变速恒频风力发电系统故障特性与保护技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国能源短缺、能源安全以及节能减排等方面的问题日益突出,以风能为代表的可再生能源利用已成为重要的发展战略之一。风电场的大规模并网将给电力系统在规划设计、调度运行、保护控制等方面带来许多新的问题。尤其是当高渗透率接入时,对配电网的故障特性、保护构建模式带来了深刻的影响,从而使传统的故障检测和保护模式难以满足电网安全运行要求,已成为制约风能大规模高效利用的重要技术屏障。在此背景下,论文对变速恒频风力发电系统及所接配电网复杂故障特性进行了研究,并提出相关保护的构建方案,实现原理等。本文是针对含有高渗透率风电场的配电网安全运行的一项基础性工作,对我国新能源的高效利用具有重要的理论意义和实用价值。
     结合我国新能源大规模利用、智能化电网研究所取得的成果,论文首先概括了风电行业的发展现状,指出在风机制造、风场运行和风能消纳等方面存在的问题。随后分析了以风电场为典型的分布式电源(DG)接入大电网后,对电网安全稳定运行造成的影响,提出需要开展的研究课题。特别就DG接入配电网后,继电保护面临的主要问题和目前的研究进展进行了综述分析。
     在变速恒频风电场的控制和低压穿越方面,研究了双馈式发电机的稳态、暂态运行机理,并建立较为完备的可用于故障暂态分析的仿真模型。重点就其转子侧功率解耦控制机理及风速变化下的小扰动下转子逆变器的调节过程进行了分析并进行了仿真;对风电机组低电压穿越问题,深入研究了机组在外部电网故障时,导致机组转子回路产生过流、过压的机理,及目前多种提升双馈风电机组低压穿越运行能力的控制和保护技术。在此基础上,建立了主动crowbar保护的仿真模型,并考虑了其中释能电阻大小的选取,启动值的整定原则等因素,对风机低压运行范围和外部故障特征的影响进行了分析讨论和仿真验证。
     在双馈式风电场的故障特性的研究方面,首先针对变速恒频机组转子侧交流励磁的特点,理论分析了电网发生故障时定子短路电流呈现的“多态”故障特征,论述了故障点距离、crowbar保护动作门槛值以及励磁逆变器控制系数等因素对双馈电机短路电流特性的影响,并给出了各种条件下的故障电流仿真波形。最后从继电保护的角度分析了双馈电机故障电流对保护性能的影响,提出在为风电场构建保护时应注意的关键问题。
     以构建双馈风力发电系统并网处的保护为研究目标,从提高双馈电机故障穿越能力的角度出发,提出了一套适合于双馈电机“多态”故障电流特征的新型复合式电流-电压保护方案。通过对传统电流保护的改进和构建低故障穿越运行特性的电压保护,使其能够满足风场联络线上故障的可靠切除及配电系统内故障时风电场的低压穿越运行,对实现含双馈风电机组的电网稳定及故障后的快速恢复具有重要意义。
     为防止由于风电接入引起电网保护误动和非同期合闸,进一步增加风电系统的低压穿越能力,对电网侧馈线保护及重合闸提出了多种改进措施。为防止风电场接入后可能引起的馈线保护反向故障误动,提出了以校验所接入的风电场的最大短路电流水平为主,增设功率方向元件为辅的应对策略。从防止非同期合闸的角度,提出了重合闸与风电场并网处保护的配合原则以及实现该原则的两种技术方案。最后通过仿真计算验证了所提出的技术措施的有效性。
     针对DG的高渗透率接入,传统电流保护存在重新调整动作值和时限配合关系,整定工作复杂困难这一问题。构建了一种利用广域信息进行故障定位的保护系统。详细介绍了此保护系统的结构和功能划分,重点论述了保护系统的核心-基于广域信息的故障定位算法。算例结果表明,基于广域信息的保护系统能够在高渗透DG接入配电网时,实现故障元件的可靠识别与切除,保证电网的安全稳定运行。
     最后,总结了论文的主要研究工作,并阐述了有待进一步研究的主要问题。
Accelerate the development of renewable clean energy and its efficient utilization has become one of the key national policies in China. Wind power generation, as a representative of the renewable energy utilization, has become one of the important developing strategies. High penetration of wind farm integration will have an impact on short circuit capacity, protection coordination, system transient stability, voltage control and power quality, which can significantly cause deterioration of relay performance, safety and stability of the whole utility (large power) grid. Many technical measures need to be adopted to mitigate the negative effeteness.
