抗甲醛微生物的分离鉴定及其相关基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从家具厂未处理污水中分离具有甲醛抗性的细菌和真菌。主要研究结果如下:
     1.抗甲醛细菌的分离与鉴定
     分离了8株抗甲醛细菌,6个菌株能在20mmol/L甲醛的平板生长,命名为SG-32、SG-71、SG-87、SG-107、SG-122、SG-135。1个能在10mmol/L的甲醛平板上生长,命名为SG-zong。1个能在4mmol/L甲醛平板上生长,命名为SG-ju。经生理生化分析和分子鉴定,初步确定SG-32、SG-71、SG-87、SG-107、SG-122和SG-135是Pseudomonas putida恶臭假单胞菌。SG-zong是Pseudomonas fluorescens荧光假单胞菌。SG-ju是Acinetobacter johnsonii.约氏不动杆菌。
     2.抗甲醛细菌生长特性和抗甲醛能力分析
     SG-32、SG-71和SG-107最适生长温度为30℃,SG-135则是35℃。SG-32和SG-135的最适pH值为pH7。SG-71和SG-107的最适pH值为pH8。这4株菌可以耐受并代谢20 -35mmol/l的甲醛。
     3.抗甲醛真菌的分离与鉴定
     分离了3种抗甲醛真菌,SG-huang、SG-hei和SG-qing。通过形态学观察和分子鉴定,初步确定它们分别是Aspergillus nomius红绶曲霉、Aspergillus versicolor花斑曲霉和Penicillium vinaceum酒色青霉
     4.抗甲醛真菌的生长特性和抗甲醛能力分析
     SG-huang、SG-he和SG-qing最适生长温度均为25℃。最适pH值为pH5。这3种真菌都可以降解甲醛,其中SG-huang7天内可降解80mmol/L甲醛,SG-hei7天内可降解50mmol/L甲醛,SG-qing7天内可降解30mmol/L甲醛。它们还能以甲醛作为唯一碳元进行代谢。
     5.抗甲醛细菌Gfa基因的克隆
     利用PCR法克隆了Pseudomonas putida strain SG-32的Gfa基因。该基因核苷酸序列全长为393bp,编码131个氨基酸。在GenBank进行了登录,序列号为HM016790。BLAST检索分析表明,Pseudomonas putida strain SG-32 Gfa基因与与Pseudomonas putida F1中依赖谷胱甘肽的甲醛激活酶(glutathione-dependent formaldehyde-activating,Gfa)序列同源性96%。该蛋白有4个区域,一个VWFC区,1个C-半胱氨酸节区,1个微管蛋白亚基α、β和γ识别区,1个过敏毒素区。Pseudomonas putida strain SG-32 Gfa基因的克隆,为今后利用该基因进行抗甲醛基因工程奠定了基础。
In this study, formaldehyde-resistanced bacterias and fungis were isolated from furniture factory sewage as the experimental material.The results were as follows.
     1,Isolated and identified the formaldehyde-resistanced bacterias
     8 strains formaldehyde-resistanced bacterias were isolated on selective media contaning formaldehyde.There are 6 isolated strains named as SG-32,SG-71,SG-87,SG-107,SG-122,SG-135 could grow on medium with 20mmol/L formaldehyde.One isolated strain named as SG-zong could grow on medium with 10mmol/L formaldehyde,and the anther one strain named as SG-ju could grow on medium with 4mmol/L formaldehyde.SG-32,SG-71,SG-87,SG-107,SG-122,SG-135 were identified as Pseudomonas putida by plentiful physiological-biochemical experiments and molecular identification.SG-zong was identified as Pseudomonas fluorescen.SG-ju was identified as Acinetobacter johnsonii.
     2,Analysis the growth and the ability of formaldehyde-resistanced of bacterias
     The optimal temperature were 30℃for SG-32,SG-71,SG-107 respectively and which were 35℃for SG-135. The optimal pH value were 7 for SG-32,SG-135 respectively and which were 8 for SG-71,SG-107.They all could tolerated 20mmol/L-35mmol/L formaldehyde.
