90]K.Weddfelt.Measurement of pump source characteristics by the two-microphone method[C]//The second Tampere international conference on fluid power,Tampere Finland,March 1991.
    [91]L.Ericson.Measurement system for hydrostatic pump flow pulsations[D].Sweden:Link(o|¨)pings Universitet,2005.
    [92]A.Johansson.Design principles for noise reduction in hydraulic piston pumps-simulation,optimization and experimental verification[D].Sweden:Link(o|¨)pings Universitet,2005.
    [93]C.Paolo,V.Andrea.Modeling of an axial piston pump for pressure ripple analysis|C]//The eighth scandinavian international conference on fluid power SICFP'03,Tampere,Finland,May 7-9,2003.
    [94]C.Paolo,V.Andrea,L.B.Gian.Potentials of a numerical tool for the simulationof flow in external gear machines[C]// The Tenth Scandinavian International Conference on Fluid Power SICFP'07,Tampere,May 21-23,2007.
    [95]李小宁.降低斜盘型轴向柱塞泵噪声的理论和实验研究[D].哈尔滨:哈尔滨工业大学,1984.
    [96]邱泽麟.轴向柱塞泵流体噪声与振动研究及降噪、诊断应用[D].上海:上海交通大学,1988.
    [97]余经洪.柱塞泵动态模型与降噪[D].上海:上海交通大学,1990.
    [98]刘小华.斜盘式轴向柱塞泵流量脉动的理论和实验研究[D].安徽:淮南工业学院,1998.
    [99]郭卫东,王占林.斜盘式轴向柱塞泵实际流量的分析研究.北京航空航天大学学报,1996.4,22(2):223-227.
    [100]卢菊仙.飞机液压油源脉动分析与消振研究[D].北京航空航天大学,2006.
    [101]O.Meincke,R.Rahmfeld.Measurements,analysis and simulation of cavitation in an axial piston pump[C]//6th international fluid power conference Dresden,Apr.1-2,2008 vol(2):485-499.
    [102]王福军.计算流体动力学分析-CFD软件原理与应用[M],北京:清华大学出版社,2004.9.
    [103]朱自强.应用计算流体力学[M],北京:北京航空航天大学出版社,1998.8.
    [104]陶文铨.数值传热学[M],西安:西安交通大学出版社,1988.3.
    [105]S.V.帕坦卡 著,张政 译.传热与流体流动的数值计算[M],北京:科学出版社,1984.
    [106]钟英杰,都晋燕,张雪梅.CFD技术及其在现代工业中的应用[J].浙江大学学报,2003.31(3):284-289.
    [107]姚征,陈康民.CFD通用软件综述.上海理工大学学报[J],2002.24(2):137-144.
    [108]C.R.Burrows.Fluid power technology-progress or plateau[C]//The Sixth International Conference on Fluid Power Transmission and Control,2005(3):16-25.
    [109]邓斌,陶文铨.管壳式换热器壳侧湍流流动与换热的三维数值模拟[J].化工学报,2004.55(7):1053-1059.
    [110]何雅玲,陶文铨 等.脉管制冷机性能数值模拟方法的研究进展及发展方向[J].工程热物理学,2004.25(1):9-12.
    [111]邓斌,陶文铨.管壳式换热器壳侧湍流流动的数值模拟及实验研究[J].西安交通大学学报,2003.37(9):889-893,924.
    [112]Craig Hornsby.CFD-driving pump design forward[J].World Pumps,2002(8):18-22.
    [113]Y.Qian.CFD Application in Implantable Rotary Blood Pump Design and Validation[J].Journal of Shanghai University(Natural science edition),2004.10(z1):194-197.
    [114]J.Plutecki,J.Skrzypacz.CFD simulations of 3D flow in a pump stator with a spherical surface.[J]World Pumps,2003(443):28-31.
    [115]F.Moukalled,A.Honein.Computer-aided analysis of hydraulic pumps[J].International Journal of Mechanical Engineering Education,1999.27(4):293-310.
    [116]J.V.Voorde,J.Vierendeels,E.Dick.Flow simulations in rotary volumetric pumps and compressors with the fictitious domain method[J].Journal of Computational and Applied Mathematics,2004(168):491-499.
    [117]王福军,黎耀军 等.水泵CFD应用中的若干问题与思考[J].排灌机械,2005.23(5):1-10.