     In this background, the paper study on the external fault characteristic of doubly-fed induction generator (DFIG) and related protection technology. This is a basic work for the grid-connected wind power's stable operation in our country, which has certain theoretical significance and practical value.
     With the new energy utilization development and intelligent large-scale network research achievements, the first summarize the present status of wind industry; then combining the impact of typical wind farms connected into the gird, some questions that should be further studied are provided in the thesis. And in particular, the details and issues of protection technology for grid integrated with DFIG are reviewed.
     For variable-speed constant-frequency operation and low voltage ride through (LVRT), the operational mechanism of DFIG in steady-steady and transient-stated were studied, and a complete set of simulation system was established for fault analysis. Focus on its rotor side power decoupling control mechanism and the wind changes under the small disturbance regulation of rotor inverter process is analyzed and simulated.For LVRT operation, the over-current and over-voltage induced in the rotor were researched in the external fault. On this basis, the simulation model of active crowbar protection, with considered the release resistance and set values of crowbar circuit, were installed.
     This paper also discussed how the fault locations, action of crowbar protection and the proportional and integral coefficient of rotor side inverter affect the magnitude and decay time of doubly-fed induction generator (DFIG)'s short-circuit current. The simulation experiments verifies the "multi-waveform" fault characteristics of DFIG current fed into the grid, which is due to the multi rotor exciting models. Based on this, a grid connecting-point protection scheme for wind farm is proposed. The scheme was composed of advanced current protection and low voltage protections, which can not only reliably remove the fault, happened on the tie line, but also ensure the wind farm to operate under fault condition. The proposed protection scheme is of great significance to realizing the reliable operation and fast fault restoration of the grid with high penetration wind generators.
     To further increase the wind turbine's LVRT ability from the grid side, feeder protection and reclose action strategies were improved. For preventing wind farm caused mis-operation, this paper proposes that check the maximum wind short-circuit current level, or add complementary elements of the direction for feed current relay. From the Angle of feeder to prevent overvoltage, two kinds of technology solutions were puts forward, for help realizing the cooperate principle between reclosing and interconnection of wind power. At last the simulation results verify the effectiveness of the proposed measures, can make full use of wind power.
     With The high penetration of DG integration, traditional current protection operation condition could be more complicated and security and stability problem would be more austere in large-scale interconnected power source. The paper constructs a new protection system using the wide-area information to indentify the fault location. Introduced the protection system structure and function division, discussed the core of protection system-based on wide area information for fault location algorithm.a numerical example is given to illustrate the wide-area protection system based on the information can be more effectively determine the fault location, and this methods can guarantee the safe and stable operation of power grid under high permeability DG access.
     Finally the achieved research is concluded and further prospective on development of limited wide area intelligent protection is highlighted.
引文
[1]王成山,李鹏.分布式发电系统仿真理论与方法.电力科学与技术学报,2008,23(1):8-12.
    [2]王守相,王成山.现代配电系统分析.北京:高等教育出版社,2007.
    [3]王守相,黄丽娟,王成山,等.分布式发电系统的不平衡三相潮流计算.电力自动化设备,2007,27(8):11-15.
    [4]Dommel H D. Digital computer solution of electromagnetic transient in single and multiphase networks. IEEE Transactions on Power Apparatus and Systems,1969, 88 (4):388-399.
    [5]Watson N, Arrillaga J. Power systems electromagnetic transients simulation. London:Institution of Electrical Engineers,2002.
    [6]刘皓明,朱浩骏,严正,等.含统一潮流控制器装置的电力系统动态混合仿真接口算法研究.中国电机工程学报,2005,25(16):1-7.