     3,Isolated and identified the formaldehyde-resistanced fungis
     Formaldehyde-degrading fungis(SG-huang,SG-hei,SG-qing) were isolated and identified as Aspergillus nomius,Aspergillus versicolor,Penicillium vinaceum by morphological observation and molecular identification.
     4,Analysis the growth and the ability of formaldehyde-resistanced of fungis
     The optimal temperature were 25℃for SG-huang,SG-he,SG-qing respectively.The optimal pH value were 5 for SG-huang,SG-he,SG-qing respectively.After shaking culturing 7 days, formaldehyde degraded from 80, 50, 30mmol/L to almost 0 mmol/L bySG-huang,SG-he,SG-qing respectively.All the isolated strains could grow on medium with formaldehyde as the sole carbon source.
     5,Cloning of Gfa from the formaldehyde-resistanced bacteria
     The DNA sequence of Gfa gene from Pseudomonas putida strain SG-32 was determined by PCR.The results of sequence analysis show that the full length of Gfa from Pseudomonas putida strain SG-32 is 393 bp; it encodes 131 amino acids. The gene was logged in GenBank, serial number is HM016790.BLAST search analysis showed that,Gfa gene from Pseudomonas putida strain SG-32 shares homology of 96% in nucleotide acid sequence compared with that of Pseudomonas putida F1.It has four regions, a VWFC domain , a C-terminal cystine knot , a Tubulin subunits alpha, beta and gamma signature and an Anaphylatoxin domain.The cloning of Gfa gene from Pseudomonas putida strain SG-32 provides a fundamentalbasis for further improvement of formaldehyde-resistanced of plants through genetic engineering.
引文
1徐丹,钱敏,袁惠新.室内空气污染及净化[J].化工装备技术,2002,23(5):52-56
    2黄安民,刘渝,张求慧,等.国外人造板甲醛释放的测定方法[J].木材加工机械,2002,(4):28-30
    3陆军,张吉先,柴文森.人造板的甲醛释放及其控制措施的研究进展.林产工业,2003,30(6):13-15
    4范卫,王法弟,贾晓东,等.近十年国内有关甲醛的环境与职业危害调查研究[J].环境与职业医学,2004,21(2):157-159
    5张国荣,张代羿.室内空气中甲醛污染与防治措施[J].丹东纺专学报,2003,10(3):31-32
    6王昆,乔永康,曹毅,等.“活性甲醛”的概念与甲醛分子跨越细胞膜机理的探讨[J].公共卫生与预防医学,2006,17(3):43-45
    7孙瑶毅.甲醛有害气体治理的研究进展[J].化工科技市场,2004,1(4):17-20
    8于立群.甲醛的健康效应[J].国外医学卫生学分册,2004,31(2):84-87
    9刘英帅,丁书茂,鲁志松,等.甲醛致DNA断裂作用的机制及修复的研究.环境科学学报,2005,25(7):994-998
    10 Saeed M, Afsaneh R, Pooneh K, et al. Isolation of bacteria able to metabolize high concentrations of formaldehyde[J]. Microbiology & Biotechnology, 2005(21): 1299-1301
    11 Zagornaya P B,Denis A D, Gvozdyak P I, et al. Microbiological purification of above resin wastewaters[J]. Biotekhnologiya ,1990(2): 51-53
    12 Yamazaki T, Tsugawa W, Sode K. Biodegradation of formaldehyde by a formaldehyde-resistant bacterium isolated from seawater[J]. Appl Biochem Biotechnol, 2001(91–93): 213-21
    13 Marta E,Christian K, Maria C V. Formaldehyde biodegradation and its inhibitory effect on nitrification[J]. Chemical Technology and Biotechnology,2004,79: 499-504
    14 Marta E, Almudena Vr, Christian K, et al. Formaldehyde biodegradation in the presence of methanol under denitrifying conditions[J]. Chemical Technology and Biotechnology, 2006(81): 312-317
    15 Tetsuya K, Yutaka M, Naohiro H, et al. Purification and characterization of formate oxidase from a formaldehyde-resistant fungus[J]. FEMS Microbiology Letters, 2002, 214(1): 137-142
    16 Tetsuya Kondo,Yutaka Morikawa, Naohiro Hayashi.Purification and characterization of alcohol oxidase from Paecilomyces variotii isolated as a formaldehyde-resistant fungus[J].ApplMicrobiol Biotechnol(2008)77:995–1002
    17黄赛花,陈能场,等.一株甲醛降解真菌Aspergillus spp.H4的分离鉴定.生态环境2007, 16(4): 1175-1179
    18颜望明.甲基营养菌的代谢[J].微生物学杂志,1986,6(2):58-66.
