白腐菌Coriolus versicolor漆酶及其在制浆造纸废水深度处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
漆酶(Laccase,EC1.10.3.1)是白腐菌降解木质素酶系中的重要酶之一,具有高氧化还原电位、不需要H2O2启动而以O2为电子受体,因而具有比其他几种木质素酶更实际的应用价值。杂色云芝菌是白腐菌中重要的一类,具有较高的漆酶分泌能力。
     论文首先从液体和固体两种培养体系出发,探索不同培养条件对白腐菌分泌漆酶的影响。液体培养体系下,白腐菌的最佳生长和漆酶分泌条件是缓冲体系起始pH5.8、摇瓶转速为180rpm、装液量为100mL/500mL;在所有测试碳源中,葡萄糖为最佳碳源,在二糖中以蔗糖为碳源,漆酶酶活相对较高,而多糖如淀粉不利于漆酶的生产。在所有测试氮源中,硝酸氨和酒石酸氨组合为最佳氮源,氯化铵和尿素的效果次之,蛋白胨的效果最差。当C/N>10:1即高碳低氮培养条件下,有利于漆酶的形成。芳香化合物诱导剂ABTS浓度为0.5-1mM时,对漆酶的生产影响最明显,与限氮培养基中产酶相比可提高酶活5倍,约为230IU/ml;0.5mM愈创木酚、1mM阿魏酸、0.05mM二甲基苯胺的添加也明显提高酶活,约提高2-2.5倍;0.01mM黎芦醇的添加可提高漆酶约1.6倍。由于酪氨酸具有酚类化合物的特点,也可作为一种无毒的天然漆酶诱导剂。菌株漆酶活力固体培养体系下明显低于液体培养体系下。
     以液体基质培养为研究对象,对白腐菌漆酶的分离纯化和主要酶学性质进行研究。纯化倍数为15倍,回收率为20.4%,该漆酶分子量为30.03kD;最适反应pH为4.5,pH6.0左右稳定性最高;最适温度为65℃,在50℃以下稳定性好,当温度超过70℃时,漆酶开始失活,在80℃处理20分钟,漆酶完全失活。
     对杂色云芝漆酶处理造纸废水条件的研究结果表明:杂色云芝菌高产漆酶优化培养基与杂色云芝漆酶对造纸废水脱色的最佳培养基一致,说明在造纸废水的脱色方面漆酶起到了至关重要的作用;研究结果表明,造纸废水脱色与菌体生物量不呈正相关。在适宜的条件下,杂色云芝菌培养产生的漆酶粗酶液可有效的对碱法木浆造纸厂二沉池出水进行深度处理。漆酶粗酶液处理废水的效率跟处理时间和酶用量的大小有关,同时也受反应体系的温度和pH值等因素的影响。在一定的反应体系下,废水中木素、CODcr和色度的去除率随处理时间的延长和酶用量的增加而增加。最佳处理条件为:处理时间5小时,酶液用量5IU/ml,pH 7,温度55℃。在进水CODcr为268mg/l,木素含量为100mg/l,色度为186倍的条件下,处理后出水CODcr为48mg/l,木素含量16mg/l,色度为10倍。CODcr、木素和色度的降解率分别达82.1%,84%和94.6%。通过对比粗漆酶和纯漆酶对造纸废水中的木素的去除效果,发现在同样处理条件下粗漆酶的效果优于纯漆酶。
     最后通过凝胶渗透色谱法测定了造纸厂二沉池出水中木素的分子量为3.12万,经纯漆酶液处理1小时后的木素的分子量为4.66万,经纯漆酶液处理2小时后的木素分子量为5.86万。实验结果表明:经过漆酶处理后,废水中木素的分子量明显变大,漆酶在反应中对木素起到了聚合作用,白腐菌Coriolus versicolor漆酶液在一定的条件下可以将造纸厂二沉池出水中的木素及其衍生物催化聚合从而使其沉淀去除,废水中的木素及其衍生物减少,从而使废水的色度和COD降低,进而为造纸废水中水回用提供可能。
Laccase is an important enzyme of lignin degradation by white rot fungi. It has high redox potential and takes O2 as electron receptor without the aid of H2O2. Therefore, it has more application potential than other ligninases.Coriolus versicolor is a very important species of white rot fungi with good ability of Laccase production.