    [118]王福军.CFD在水力机械湍流分析与性能预测中的应用[J].中国农业大学学报,2005.10(4):75-80.
    [119]王艳珍,于兰英 等.水压锥阀流场的CFD解析[J].机械,2003.30(5):20-22.
    [120]袁冰,于兰英等.液压滑阀阀芯旋转现象的CFD解析[J].机床与液压,2006(3):131-134.
    [121]冀宏,傅新,杨华勇.非全周开口滑阀稳态液动力研究[J].机械工程学报,2003.39(6):13-17.
    [122]刘荣,王宣银.GPCM控制阀内流道流场仿真.农业机械学报,2005.36(4):72-74.
    [123]石娟,姚征,马明轩.调节阀内三维流动与启闭过程的数值模拟及分析[J].上海理工大学学报,2005.27(6):498-502.
    [124]郑淑娟,权龙,雷红霞.插装型液压锥阀内部流场的数值模拟及可视化分析[J].流体传动与控制,2005.2(2):18-22.
    [125]练永庆,吴朝晖,王树宗.基于CAD模型的液压圆锥阀流量系数的数值计算[J].机床与液压,2002(1):71-72.
    [126]P.E.Wiklund.Suction dynamic of axial piston pumps[D].Sweden:Royal Institute of Technology,KTH,1998.
    [127]陈春,聂松林 等.海水轴向柱塞马达偏心配流盘的研究[J].机床与液压,2005(8):53-55,43.
    [128]邓斌.水压轴向柱塞泵的特性研究与分析[D].西南交通大学,2004.
    [129]林静,孙明智.轴向柱塞泵配流盘结构对流量脉动的影响[J].液压与气动,2007(2):32-35.
    [130]诸葛辉,邓斌.基于CFD中压柱塞泵流道优化研究[J].流体传动与控制,2007,21(2):10-12.
    [131]孙明智,柯坚.轴向柱塞泵吸油腔的CFD解析[J].流体传动与控制,2007,2l(2):16-18.
    [132]K.A.Edge,J.Darling.A theoretical model of axial piston pump flow ripple[C]//Design modelling and control of pumps/First Bath International Fluid Power Workshop,Sep.8th 1988:113-136.
    [133]I.Jaroslav,I.Monika.Hydrostatic pumps and motors[M].Inadia:Akademia books international,2001.
    [134]G.Sanchen.Auslegung von axialkolbenpumpen in schr(a|¨)gscheibenbauweise mit hilfe der numerischen simulation[D].Aachen University,2003.
    [135]盛敬超.液压流体力学[M].北京:机械工业出版社,1979.3.
    [136]K.A.Edge,D.N.Johnston.A new method for evaluation the fluid borne noise characteristics of positive displacement pumps[C]//7~(th) international fluid power symposium,Bath,Sep.16-181986:253-260.
    [137]蔡亦钢.流体传输管道动态过程的基础研究及应用[D].浙江大学,1989.10.
    [138]温诗铸,杨沛然.弹性流体动力润滑[M].清华大学出版社,1992.
    [139]N.D.Manring.Hydraulic control systems[M].Includes bibliographical reference and index(ISBN 0-471-69311-1),2004.
    [140]李静.基于CFD的轴向柱塞泵配流特性研究[D].杭州:浙江大学,2005.5.
    [141]A.K.Singhal,H.Y.Li,M.M.Athavale.Mathematical basis and validation of the full cavitation model[J].ASME Journal of Fluids Engineering,2002,124(3):617-624.
    [142]M.M.Athavale,H.Y.Li,Y.Jiang.Application of the full cavitation model to pumps and inducers[J].International Journal of Rotating Machinery,2002(2):45-56.
    [143]A.K.Singhal,N.Vaidya,A.D.Leonard.Multi-Dimensional Simulation of Cavitating Flows Using a PDF Model for Phase Change[C]//FEDSM97-3272,1997 ASME Fluids Engineering Division Summer Meeting,Vancouver,British Columbia,Canada,June 22-26,1997.
    [144]翟培祥.斜盘式轴向柱塞泵[M].北京:煤炭工业出版社,1978.
    [145]朱云辉,朱秀清.互相关虚拟测速仪的试验分析[J].仪器仪表用户,2006 13(3):108-109.
    [146]蔡少川,施文康,毕浩然.互相关测速虚拟仿真的实验方法[J].实验室研究与探索,200625(10):1197-1198,1207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700