    19黄志华,刘铭,王宝光,等.甲酸脱氢酶用于辅酶NADH再生的研究.过程工程学报, 2007, 6 (6):1011-1016.
    20宋中邦,陈丽梅,李昆志,等.细菌的核酮糖单磷酸途径与甲醛同化.微生物学报,2007,47(1):168-171
    21殷飞,陈丽梅,李昆志.利用一碳化合物(C1)细菌的分离及基因组文库的构建.生物技术通报,2006,(5):97-100
    22 Yurimoto H, Hirai R , Yasueda H, et al.The ribulosemonophosphate pathway operon encoding formaldehyde fixation in a thermotolerant methylotroph , Bacillus brevis S1. FEMS Microbiol Lett , 2002 , 214(2) : 189 - 193
    23 Sakai Y, Mitsui R, Katayama Y, et al . Organization of the genes involved i n the ribulose monophosphate pathway in an obligate methylotrophic bacterium, Methylomonas aminofaciens 77a. FEMS Microbiol Lett , 1999,176(1) : 125 - 130
    24 Julia A, Vorholt. Cofactier-dependent pathways of formaldehyde oxidation in methylotrophic Bacteria[J].Microbiol,2002,178:239-249
    25程元恺,谷胱甘肽的解毒作用与毒性代物化学与生物物理进展,1994,21(5):395-399
    26 Gutheil WG,Kasimoglu E,Nicholson PC.Induction of glutathione-dependent formaldehyde dehydrogenase activity in Escherichia coli and Hemophilus influenza[J]. Biochem Biophys Res Commun,1997,238:693-696.
    27 Sahoo R,Bhattacharjee A,Majumdar U, et al.A novel role of catalase in detoxification of peroxynitrite in S.Cerevisiae[J].Biochem BiophysResCommun,2009,385(4):507-511
    28 Misset Smits M, Van Ophem PW, Sakuda S, et al. Mycothiol,1-O-(2'-[N-acetyl-L-cysteinyl]amido-2'-deoxy-α-D-glucopyranosyl) -D-myo-inositol, is the factor of NAD/factor-dependent formaldehyde dehydrogenase[J]. FEBS Lett,1997,409:221-222
    29罗纪盛,顾亦军,张艳萍.GSH队甲醛的解毒作用.华东师范大学学报,1995,1(1):101-106
    30 Roca A,Rodriguz Herva JJ,Ramos JL.Redundancy of enzymes for formaldehyde detoxification in Pseudomonas putida[J].Journal of Bacteriol,2009,191(10):3367-3374
    31 Mika Jormakka, Bernadettb Byme, So Lwata. Formate Dehydrogenase A Versatale Enzymein Changing Environments[J]. Curr. Opin. Struc. Biol., 2003, 13: 418?423
    32 Gregory J.Crowther,et al.Formate as the Main Branch Piont for Methylotrophic Metabolism in Methylobacteriun extorquens AM1.Journal Of Bacteriology,July 2008:5057-5063
    33黄志华,张延平,刘铭,等.甲酸脱氢酶在Klebsssssiella pneumoniae中的表达和功能分析.微生物学报,2007,47(1):64-68
    34 Emiko Shiagawa,et al.Formaldehyde Elimination with Formaldehyde and Formate Oxidase in Membrane of Acetic Acid Bacteria.Journal of Bioscience and Bioengineering,2008.105,(3):292-295
    35蔡健,胡将军,张燕.改性活性炭纤维对甲醛吸附性能的研究.环境科学与技术,2004,27(4):16-19
    36蔡邦成,高士祥,肖琳,等.一株硝基苯高效降解菌的筛选及其降解特性[J]环境科学与技术,2003,(04) 1-4
    37吴建峰,沈锡辉,周宇光,等.一株降解对氯硝基苯的Comamonas sp. CNB1的分离鉴定及其降解特性,微生物学报,2004,44(1)8-12
    38胡南.一株耐镉恶臭假单胞菌的分离鉴定及其重要的镉抗性相关基因克隆[D].中国博士学位论文全文数据库,2006,(02):43-49
    39李明堂,徐镜波,盛连喜.硝基苯好氧降解细菌的筛选和降解活性研究[J]吉林农业大学学报, 2006,(05):1-4.