     Firstly, the influence on the production of laccase by Coriolus versicolor in different fermentation conditions and culture systems were investigated. In the liquid culture system, the optimal fermentation condition for best fungus growth and laccase producing were as follows: buffering system of pH 5.8, rotating speed 180rpm, 100mL culture medium per 500ml flask.The glucose was the best carbon fountain in all the tested carbon fountains. The laccase activity was comparative high when saccharose was used as the carbon fountain in all the disaccharide.However,starch appeared minus effect on laccase production.The combination of tartaric ammonium and ammonium nitrate was found to be the best nitrogen fountain in all the tested nitrogen fountains. The effect of ammonium chloride and carbamide took second place.The effect of peptone was the worst.It was suitable to the production of laccase when the ratio of carbon and nitrogen is more than 10. The laccase activity could be improved to 230 IU/ml when the revulsant ABTS concentration is 0.5-1mM.The addition of 0.5mM guaiacol、1mM ferulic acid、0.05mM dimethylaniline could also improve the laccase activity obviously. The addition of 0.01mM veraryl alcohol could also improve the laccase activity for 1.6 times. Tyrosine could be a native revulsant of laccase because it has the characteristic of hydroxybenzene.The laccase activity was less in solid conditions than in liquid system.
     Secondly, the laccase production of Coriolus versicolor, purification and properties of laccase isoforms have been studied in the liquid system.The molecular weight of the purified laccase is 30.03kDa. the optimal pH for reaction and stability was 4.5 and 6.0 respectively. The optimal temperature was 65℃.The laccase began losing activity when the temperature was more than 70℃. The laccase lost activity completely when it was treated in 80℃for 20 minute.
     The optimal conditions for treatment of papermaking effluent by coriolus versicolor laccase were studied . The results showed that the substrate of high-production laccase was the same with the optimal substrate of papermaking wastewater decolorization.It showed that the laccase had important effect in the decolorization of papermaking wastewater.However,the decolorization rate was not related to the biomass of coriolus versicolor directly.
     The crude laccase from Coriolus versicolor could achieve advanced treatment of papermaking wasterwater effectively.The treatment efficiency of laccase was relational to the treatment time, laccase dosage, pH value and temperature.The removal rates of ligin,CODcr and chroma were improved when the treatment time and laccase amount increased.The optimal condition was as follows:5 hours of treatment time;5IU/ml of laccase amount; pH 7; 55℃.When the pollution index of enterwater was 268mg/L of CODCr ,100mg/l of lignin content and 186 times of chroma.The pollution duty of outwater decreased to CODCr 48mg/L, 100mg/l of lignin content and 10 times of the chroma.The removal rates of CODCr, lignin content and colority were 82.1%,84% and 94.6% respectively.The removal effect of lignin in papermaking wastewater by crude laccase was better than that of purified laccase .The reason was that some low molecular substance mediators could be remoaved during purifying process.
     The molecular weight of the ligin which is from the outwater of the effluent seffling chamber taken from a pulp mill is 31200.The molecular weight of the ligin treated for one hour by laccase increased to 46600 while the molecular weight of the ligin treated for two hours by laccase reached 58600.The results showed that the molecular weight of the ligin increased obviously after treated by laccase.In suitable condition, the laccase produced by Coriolus versicolor could polymerize the ligin and its ramification in the wastewater of alkaline pulp mill.Then the CODcr and chroma of the wastewater would decrease.So the use of laccase could provides feasibility to reclaimed water reuse of the papermaking wastewater.