    [7]Jenkins N, Strbac G. Impact of embedded generation on distribution system voltage stability. IEE Colloquium on Voltage Collapse, London,1997
    [8]段献忠,何仰赞,陈德树.电力系统电压稳定的研究现状.电网技术,1995,19(4):20-24
    [9]迟永宁.大型风电场接入电网的稳定性问题研究.中国电力科学研究院博士论文,2006.
    [10]潘文霞.大型风电场电压稳定性分析与控制研究.和海大学博士论文,2004.
    [11]何仰赞,温增银.电力系统分析湖北武汉:华中科技大学出版社,2002.
    [12]陈琳,钟金,倪以信等.含分布式发电的配电网无功优化,电力系统自动化2006,30(14):20-24.
    [13]张佳佳,陈金富,范荣奇.微网高渗透对电网稳定性的影响分析,电力科学与技术学报,2009,24(1):25-30.
    [14]M.A.Kashem, Gerard Ledwich. Distributed generation as voltage support for singlewire earth return systems. IEEE Transactions on Power Delivery,2004, 19(3):1002-1011.
    [15]Fabrice Demailly, Olivier Ninet, Andre Even. Numerical tools and models formonte carlo studies of the influence on embedded generation on voltage limits in LV Grids. IEEE Transactions on Power Delivery,2005,20(3):2343-2350.
    [16]薛禹胜,徐泰山,刘兵,历耀宗.暂态电压稳定性及电压跌落可接受性.电力系统自动化,1999,23(14):4-8.
    [17]Ajjarapu V and Lee B. BibliograPhy on voltage stability. IEEE Trans on power Systems,1998,13(1):115-125.
    [18]余贻鑫,王成山.电力系统稳定性的理论与方法.北京:科学出版社,1999.
    [19]余贻鑫.电压稳定研究评述.电力系统自动化.1999,23(21):1-7.
    [20]孙建峰,焦连伟,吴俊玲等.风电场发电机动态等值问题的研究.电网技术,2004,28(7):58-61.
    [21]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.北京:清华大学出版社,2002.
    [22]王志群,朱守真,周双喜等.分布式发电对配电网电压分布的影响,电力系统自动化,2004,28,(16):56-60.
    [23]章杜锡,徐祥海,甘德强等.分布式电源对配电网过电压的影响.电力系统自动化,2007,31,(12):50-54.
    [24]Chengsong Dai, Y.Baghzouz.Impact of distributed generation on voltage regulation by LTC transformer.2004 11th International Conference on Harmonics and Quality of Power.
    [25]OKUYAMA K. KATO T. Load Leveling of Whole Distribution System by Autonomous Outputs Control of Distributed Generator. In Proceedings of IEEE.PES Transmission and distribution conference and exhibitions 2002:Asia Pacific, Vol 3. Yokohama:2134-2138
    [26]盛鹃,孔力,齐智平,裴玮,等.新型电网—微型电网(Microgrid)研究综述,继电器,2007,35(12):75-80.
    [27]鲁宗相,王彩霞,阂勇,周双喜,等.微型电网研究综述,电力系统自动化,2007,31(19):100-107.
    [28]R.Lasseter, Microgrids, in Proc. Power Eng. Soc. Winter Meeting, Jan.27-31, 2002,305-308.
    [29]Yun Wei Li, D.Mahinda Vilathgamuwa, Poh Chiang Loh, Microgrid Power Quality Enhancement Using a Three-Phase Four-Wire Grid-Interfacing Compensator, IEEE Trans on Industry Applications, Vol.41, No.6,Nov./Dec.2005,1707-1719.
    [30]Tim Green. Power Quality Improvement using Inverter-Interfaced Distributed Generators, Project Report for DISPOWER funded by the European Commission under the 5th(EC)RTD.
    [31]Dolezal J, Santarius P, Tlusty J, et al. The effect of dispersed generation on power quality in distribution system. Quality and Security of Electric Power Delivery Systems, CIGRE/SEE PES International Symposium.2003,204-207.
    [32]Macken K J P, Bollen M H J, Belmans R J M. Mitigation of Voltage Dips Through Distributed Generation Systems. IEEE Trans on Industry Applications,2004, 40(6):1686-1693.