    40李怡,何珊,曹海鹏,等.孔雀石绿脱色菌恶臭假单胞菌菌株M6的分离、鉴定定及其生长特性研究.微生物学通报,2009(01):23-27
    41赵珏,曾苏,傅大放,等.多株硝基苯降解菌的筛选[J]应用与环境生物学报, 2002,(04):14-16
    42 Shonaelle M.Wilson et al.Identification of proteins involved in formaldehyde metabolism by Rhodobacter sphaeroides.NIH Public Access,2008,154( 1):296-305
    43李怡,何珊,曹海鹏,等.孔雀石绿脱色菌恶臭假单胞菌菌株M6的分离、鉴定及其生长特性研究.微生物学通报,2009,36(1): 57-63
    44黄瑞娟.假单胞菌属细菌的分离与耐药性分析.中国感染控制杂志,2006,(01):34-37
    45陈志英,王磊,周琪.菌龄对恶臭假单胞菌吸附铜离子能力的影响.中国环境科学,2006,26(4):97-101
    46赵化冰,李永君,陈威,等.恶臭假单胞菌ND6菌株中与萘降解相关的新型水杨酸脱氢酶NahV..科学通报,2007,52(11):1257-1262
    47杨海洋,李轶,胡洪营,等.恶臭假单胞菌对硝基苯污染河水的修复研究.安全与环境工程,2008,15(1):54-61
    48 TimmisKN.Psdomonas putida: a cosmopolitan opportunist parexcellence.Environ Microbiol,2002,4:779-781
    49仲民.恶臭假单胞菌属可分解低分子量碳氢化合物.环境科学,1987(02):36-40
    50 Nishino SF,Spain JC.Degradation of nitrobenzene by a pseudomonas pseudoalca-ligenes[J]. Applied Environ Micro-biology ,1993, 69(8):2520~2525
    51 Azachi M, Henis Y, Oren A, et al. Transformation of formaldehyde by a Halomonas sp[J]. Canadian Journal of Microbiology, 1995(41): 548–553
    52 Doronina N V, Ezhov V A, Trotsenko Y A. Aerobic biodegradation of formaldehyde, methanol and methylamine by immobilized Methylobacterium extorquens Cells[J]. Applied Biochemistry and Microbiology, 1997(33): 138-141
    53 Bonastre N, de mas C, Sola C.Vavilin equation in kinetic modelling of forlmaldehyde biodegradation[J]. Biotechnol Bioeng,1986(28): 616-619
    54 Adroer N, Casas C, de mas C, et al. Mechanism of formaldehyde biodegradation by Pseudomonas putida[J]. Appl Microbiol Biotechnol,1990(33): 217-220
    55邵力平,沈瑞祥.张素轩等.真菌分类学[M].北京:中国林业出版社,1992.247-258
    56赵广有,李一帆.甲醛对分离真菌的抑制作用长春中医药大学学报,2008,(24)6:769-769
    57秦坤,唐心强,张丽青乐斯本降解真菌的筛选及降解特性研究.泰山医学院学报,2007,128,(6):437-440
    58吴发红,黄东益,黄小龙,等.几种真菌DNA提取方法的比较.中国农学通报,2009,25(08):62-64
    59李绍兰,周斌,杨丽源,等.真菌DNA提取方法的改良[J].云南大学学报,2002,24(6):471-472
    60何月秋.真菌菌丝培养和提取DNA方法的改进[J].菌物系统,2000,19(3):434
    61易庆平,罗正荣,张青林.DNA提取纯化方法综述[J].安徽农业科学,2007,5(25):7789-7791
    62 Wu QX,Mueller GM,Lutzoni FM,et al.Phylogenetic and biogeographic relationship of eastern Asian and eastern north American disjunct Suillus species(Fungi)as inferred from nuclear ribosomal DNA ITS sequences[J].MolPhylogenet Evol,2000,17:37-47