引文
[1] [日]中野准三著,高洁等译.木素的化学基础及应用[M].北京:轻工出版社,1988, 15-56
    [2] Pickard M. A., Roman R, Tinoco R, et al. Polycyclic aromatic hydrocarbon metabolism by white rotfungi and oxidation by Coeiolopsis gallica UAMH 8260 laccase[J]. Appl Environ Microbiol, 1999, 65: 3805-3809
    [3] 刘尚旭, 赖寒冷.木质素降解酶的分子生物学研究进展.重庆教育学院学报,2001, 14(3): 64~67
    [4] Kirk T K, Shimada M. Lignin biodegradation:the microorganisms involved and the physiology and biochemistry of degradation by white rot fungi. Biosynthesis and biodegradation of wood components, 1985, 3(1): 579~605
    [5] 李 慧 蓉 . 白 腐 真 菌 在 碳 素 循 环 中 的 地 位 和 作 用 . 微 生 物 学 通 报 ,1996, 23(2):105~109
    [6] 郭梅, 蒲军, 路福平等. 白腐菌漆酶特性及其应用前景. 天津农学院学报, 2004,11(3): 44~47
    [7] 席北斗, 刘鸿亮, 白庆中等. 堆肥中纤维素和木质素的生物降解研究现状. 环境污染治理技术与设备, 2002, 3(3): 19~23
    [8] 徐海娟, 梁文芷. 白腐菌降解木素酶系及其作用机理. 环境污染治理技术与设备,2000, 1(3): 51~54
    [9] 张建军, 罗勤慧. 木质素酶及其化学模拟的研究进展. 化学通报, 2001, (8):470~477
    [10] 尹峻峰, 王涛. 真菌降解木质素的研究现状. 云南林业科技, 2003, (1): 75~78
    [11] Tunde M, Ming T. Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. International Biodeterioration and Biodegradation , 2000, (46): 51~59
    [12] 李慧蓉. 白腐真菌的研究进展. 环境科学进展, 1996, 4(6): 69~77
    [13] Tuour U, Winterhalter K, Fiechter A. Enzymes of white rot fungi involved in lignin degradation and ecological determinants for wood decay. Journal of biotechnology,1995, 41(1): 1~17
    [14] Youn H D, Hah Y C, Kang S O. Role of laccase in lignin degradation by white rot fungi. FEMS Microbiology Letters, 1995, 132 (3): 183~188
    [15] Mayer A M. Polyphenol oxidases in plants-recent progress. Phytochemistry, 1987,26(1): 11~20
    [16] Gomez G, Lahoz R, Molina D. Production of extracellular enzymes during growth and autolysis of Pycnoporus cinnabarinus. Journal of Basic Microbiology,1989, 29(1): 23~29
    [17] 王宜磊, 杨道彩. 云芝胞外漆酶活性研究. 菏泽师专学报, 1998, 20(4): 57~59
    [18] Hatakka A. Lignin-modifying enzymes from selected white rot fungi: production and role in lignin degradation. FEMS Microbiology Reviews, 1994, 13 (2): 125~135
    [19] 林云琴, 周少奇.白腐菌降解纤维素和木质素的研究进展.环境技术, 2003, (4):29~33
    [20] 诸葛键编著.工业微生物资源开发应用与保护.化学工业出版社,2002, 80
    [21] 刘祖同,罗信昌.食用覃菌生物技术及应用.北京,清华大学出版社,2002. 90
    [22] Ardon O., Kerem Z.,Hadar Y. Enhancememt of laccase activity in liquid cultures of the ligninolytic fungus Pleurotus ostreatus by citton stalk extract. J.Biotechnol. 1996, 51:201-207
    [23] Arora D.S., Gill P.K. Laccase production by some white rot fungi under different nutritional conditions [J]. Bioresource Technology. 2000,73: 283-285
    [24] Galhaup C., Wagner H., Hinterstoisser B.,et al. Increased production of Laccase by the wood-degrading basidiomycete Trametes pubescens. [J].Enzyme and Microbioal Technology.2002,30:529-536
    [25] Lorenzo M., Moldes D., Couto S.R., Sanroman A. Improving Laccase production by employing different lignocellulosic wastes in submerged cultures of Trametes versivolor[J]. Bioresource Technology. 2002,82: 109-113
    [26] Palmieri G., Giardina P., Bianco C., et al. Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus [J]. Appl. Environ.Microbio1. 2000, 66:920-924
    [27] 康从宝,刘巧,李清心,等.白腐菌产漆酶的纯化及部分酶学性质.中国生物化学与分子生物学报,2002, 18 (5): 638-642
    [28] Couto S.R., Gundin M., Lorenzo M., Sanroman M.A. Screening of supports and inducers for laccase production by Trametes versivolor in semi-solid-state conditions.Process Biochemistry.2002,38:249-255
    [29] Arora D.S., Gill P.K. Effects of various media and supplements on laccase production by some white rot fungi [J]. Bioresource Technology. 2001,77:89-91.
