Cr13马氏体不锈钢方坯保护渣的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为解决攀长钢Cr13不锈钢小方坯连铸坯因表面凹陷及微裂纹引起的表面质量问题,调研国内外不锈钢结晶器保护渣应用情况,研究保护渣主要性能以及连铸工艺对铸坯表面质量的影响。结合Cr13不锈钢的高温特性和小方坯连铸的特点,考虑攀长钢铸机参数和相关连铸生产工艺条件,开展了攀长钢Cr13不锈钢小方坯连铸用保护渣的研究。
     ①利用DIL402C热膨胀分析仪、STA449C同步热分析仪和Gleeble-1500D热模拟试验机测试Cr13不锈钢中2Cr13钢的线性膨胀系数、主要相变温度以及高温力学性能等高温特性,分析Cr13不锈钢高温性能对铸坯表面质量的影响和铸坯表面凹陷以及微裂纹产生的机理,确定Cr13不锈钢用保护渣应重点考虑传热性能。
     ②基于Cr13不锈钢小方坯连铸对保护渣性能的要求,在实验室设计出CaO-SiO2-Na2O-F--MgO-BaO-MnO-Al2O3渣系,研究保护渣的主要组成范围为:R=0.65~1.05、Na2O=4~12%、F-=0~4%、MgO=0~6%、BaO=0~8%、MnO=0~6%,其中Al2O3=1%,研究各主要调整组分及含量与熔化温度、粘度和转折温度的影响关系。
     ③自行研究和设计测试保护渣渣膜导温系数的模拟装置,研究保护渣渣膜导温系数与温度变化的关系。利用X衍射仪和显微观察对从渣膜导温模拟装置上取得的渣膜进行较为全面的矿相和显微结构特征研究分析,并研究保护渣组分对矿相结构及其传热性能的影响。
     ④确定适宜于攀长钢Cr13不锈钢小方坯连铸用保护渣的组成主要包括CaO、SiO2、Na2O、CaF2、MgO、MnO,保护渣性能如碱度R= [(∑CaO)/SiO2]=0.75,T半=1151±5℃、η1300℃=0.57±0.05Pa·s,Tb=1205±5℃。现场试验证明研究的保护渣所浇Cr13不锈钢铸坯因表面凹陷及微裂纹产生的铸坯返修率比其现用保护渣降低了15%,大大地提高了金属收得率和企业的经济效益。由此证明设计的保护渣能够满足攀长钢Cr13不锈钢小方坯连铸工艺要求。
In order to solve surface depression and cracks on Cr13 stainless steel billet in Panchanggang I&S Co., domestic and overseas application of mold fluxes for stainless steel has been investigated., effect of mold fluxes and continuous casting process on surface quality of billet has also been studied. Considering the properties and performances of stainless steel at high temperature, the characteristics of Cr13 stainless steel billet casting, the parameters of continuous caster and manufacturing process in Panchanggng I&S Co., a research of mold fluxes used in Cr13 stainless steel billet casting has been carried out.
     ①The DIL402C thermal dilatometer, STA449C thermal analyzer, the type Gleeble-1500D thermal simulation testing machine were employed to test the linear expansion coefficient, major phase change temperature, mechanic properties at high temperature of 2Cr13. The effect of these properties at high temperature on surface quality of billet and the mechanism of surface depression and crack formation on billet were analyzed. The study showed that heat transfer performance of mold fluxes for Cr13 stainless steel was vitally important.
     ②Considering the requirement of mold fluxes for Cr13 stainless steel billet casting, the slag system of CaO-SiO2-Na2O-F--MgO-BaO-MnO-Al2O3 was designed. The bacisity of fluxes is 0.65~1.05. Na2O%, F-%, MgO%, BaO%, MnO% in mold fluxes were respectively controlled in 4~12%, 0~4%, 0~6%, 0~8%, 0~6%, and Al2O3% is arranged in 1%. The relationships between components and melting temperature, viscosity, breaking temperature had been studied.
     ③The simulation setting used for testing coefficient of temperature conductivity was designed and used to study relationship between coefficient of temperature conductivity of mold fluxes film and temperature. By utilizing the X-ray diffractometer and microscopicexamination, the mineralographic composition and microscopic characteristics of mold fluxes film obtained from simulation setting were investigated in detail. The effect of components on microscopic characteristics and heat transfer performance of mold fluxes film has been analyzed.