    63 Junghans DT,Gomes EA,Guimaraes WV,et al.Genetic diversity of the ectomycorrhizal fungus pisolithus tinctorius based on RAPD-PCR analysis[J].Mycorrhiza,1998,7:234-248
    64郑先云,郭亚平,马恩波.AFLP分子标记技术的发展[J].生命的化学,2003,23(1):65-67
    65林晓民,李振岐,王少先.真菌rDNA的特点及在外生菌根菌鉴定中的应用[J].西北农业报,2005,14(2):120-125
    66许美玲,孙军德,朱教君,等.树木外生菌根真菌多样性研究方法进展[J].土壤通报,2005,36(6):969-973
    67匡治州,许杨.核糖体ITS序列在真菌学研究中的应用[J].生命的化学,2004,24(2):120-122
    68 Oscar F,Cubero.DNA extraction and PCR amplification method suitable for fresh,herbarium-stored,lichenized,and other fungi[J].Pl.Syst Evol.216:243-249
    69孙丹,余养盛,杨文博,等. L-半胱氨酸产生菌恶臭假单胞菌TS1138的鉴定和诱变育种[J]天津大学学报, 2007,(04):33-35
    70 Hiroyuki Nozaki,Shinji Kunihiko Watanabe.et al.Gene Cloning of a-Methylserine Aldolase from Variovorax paradoxus and Purification and Characterization of the Recombinant Ezyme.Biosci.Biotechnol.Biochem,2008,72(10):2580-2588
    71陈少欣,史炳照.毕赤酵母甲酸脱氢酶在大肠杆菌中的高表达及纯化.微生物学通报,2007,34(1):15-18
    72徐娴,贾红华,何冰芳,等.甲酸脱氢酶基因在大肠杆菌Rosetta中的高效表达.食品与发酵工程,2007,33(5):5-8
    73马展,张德纯.假单胞基因工程菌的开发应用现状与展望[J]中国微生态学杂志,2003,(03):67-70
    74陈丽梅,殷飞,李昆志,等.耐受甲醛并利用甲醛细菌的分离及其基因组文库的构建.安徽农业科学,2008,36(3):978-981
    75 Shinoda T, Satoh T, Mineki S, et al. Cloning, Nucleotide Sequencing,and Expression in Escherichia coli of the Gene for Formate Dehydrogenase of Paracoccus sp. 12-A, a Formate-assimilating Bacterium [J]. Biosci. Biotechnol. Biochem, 2002, 66: 271?276
    76郭长虹,王永斌, ,李丽娅,等.黄花苜蓿铁蛋白cDNA的克隆与序列分析.哈尔滨工业大学学报,2009,41(3):141-145
    77 Hunt L.T., Barker W.C.von Willebrand factor shares a distinctive cysteine-rich domain with thrombospondin and procollagen. Source Biochem Biophys Res Commun,1987,144:876-882
    78樊蕊,樊代明,刘杰.腺病毒介导的URG11RNAi抑制肝癌细胞生长及机制研究.第四军医大学硕士论文,2007
    79 Meitinger T., Meindl A., Bork P.,et al. Molecular modelling of the Norrie disease protein predicts a cystine knot growth factor tertiary structure. Source Nat Genet,1993,5:376-380
    80 Cleveland D.W., Sullivan K.F. Molecular biology and genetics of tubulin. Source Annu Rev Biochem,1985,54:331-365

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700