    [30] Koroleva O.V., Gavrilova V.P., Stepanova E.V., etal. Production of lignin modifying enzymes by co-cultivated white-rot-fungi Cerrena maxima and Coriolus hirsutus and characterization of laccase from Cerrena maxima[J]. Enzyme andMicrobioal Technology.2002,30: 573-580
    [31] 秦文娟,余惠生,付时雨.利用漆酶降解有机污染物.中国造纸[J].2001,5:58-62
    [32] Zeddel A, Majcherczyk A, Huttermanann A. Degradation of polychlorinated biphenyls by white-rotfungi Pleurotus ostreatus and Trametes versicolor in a solid state system[J]. Toxicol Environ Chem,1993,40:255-266
    [33] Kawai S, Umezawa T, Shimada M, et al. Aromatic ring cleavage of 4,6-diguaiacol, a phenoliclignin model compound by laccase of Coriolus versicolor[J].FEBS Lett, 1988,236:309-311
    [34] Duran N. and Esposito E. Potential applications of oxidative enzymes and phenoloxidase-likecompounds in wastewater and soil treatment [J]. Applied Catalysis B: Environmental. 2000,28 :83-99
    [35] Crestini C. and Argyropoulos D.S. The early oxidative biodrgradation steps of residual kraft ligninmodels with laccase[J]. Bioorganic and Medicinal Chemistry..1998,6: 2161-2169
    [36] Smith M, Thurston C F, Wood D A. Fungal laccase:Role in delignification and possible industrial applications. Multi-copper Oxidases, 1996, 10(1): 223~230
    [37] Ghindilis A, Yaropolov A, Borman E, et al. Temperature-induced changes in copper centers and protein conformation of two fungal laccases from Coriolus hirsutus and Coriolus zonatus. Biochimiya, 1986, 51(9): 1442~1445
    [38] Nutsubidze N N, Sarkanen S, Schmidt E L, et al.Consecutive polymerization and depolymerization of kraft lignin by Trametes cingulata. Phytochemistry, 1998, 49(5):1203~1212
    [39] Niku-Paavola M L, Raanua M, Sournakki A, et al. Effect of lignin-modifying enzymes of pulp.Bioresour Technol, 1994, 50(1): 73~79
    [40] Ejechi B O, Obuekwe C O, Ogbimi A O. Microchemical studies of wood degradation by brown rot and white rot fungi in two tropical timbers. Int. Biodeterior. Biodegrad.,1996, 38(2): 119~122
    [41] Bajpai, Pratima. Application of enzymes in the pulp and paper industry. Biotechnology Progress,1999, 15(2): 147~157
    [42] 喻力, 詹怀宇, 付时雨. 漆酶和聚木糖酶协同漂白蔗渣硫酸盐浆的研究. 纤维素科学与技术, 2001, 9(3): 37~40
    [43] Archibald F, Paice M G, Lubomir J. Decolorization of kraft effluent bleachery chromophoresby coriolus(Trametes) versicolor. Enzyme and Microbial Technology,1990, 12(11): 846~853
    [44] 钞亚鹏, 钱世钧. 真菌漆酶及其应用. 生物工程进展, 2001, 21(5): 23~28
    [45] Ricotta A, Unz R F, Bollag J M, et al. Role of a laccase in the degration of pentachlorophenol.Bull Environ Contam Toxicol, 1996, 57(4): 560~567
    [46] Majcherczyk A, Johannes C, Huettermann A, et al. Oxidation of polycyclic aromatic hydrocarbons(PAH) by laccase of Trametes versicolor. Enzyme Microb Technol,1998, 22(5): 335~341