     ④The research results suggested that the chemical compositions of mold fluxes for Cr13 stainless steel billet casting in Panchanggang I&S Co. could mainly consist of CaO, SiO2, Na2O, CaF2, MgO, MnO. The basicity( R= [(∑CaO)/SiO2] ) can be
引文
[1] 日本媒体.2005 年国际不锈钢回顾及新年展望[EB/OL]. http://www.steelmy.com/alibaba/wen.asp?id=87654, 2006-02-09/2006-02-10.
    [2] Pinheiro C A,Samarasekeral I V and Brimacombe J K. Mold Fluxes for Continuous Casting of Steel[J]. Iron and Steel Maker,1995,22(4):45-47.
    [3] K.C.Mills, A.B.Fox, Z. Li, R.P.Thackray, Performance and properties of mould fluxes[J]. Ironmaking and Steelmaking, 2005,32 (1): 26-34.
    [4] K.C.Mills, A.B.Fox. Mould Fluxes[J]. High Temperature Materials and Processes, 2004, 22 (5-6): 291-301.
    [5] 迟景灏,甘永年.连铸保护渣[M].沈阳:东北大学出版社:1992.
    [6] 成泽伟.结晶器内保护渣性能对圆坯表面质量的影响[D].北京:北京科技大学硕士学位论文.2001.
    [7] Robert G. Hill, Nisha Da Costa, Robert V. Law. Characterization of a mould Flux glass[J]. Journal of Non-Crystalline Solids,2005,351:69-74.
    [8] Kenneth C. MILLS, Alistair B. FOX. The Role of Mould Fluxes in Continuous Casting-So Simple Yet So Complex[J]. ISIJ International, 2003, 43 (10):1479-1486.
    [9] Akira Yamauchi, Kenichi Sorimachi, Toshikazu and Tetsuya Fujii. Heat Tranfer between Mold and Stand through Mold Flux Film in Continuous Casting of Steel[J]. ISIJ International, 1993,33 (1):140-147.
    [10] K.C.Mills, L.Courtney, A.B.Fox, B.Harris, Z.Idoyaga, M.J.Richardson. The Use of Thermal Analysis in the Determination of the Crystalline Fraction of Slag Films[J].Thermochimica Acta,2002,391(1-2):175-184.
    [11] WanLin WANG, Alan W. CRAMB. The Observation of Mold Flux Crystallization on Radiative Heat Transfer[J]. ISIJ International, 2005, 45 (12):1864–1870.
    [12] Toshihiko Emi, Hasse Fredriksson. High-speed continuous casting of peritectic carbon steels[J]. Materials Science and Engineering, 2005,413-414(A):2-9.
    [13] Horst Abatis. Eiusatz vou uuterschiedlichen Giebpulvevn beim stranggieBen Vou vorblocken und knuppeln[J],Stahl und Eisn,1996,(4):85
    [14] 艾国强. 碳质材料对连铸保护渣熔化性能的影响[J].甘肃冶金,2000,(3):13-17.
    [15] Saraswat, Rajil, K.C.Mills, A.B.Fox, P.D.Lee, B.Deo. The factors affecting powder consumption of mould fluxes.Scandinavian Journal of Metallurgy[J],2004,33(2):85-91.
    [16] 曾建华.高碳钢大方坯连铸用保护渣的研究[D].重庆:重庆大学硕士学位论文.2003.
    [17] W. Kingori. 连铸结晶器保护渣的熔化速率[J].WISCO TECHNOLOGY.1994,6:36-42.
    [18] S.Sridhar, K.C.Mills, S.T.Mallaband. Powder consumption and melting rates of continuous casting fluxes[J]. Ironmaking and Steelmaking, 2002,(29) 3 194-198.
    [19] 刘承军,等.连铸保护渣的熔化温度、凝固温度和结晶温度研究[J].炼钢.2001.17(1):43-47.
    [20] 艾国强,金山同.助熔剂对保护渣熔化温度的影响[J].炼钢,1999,15(6):49-52.
    [21] 董金刚,王谦,迟景灏.高碱性高玻璃化连铸保护渣组成与性能关系及其应用[J].炼钢,1999.15(3):34-37.