    [33]关宏亮,戴慧珠等.风力发电机组对称短路特性分析.电力自动化设备,2008,28(1):61-64.
    [34]胡家兵,孙丹,贺益康.电网电压骤降故障下双馈风力发电机建模与控制.电力系统自动化,2006,30(8):21-26.
    [35]Mesut E. Baran Ismail El-Markaby. Fault Analysis on Distribution Feeders with Distributed Generators. IEEE Trans on Power Systems,2005,20(4):1757-1764.
    [36]梁才浩,段献忠.分布式发电及其对电力系统的影响.电力系统自动化,2001,25(12):53-56.
    [37]黄伟,雷金勇,甘德强等.分布式电源对配电网相间短路保护的影响.电力系统自动化,2007,32(1):93-97.
    [38]庞建业,夏晓宾,房牧.分布式发电对配电网继电保护的影响,继电器,2007,35(11):5-8.
    [39]王希舟,陈鑫,罗龙,甘德强.分布式发电与配电网保护协调性研究,继电器,2006,34(3):15-19.
    [40]林霞,陆于平,王联合.分布式发电条件下的新型电流保护方案电力系统自动化,2008,32(20):50-56.
    [41]卢志刚,董玉香.含分布式电源的配电网故障恢复策略.电力系统自化,2007,31(1):89-92.
    [42]H. Wan, K.P. Wong, C.Y. Chung. Multi-agent application in protection coordination of power system with distributed generations, IEEE Power and Energy Society 2008 General Meeting:Conversion and Delivery of Electrical Energy in the 21st Century, PES,2008.
    [43]杨丽徙,王金风,陈根永,王家耀.基于元胞自动机理论的电力负荷空间分布预测.电机工程学报.2007,27(4):15-20.
    [44]张节潭,程浩忠,黄微,石方迪,江峰青.含风电场的电源规划综述.电力系统及其自动化学报.2009,21(2):35-41.
    [45]张立军风电场建模和电源扩展规划研究.硕士学位论文.合肥工业大学.2006.
    [46]陈树勇,戴慧珠,白晓民,周孝信.风电场的发电可靠性模型及其应用.中国电机工程学报.2000,20(3):26-29.
    [47]王敏,丁明.含分布式电源的配电系统规划.电力系统及其自动化学报.2004,16(6):5-9.
    [48]欧阳武,程浩忠,张秀彬,张节潭,辛洁晴,姚良忠.考虑分布式电源调峰的配电网规划.电力系统自动化.2008,32(22):12-15.
    [49]KOJOVIC L. Impact of DG on voltage regulation//Proceedings of 2002 IEEE Power Engineering Society Summer Meeting:Vol1, Jul 21-25,2002 Chicago, IL, USA. Piscataway, NJ, USA:IEEE,2002:97-102.
    [50]章杜锡,徐祥海,杨莉,等.分布式电源对配网过电压的影响.电力系统自动化,2007,31(12):50-54.
    [51]王志群,朱守真,周双喜,黄仁乐,王连贵.分布式发电接入位置和注入容量限制的研究.电力系统及其自动化学报,2005,17(1):53-58.
    [52]胡骅,吴汕,甘德强,等.考虑电压调整约束的多个分布式电源准入功率计算.中国电机工程学报,2006,26(19):13-17.
    [53]黄伟,熊军,徐祥海,等.考虑配网电压调节的分布式电源准入功率极限计算.电力系统自动化,2007,31(14):43-46.
    [54]江南,龚建荣,甘德强.考虑谐波影响的分布式电源准入功率计算.电力系统自动化,2007,31(3):19-23.
    [55]钱科军,袁越,ZHOU Cheng-ke分布式发电对配电网可靠性的影响研究.电网技术.2008,32(11):74-78.
    [56]雷金勇,黄伟,夏翔,吴汕,熊军,王函韵,甘德强.考虑相间短路影响的分布式电源准入容量计算.电力系统自动化,2008,32(03):82-85.