    [47] Rodriguez E, Pickard M A, Vazquez-Duhalt R. Industrial dye decolorization by laccases from ligninolytic fungi. Current Microbiology, 1999, (38): 27~32
    [48] Chivukula M, Renganathan V. Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Applied and Environmental Microbiology, 1995, 61(12): 4374~4377
    [49] 缪静, 姜竹茂. 漆酶的最新研究进展. 烟台师范学院学报, 2001, 17(2): 146~150
    [50] Amitai G, Adani R, Sod-Moriah G, et al. Oxidative biodegradation of phosphorothiolates by fungal laccase. FEBS Lett., 1998, 438(3): 195~200
    [51] Brenna O, Bianchi E. Immobilized laccase for phenolic removal from must and wine.Biotechnology Letters, 1994, 16(1): 35~40
    [52] 张福元, 阎永亮, 吴海花. 猴头菌醋糟高产配方筛选及营养利用规律研究. 食用菌学报, 2002, 9(1): 28~35
    [53] Das N, Sengupta S, Mukherjee M, et al. Importance of laccase in vegetative growth of Pleurotus florida. Appl. Environ. Microbiol., 1997, 63(10): 4120~4122
    [54] 段杉, 彭志英. 食品工业新酶源. 中国食品添加剂, 2001, (5): 7~11
    [55] Norsker M, Jensen M, Adler-Nissen J. Enzymatic gelation of sugar beet pectin in food products.Food Hydrocolloids, 2000, (14): 237~243
    [56] Hill H Z. The function of melanin or six blind people examine an elephant. Bio.Essays., 1992, (14): 49~56
    [57] Ghindilis A L, Gavrilova V P, Yoropolov A I. Laccase-based biosensor for determination of polyphenols: determination of catechols in tea. Biosensors and Bioelectronics, 1992, 7(2): 127~131
    [58] Yaropolov A I, Verzilov V V, Ghindilis A L. Laccase-based biosensors. Biosensors,1990, 3(3): 126~130
    [59] Shin T, Murao S, Matsumura E. A chromogenic oxidative coupling reaction of laccase: applications for laccase and angiotensin I converting enzyme assay. Anal.Biochem., 1987, 166(2): 380~388
    [60] 康从宝,刘巧,李清心,等.白腐菌产漆酶的纯化及部分酶学性质[J]. 中国生物化学与分子生物学报,2002,18(5):638-642
    [61] Douglas W R, Mckaue B.Chlorinated organic matter in bleached chemical pulp production,Part7:Characterizationof Extractives[J].Bioresource Technology, 1990, 8(15):253-255
    [62] 陈嘉祥.高效清洁制浆漂白新技术[M].北京:中国轻工业出版社,1996,5(9):12-15
    [63] 张厚民等.生物技术与制浆造纸工业(上).中国造纸,1994,13 (8): 51-56
    [64] MessnerK.,etal.Treatment of bleach plant effluents by the MYCOPOR system Biotechnology in pulp and paper manufacture Butterworth-Heninemann, 1999,25(3):245-248
    [65] D. Eaton, H-m. Chang, et al. Method obtains fungal reduction of the color of exaction stage Kraft bleach eflluents.Tappi J., 1998,65 (6) :89-92
    [66] D. Livernoche, L. Jurasek, M. Desrochers, J. Orica. Removal of color from Kraft wastewaters with cultures of white-rot fungi and with immobilized mycelium ofcoriolus versicolor. BiotechnoL. Bioeng,1993,2(5):2055-2065
    [67] J. Pellinen, T W. Joyce, H-m. Chang. Dechlorination of high-molecular weight chlorolignin by the white-rot fungus,P.chrysosporium Tappi J.1998,81(9):191-194.