    [22] K.C.Mills, S.Sridhar. Viscosity of ironmaking and steelmaking slags[J]. Ironmaking and Steelmaking.1999, 26(4):262-268.
    [23] G.A.Bezuidenhout, P.C.Pistorius. Effect of alumina pickup on mould flux viscosity in continuous slab casting[J]. Ironmaking and Steelmaking, 2000,27(5):387-391.
    [24] Miyuki HAYSHI, Riad ABDUL ABAS, Seshadri SEETHARAMAN. Effect of Crystallinity on Thermal Diffusivities of Mould Fluxes for the Continuous Casting of Steels[J].ISIJ International,2004,44(4):691-697.
    [25] K.C.Miils, M.Susa, M.J.Richardson. Enthalpy Relaxation in Organic and Inorganic Glasses[J]. Thermochimica Acta, 1996, 280/281(1):383-392.
    [26] 浙江大学,武汉工业大学等.硅酸盐物理化学[M].北京:中国建筑工业出版社,1987.
    [27] 饶东升.硅酸盐物理化学[M].北京:冶金工业出版社,1990.
    [28] Hooli, Paavo. Mould Flux Film between Mould and Steel Shell - Effect on Heat Flux and Defect Formation[J]. Steel Research.2003,78:480-484.
    [29] 王宝峰,麻永林,丁国,等.大方坯连铸过程中铸坯传热及凝固行为的研究[J].包头钢铁学院学报.2002,21(2):121-126
    [30] Jung wook CHO,Hiroyuki SHIBATA,Toshihiko EMI, Mikio SUZUKI. Thermal Mold for Resistance at the Interface between Mold Flux Film and Continuous Casting of Steels[J],ISIJ International. 1998,38(5):440-446.
    [31] Koichi TSUTSUMI, Tetsuya NAGASAKA, Mitsutaka HINO. Surface Roughness of Solidified Mold Flux in Continuous Casting Process[J].ISIJ International, 1999,39 (11):1150-1159.
    [32] P.V. Riboud et al. Lubrication and Heat transfer in Mold of Continuous Casting. Open Hearth and Basic Oxygen Conf[J]. Proceedings,1979,62:78-92.
    [33] 陈显君.连铸结晶器保护渣高温传热特性的研究[D].重庆:重庆大学硕士学位论文.1998.
    [34] 谢兵.连铸结晶器保护渣相关基础理论的研究及其应用实践[D].重庆:重庆大学博士学位论文.2004.
    [35] K.C. Coto et al. Comparison of the Laser–flash Method and Hot-wire Method for Measuring Thermal Conductivity from Metallurgical Slags[J]. Transaction ISIJ,1985,25:283.
    [36] R.Taylor et al. Physical Properties of Casting powders: Part3. Thermal Conductivities of Casting Powders[J]. Ironmaking and Steelmaking, 1988, 15(4):187-179.
    [37] M.S. Jeakins. Characterization of heat transfer in a CC mold[J]. Steelmaking Conference Proceedings, 1995:315.
    [38] M.S. Jenkis. Characterization and Modification of the heat transfer performance of mold powders[J]. Steelmaking Proceedings,1995:669.
    [39] A.C. Mikrovas et al. Heat transfer characteristics of molten slag[J].Ironmaking and Steelmaking, 1991,18(3):169.
    [40] T. E. Gammal et al. Ermittlung Der Armeloitfahigkeit in Synthetischen Giepulerem[J]. Steel Research, 1986,(12):620.
    [41] S. Ohmiya et al. Heat transfer through layers of casting fluxes[J]. Ironmaking and Steelmaking, 1983, 10(1):24.
    [42] 张平.连铸结晶器中保护渣渣膜传热的研究[D].重庆:重庆大学硕士学位论文, 1994.
    [43] 胡建军.连铸结晶器中保护渣渣膜传热性能的实验研究[D]. 重庆:重庆大学硕士学位论文, 1998.
    [44] 陆世英,张廷凯,杨长强,等.不锈钢[M].北京:原子能出版社,1998.
    [45] Lejtes A.V, Kan Yu.N, Zubarev O.I. Improvement in quality of continuously cast billets from chromium stainless steel[J]. Metallurg, 1998,(3):20.
    [46] 高泽平.合金钢方坯连铸技术[J].湖南冶金,2001,(5):25-29.