    [57]陈海焱,陈金富,杨雄平,陈波,陈驾宇.配电网中计及短路电流约束的分布式发 电规划.电力系统自动化,2006,30(21):16-21.[58] BRAHMA S M, GIRGIS A A. Development of adaptive protection scheme for distribution systems with high penetration of distributed generation. IEEE Trans on Power Delivery,2004,19 (1):56-63.[59] 孙鸣,余娟,邓博.分布式发电对配电网线路保护影响的分析.电网技术.2009,33(8):104-107.[60] 范李平,袁兆强,张凯.分布式发电对电力系统继电保护的影响.能源工程.2009,(02):15-18.[61] 申洪,梁军,戴慧珠.基于电力系统暂态稳定分析的风电场穿透功率极限计算.电网技术.2009,26(8):8-11.[62] 王成山,陈恺,谢莹华,郑海峰.配电网扩展规划中分布式电源的选址和定容.电力系统自动化,2006,30(3):38-43.[63] 陈琳,钟金,倪以信,甘德强,熊军,夏翔.含分布式发电的配电网无功优化.电力系统自动化.2006,(7):20-24.[64] 高秀航,分布式发电配电网动态无功补偿装置控制策略的研究.硕士学位论文.天津大学.2007,(6).[65] 王瑞,林飞,游小杰,郑琼林.基于遗传算法的分布式发电系统无功优化控制策略研究.电力系统保护与控制.2009,(1):24-28.[66] 鲁宗相,王彩霞,闵勇,等.微电网研究综述. 电力系统自动化,2007,3 1(19):100-107.[67] 何朝阳.含微网的电力系统优化运行与稳定控制相关问题研究.华中科技大学博士学位论文,2007.[68] 丁磊.多微网配电系统的分层孤岛运行及保护控制.山东大学博士学位论文,2007.[69] Chris Marnay,Owen C Bailey. The CERTS Microgrid and the Future of the Microgrid [EB/OL]. [2006-11-01]. http://certs.lbl.gov/pdf/55281.pdf. [70] J. D. Kueck,R. H. Staunton,S. D. Labinov and B. J. Kirby. Microgrid Energy Management System. California Energy Commission Consultant Report,2003. [71] Ryan Firestone and Chris Marnay. Energy Manager Design for Microgrids. California Energy Commission Consultant Report,2005. [72] Robert Lasseter. Control and Design of Microgrids Components. Power Systems Engineering Research Center Final Project Report,2006.
    [73]European Commission. European smartgrids technology platform [EB/OL]. [2007-05-01]. http://ec.Europa.Eu/research/energy/pdf/smartgrids_en. pdf.
    [74]European Commission. Strategic research agenda for Europe's electricity networks of the future [EB/OL]. [2007-05-01].http://www.smartgrids.eu/ documents/sra/sra_finalversion. pdf.
    [75]SANCHEZ M. Overview of microgrid research and development activities in the EU [EB/OL]. [2006-10-23]. http://www.energy.ca.gov/pier/conferences seminars/2006-06-23_microgrids_montreal/presentations/Presentation_11_Manuel-Sanchez.pdf.
    [76]SATOSHI Morozumi. Overview of microgrid research and development activities in Japan [EB/OL]. [2006-10-23].http://www.ceem.unsw.edu.au/content /userDocs/OverviewoMicrogridManagementandControl_000.pdf.
    [77]DIGNARD-BAILEY L,KATIRAEI F. Overview of microgrid research and development activities in Canada [EB/OL]. [2006-10-23].
    [78]王成山,肖朝霞,王守相.微网综合控制与分析. 电力系统自动化,2008,32(7):98-103.
    [79]程时杰,余文辉,文劲宇.储能技术及其在电力系统稳定控制中的应用.电网技术,2007,31(20):98-109.
    [80]裴玮,盛鹃,孔力,等.分布式电源对配网供电电压质量的影响与改善.中国电机工程学报,2008,28(13):152-157.
    [81]章健,艾芊,王新刚.多代理系统在微电网中的应用.电力系统自动化,2008,32(24):56-60.
    [82]叶彬.混合智能建模技术及其在短期负荷预测中的应用研究.浙江大学博士学位论文,2006.
    [83]孙英云.基于数据挖掘的短期负荷预测研究.清华大学硕士学位论文,2004.