    [68] Seon-Ho Lee, Hirofumi Hiral,Ryuichiro,etal. Screening of wood-rotting fungi for effluent decolorization of Kraft bleaching effluents. Seventh international symposium on wood and pulping chemistry, 1999(3):432-437
    [69] Dec J, BOLLAY JM.Archives of environmental contamination and toxicology, 1990,19(5):54-56
    [70] Hzou Ari, Labat M,Sayadi S.Degradation of 4-chlorophenol by the white rot fungus Phanerochaete chrysosporium in free and immobilized cultures[J]. Bioresource Technology ,2002,5(84):145-150
    [71] Rnagarathnamm A,Bajpai P, Pramod K.Studies on decolourization.degradation and detoxification of chlorinated lignin compounds in kraft bleaching effluents by Ceriporipsis sub6ermispora[J].Process Biochemistry ,1999,(34):939-948
    [72] 张业录, 赵华, 李群,等.漂白废水白腐菌脱色的条件[J].应用与环境生物学报,2001,7(2):170-174
    [73] 张业录,李群,赵华,等.白腐菌漂白废水脱色动力学研究[J].天津轻工业学院学报,2001,38(3):5-8
    [74] 林鹿,王双飞,陈嘉祥,等.白腐菌对蔗渣浆 CEH 漂白废水的脱色[J].工业水处理,1996,16(3):25-27
    [75] 魏华丽,石淑兰,裴继诚等.漆酶处理木素功能基变化及其光谱分析[J].中国造纸学报,2003,18(2):56-59
    [76] 王彩华,余惠生,付时雨.贝壳状革耳菌和黄抱平革菌固体培养酶系比较.微生物学报[J].1999,39(2):127-131
    [77] 刘祖同,罗信昌.食用覃菌生物技术机应用[M].北京,清华大学出版社,2002,9
    [78] Edens WA, Goins T Q, Dooley D, Henson J. Purification and characterization of a secreted laccase of Gaeumannomyces graminis var. Tritici. Appl Environ Microbiol,1999,65(7):3701~3704
    [79] 赵峡,苗辉,范慧红,等.用 GPC 法测定硫酸多糖 911 的分子量和分子量分布[J]. 青岛海洋大学学报,2000,30(4):623-626
    [80] 李朝霞,朱建良.固定化白腐菌对造纸废水的生物降解研究[J].水处理技术,2005,31(12):23-26
    [81] Alexandre G,Zhulin I B.Laccases are widespread in bacteria[J].Trend Biotechno1.,2000,18:41-42
    [82] Cullen D.Recent advances on the molecular genetics of ligninolytic fungi[J].J.Biotechno1.,1997,53:273-289
    [83] Nelson Duran,Elisa Espsito.Potential applications of oxidative enzymes and henoloxidase-like compounds in wastewater and soil treatment:a review[J].Applied Catalysis B:Environment,2000,28:83-99
    [84] 常天俊,潘文维,赵丽,等.白腐真菌对染料脱色的培养条件研究[J].环境工程学报,2007,1(2):56-58
    [85] 张业录,赵华,李群,等.碱法麦草浆漂白废水脱色白腐菌的筛选及脱色研究[J].环境污染与防治,2001,23(5):216-218
    [86] 吴坤 , 朱显峰 , 张世敏 , 等 . 杂色云芝产漆酶的发酵条件研究 [J]. 菌物系统,2001,20(2):207-213
    [87] 李松礼 , 洪卫 , 杨海涛等 . 制浆造纸综合废水深度处理技术 [J]. 中国造纸,2006,25(6):71-72
    [88] 洪 卫 , 冯 晓 静 , 蒋 文 强 . 造 纸 中 段 废 水 深 度 处 理 的 研 究 [J]. 中 国 造纸,2006,25(2):65-66
    [89] Fu Shi-yu,Zhan Huai-yu,He Wei.Degradation of Residual Lignin in Kraft Pulp by Laccase and M ediator System[J].Journal of South China University of Technology(Natural Science Edition),2002,30(12):31-36
    [90] 中野凖三 . 木质素的化学 [M]. 高洁 , 鲍禾 , 李忠正译 . 北京 : 轻工业出版社,1988.519-523
    [91] 洪卫,李敬爱,张现等,标准法测定化学需氧量的改进[J].山东轻工业学院学报,2005,19(2):52-56
    [92] 刘巧,赵建,李雪芝等.云芝漆酶粗酶液降解 2-氯苯酚的研究[J].中国造纸学报,2004,19(1):172-176
    [93] 王璐,木腐真菌分泌的低分子量物质在木素生物降解中作用的机制,山东大学博士学位论文 2008 年 5 月,pp.4-7
    [94] 耿兴莲,李忠正,王传槐.漆酶对木质素磺酸盐生物改性的研究.林产化学与工业,1999,19(1):11-14
    [95] Livernoche D., Jurasek L., Desrohers M., et al. Peroxidase and laccase as catalysts for removal of thephenlhydrazide protecting group under mild conditions. Biotechnology and Bioengineering, 1983, 25: 2055-2065
    [96] Xavier F., Gloria C., Xavier G., et al. Black liquor detoxification by laccase of Trametes versicolor pellets. J Chem Technol Biotechnol,2003,78:548-554

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700