    [47] 闫欣,王贺利.2Cr13 板坯表面纵裂原因分析及防止措施[J].太钢科技,2004,(2):37-40.
    [48] 蔡开科,潘毓淳,赵家贵.连续铸钢 500 问[M].北京:冶金工业出版社,1994:183-244.
    [49] 石德柯.材料科学基础[M].北京:机械工业出版社,1998.
    [50] 崔忠圻.金属学与热处理[M].北京:机械工业出版社,1997.
    [51] 吴巍,刘浏,韩志军.不锈钢连铸工艺的研究[J].钢铁,2004,39(增刊):561-565.
    [52] 杨建川.不锈钢的连铸技术[J].南方钢铁,1998,(2):34-38.
    [53] M.wolf.杨亮译,李建民校.减少 304 型不锈钢连铸板坯上的凹陷[J].太钢译文,2003,(4):32-38.
    [54] 周书才.马氏体不锈钢连铸实践[J].四川冶金,2002,(6):19-21.
    [55] M.wolf. On surface depression formation of continuously cast austenitic stainless steels. Concast Stainless Steel Seminar[J]. Zurich.1985.
    [56] Dr.M.WOLF. 连续铸钢专题技术讲座[M].北京:中国金属学会连续铸钢学会,1986:168-195.
    [57] 郑群.不锈钢板坯连铸技术特点[J].上海宝钢工程设计,2004,(2):43-48.
    [58] Okimori Mayumi, Fukuda Yoshimori. Improvement of surface quality of austenitic stainless steel[J].Nippon Steel Technical Report, n, January, 2003, 87 (1):62-66.
    [59] 张兰.18-8 不锈钢连铸坯凝固特点及表面质量的改善[J].铸造设备研究,2005,(4):19-21.
    [60] 周保仓译.连铸保护渣的性能及对铸坯表面质量的影响[J].太钢译丛.1994,(3):28-34.
    [61] 魏险峰.不锈钢连铸生产中常见的几个问题[J].大连特殊钢,1998,(2):9-12.
    [62] 刘明华,刘正,王海川.连铸坯表面凹陷和纵裂分析[J].炼钢,2000,16(6):55-58.
    [63] Pinheiro, C.A. Samarasekera, I.V.| Brimacombe, J.K. Mold flux for continuous casting of steel[J].Iron and Steelmaker, 1996, 23 (1): 51-52.
    [64] Vieira, Fabricio Batista, Tavares. Methodology for selection of mould fluxes for continuous casting of medium carbon and stainless steels slabs[J]. Steelmaking Conference Proceedings.2002,85:165-173.
    [65] WanLin WANG, Alan W. CRAMB. The Observation of Mold Flux Crystallization on Radiative Heat Transfer[J]. ISIJ International, 2005, 45 (12):1864–1870.
    [66] 张学田,岳峰,张胜伟,等. 矩形坯表面凹陷分析与措施[J].河南冶金,2004, 12(1):41-43.
    [67] 胥克宝 , 牛宏波等 . 连铸板坯偏离角纵向凹陷以及裂纹形成原因分析 [J]. 山东冶金,2003,25(2):47-49.
    [68] 陈家祥.连续铸钢手册[M]. 北京:冶金工业出版社,1991.
    [69] 李任春,李托明,路殿华.钢水成分对钢的高温力学性能和CSP薄板坯表面裂纹的影响[J].连铸,2005,(5):24-26.
    [70] 袁伟霞,董汉雄,袁桂莲.中碳钢高温力学性能研究及在连铸生产中的应用[J].炼钢,1999, 15(1):28-31.
    [71] 杨利民译.连续浇铸时的结晶器保护渣[J].冶金译丛,1997.1.
    [72] 朱立光.高速连铸保护渣的研究及其专家设计系统[D].北京:北京科技大学博士学位论文,2001:27-78.
    [73] 曾政权,甘孟瑜,刘咏秋,等.大学化学[M].重庆:重庆大学出版社.1998.
    [74] 黄希祜.钢铁冶金原理[M].第二版,北京:冶金工业出版社,1990:1-188.
    [75] 川本正辛ほか.高速连铸用パゥダ-の特性设计[J].铁と钢,1994,(3):19-224.
    [76] 蔡开科.连续铸钢[M].北京:冶金工业出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700