    [84]A. D. Papalexopoulos, T. C. Hesterberg. A regression-based approach to short term system load forecasting. IEEE Transaction on Power Systems,1990,5(4): 1535-1547.
    [85]I. Moghram, S. Rahman. Analysis and evaluation of five short-term load forecasting techniques. IEEE Transaction on Power Systems,1989,4(4): 1487-1491.
    [86]刘晨晖.电力系统负荷预报理论和方法.哈尔滨:哈尔滨工业大学出版社,1987.
    [87]W. Charytoniuk, P. Van Olinda. Nonparametric Regression Based Short-Term Load Forecasting. IEEE Transaction on Power Systems,1998,13(3):725-730.
    [88]卢芸.短期电力负荷预测关键问题与方法的研究.沈阳工业大学博士学位论文,2007.
    [89]S. Rahman, R. Bhatnagar. An expert system based algorithm for short term load forecasting. IEEE Transaction on Power Systems,1988,3(2):392-399.
    [90]D. C. Park,M. A. El-Sharkawi,R. J. Mkars,et al. Electric Load Forecasting Using an Artificial Network. IEEE Transaction on Power Systems,1991,6 (2):442-449.
    [91]A. Khotanzad,E. Zhou,,H. Elragal. A neuro-fuzzy approach to short-term load forecasting in a price-sensitive environment. IEEE Transaction on Power Systems,2002,17(4):1273-1282.
    [92]C. S. Chang,W. H. Fu,,M. J. Yi. Short-term load forecasting using wavelet networks. Engineering intellivent systems for electrical engineering and communications,1998,6 (4):217-223.
    [93]国家电力监管委员会.电网运行规则,2007.
    [94]盛鹃,孔力,齐智平,等.新型电网-微电网(Microgrid)研究综述.继电器,2007,35(12):75-81.
    [95]L. J. Pecas,C. L. Moreira,A. G. Madureira,et al. Control Strategies for MicroGrids Emergency Operation. Future Power Systems,2005 International Conference on,2005.
    [96]S. K. Salman. The impact of embedded generation on voltage regulation and losses of distribution networks. IEE Colloquium on the Impact of Embedded Generation on Distribution Networks,1996,12(1):1-5.
    [97]N. C. Scott,D. J. Atkinson, J. E. Morrell. Use of load control to regulate voltage on distribution networks with embedded generation. IEEE Transactions on Power Systems,2002,17(2):510-515.
    [98]M. Reza,P. H. Schavemaker,J. G. Slootweg,et al. Impacts of distributed generation penetration levels on power systems transient stability. IEEE Power Engineering Society General Meeting,2004:2150-2155.
    [99]F. Katiraei, M. R. Iravani. Power management strategies for a microgrid with multiple distributed generation units. IEEE Transactions on Power Systems,2006, 21(4):1821-1831.
    [100]王成山,余旭阳.基于Multi-Agent系统的分布式协调紧急控制.电网技术,2004,28(3):1-5.
    [101]P. Piagi, R. Lasseter. Autonomous control of microgrids. Proceedings of 2006 IEEE Power Engineering Society General Meeting General Meeting,2006:8-15.
    [102]J. A. Lopes,C. L. Moreira,A. G. Madureira. Define control strategies for microgrids island operation. IEEE Power Transactions on Power Systems,2006,21 (2):586-595.
    [103]M. N. Marwali,A. Keyhani. Control of distributed generation systems-Part I: Voltages and currents control. IEEE Transactions on Power Electronics,2004,19 (6):1541-1550.
    [104]K. J. P. Macken,M. H. J. Bollen,R. J. M. Belmans. Mitigation of voltage dips through distributed generation systems. IEEE Transactions on Industry Applications,2004,40 (6):1686-1693.
    [105]Yun Wei Li,D. Mahinda Vilathgamuwa,Poh Chiang Loh. Microgrid Power Quality Enhancement Using a Three-Phase Four-Wire Grid-Interfacing Compensator. IEEE Transactions on Industry Applications,2005,41 (6):1707-1719.
    [106]Tim Green. Power Quality Improvement using Inverter-Interfaced Distributed Generators. Project Report for DISPOWER Funded by the European Commission under the 5th(EC)RTD,2005-2-8.
    [107]J. Dolezal, P. Santarius, J. Tlusty, et al. The effect of dispersed generation on power quality in distribution system. Quality and Security of Electric Power Delivery Systems, CIGRE/SEE PES International Symposium.2003:204-207.
    [108]刘杨华,吴政球,涂有庆,等.分布式发电及其并网技术综述.电网技术,2008,32(15):71-76.
    [109]王志群,朱守真,周双喜.逆变型分布式电源控制系统的设计.电力系统自动化,2004,28(24):61-66.
    [110]B. Kroposki. Microgrids-hardware testing and standards development [EB/ OL]. [2007-04-06]. http://der.lbl.Gov/new_site/2007microgrids_files/US-Kroposki.pdf.
    [111]胡学浩.2003年国外(美加、意大利、瑞典和英国)大停电事故经验及教训.电力系统安全及其战略防御高级学术研讨会论文集.
    [112]王成山,王守相.分布式发电供能系统若干问题研究.电力系统自动化,2008,32(20):1-4.
    [113]肖国春,刘进军,王兆安.电能质量及其控制技术的研究进展.电力电子技术,2000,(12):58-60.
    [114]杜松怀.电力市场交易模式的现状与发展趋势.中国农业大学学报,2001,6(4):56-62.
    [115]强益民.电力市场中的交易模式和交易管理.西北电力技术,2003,33(3):15-19.
    [116]Zhang B M. Development of power system control facilities in China. Electric Power System Research,1998,44(1):27-33.
    [117]郄伟.电力市场交易模式的比较研究.华北电力大学硕士学位论文.2006.
    [118]罗鑫,张粒子等.可再生能源电力市场模式研究.中国电力,2006,39(9):32-35.
    [119]SHI Li Shan. Renewable energy status and expectation in China.MoneyChina, 2006(3):57-59.
    [120]尚金成,黄永皓等.电力市场理论研究与应用.中国电力出版社,2002.
    [121]朱敏.国际典型电力市场模式比较及对我国的启示.中国经贸导刊,2009,23(7):86-90.
    [122]魏玲,杨明皓.输配分离电力市场中含分布式发电的配电公司购电模型.电网技术,2008,32(8):1000-3673.
    [123]魏玲,杨明皓.电力市场中分布式发电孤岛模式对配电公司费用的影响.电力系统自动化,2009,33(2):15-19.
    [124]涂有庆,吴政球等.基于贡献因子的含分布式发电配网网损分摊.电网技术,2008,32(10):86-90.
    [125]马明.分布式电源对配电网网损影响及配置的研究.南京理工大学硕士学位论文.2007.
    [126]胡骅,吴汕,夏翔,甘德强.考虑电压调整约束的多个分布式电源准入功率计算,中国电机工程学报2006,26(9):38-43.
    [127]王成山,陈恺,谢莹华等.配电网扩展规划中分布式电源的选址和定容,电力系统 自动化,2006,30(3):13-19.
    [128]韩民晓,刘迅.分布式电源并网中电能质量相关规范探讨,电力设备,2007,8(1)
    [129]Jesus Lopez, Pablo Sanchis, Luis Marroyo et al. Dynamic behavior of the doubly fed induction generator during three-pahse voltage dips, IEEE Trans. On energy Conversion.2007,22(3):709-717.
    [130]M S Vicatos, J A. Tegopoulos. Transient state analysis of a doubly-fed induction generator under three phase short circuit, IEEE Transactions on Energy Conversion,19916(1):62-68.
    [131]Silva James, FunmilayoHamed B. A Impact of distributed generation on the IEEE 34 node radial test feeder with overcurrent protection, Conference:2007 39th North American Power Symposium, NAPS, Sep 30-Oct 2 2007, Las Cruces, NM, United States.
    [132]刘传铨,张焰.计及分布式电源的配电网供电可靠性,电力系统自动化,2008,31(22):46-49.
    [133]张昊,朱守真,张伟燕,郑竞宏,胡滨.分布式电源并网运行接地方案的研究,沈阳工程学院学报,2006,2(3):198-201.
    [134]贺益康.《我国风电产业现状与展望》 中国可再生能源学会风能专业委员会2009.
    [135]Anca D Hansen, Lars H Hansen.Wind turbine concept market penetration over 10 years (1995-2004).Wind Energy,2007,10(1):81-97.
    [136]李杰 《中国风电行业分析报告》----正哲国际(香港)有限公司 2009
    [137]中国科学院中国电力科学院电监会 《中国风电发展情况调研报告》2009.
    [138]《歌美飒G5X型平台风机一般说明书第二版》 2008
    [139]高景德,王祥晰,李发海,交流电机及其系统的分析,第2版,北京,清华大学出版社,2005.
    [140]Vestas wind system, Vestas OptiSpeedTM, Vestas Converter System, General edition, class 1, Item. No.947543;R0, Denmark,10 p.
    [141]E.Muljadi, C.P.Butterfield. Pitch-controlled variable-speed wind turbine generation.IEEE Transaction on Industry Applications,2001,1(37):240-246.
    [142]Ezzeldin S. Abdin, Wilson Xu. Control design and dynamic performance analysis of a wind turbine-induction generator unit. IEEE Transaction on Energy Conversion,2000,3 (15):91-96.
    [143]叶杭冶.风力发电机组的控制技术.北京:机械工业出版社,2002.
    [144]R. Pena, J. C. Clare and G. M. Asher. Doubly fed induction generator using back-to-back PWM converters and its application to variable speed wind-energy generation, IEE Proceedings on Electronics Power Applications, Vol.143, No 3, May 1996.
    [145]Johan Morren, Sjoerd W H de Haan. Short-circuit current of wind turbines with doubly fed induction generator. IEEE Transaction on Energy Conversion,2007, 22(1):174-180.
    [146]Clements Jauch, Julija Matevosyan, Thomas Ackermann,et al. International comparison of requirements for connection of wind turbines to power systems.Wind Energy,2005,8(3):295-306.
    [147]Dittrich A, Stoev A. Comparison of fault ride-through strategies for wind turbines with DFIM generators. European Conference on Power Electronics and Applications,2005.
    [148]Hansen A D, Michalke G, Sorensen P,et al. Co-ordinate voltage control of DFIG wind turbines in uninterrupted operation during grid faults.Wind Energy,2007,10(1):51-68.
    [149]Petersson A, Lundberg S, Thiringer T.A DFIG wind turbine ride-through system, influence on the energy production.Wind Energy,2005,8(3):251-263.
    [150]Janos Rajda, Anthony William Galbraith, Colin David Schauder. Device, system and method for providing a low-voltage fault ride-through for a wind generator farm:United States, US 2006/0267560 A1[P].2006.
    [151]李建林,赵栋利等.适合于变速恒频双馈感应发电机的crowbar对比分析.可再生能源2006,(5):57—60.
    [152]撖奥洋,邓星,文明浩.高渗透率下大电网应对微网接入的策略.电力系统自动化,2010,34(1):78-82.
    [153]Datta R, Ranganathan V T. Variable-speed Wind Power Generation Using Doubly Fed Wound Rotor InductionMachine-A Comparison with Alternative Schemes.IEEETrans on Energy Conversion.2002,17(3):414-421
    [154]I Erlich, J Kretschmann, J Fortmann, etc. Modeling of Wind Turbines Based on Doubly-Fed Induction Generators for Power System Stability Studies. IEEE Transactions on Power Systems,2007,22 (3):909-919.
    [155]JESUS Lopez, PABLO Sanchis, XAVIEr Roboam,et al. Dynamic behavior of the doubly fed induction generator during three phasevoltage dips.IEEE Trans on Energy Conversion,2007,22 (3):709-717.
    [156]王晓波,严干贵,郑太一,范国英,王建勋,郭雷,董存,崔运海,周志强.双馈感应风电机组联网运行仿真及实证分析.电力系统自动化,2008,(07):87-91.
    [157]张学广,徐殿国,李伟伟.双馈风力发电机三相短路电流分析.电机与控制学报,2008,(05):493-497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700